FDR in Top Physics WG

-- A full dress rehearsal of Analysis Model --

Akira Shibata, New York University

Marcello Barisonzi, DESY

I 6. January. 2008

Motivation

- Need to address the question: "how do we analyse the real data?"
- Identify how all the software tools fit into the big picture of physics analysis. Stream AOD, database, DPD, TAG, EventView, ARA etc.
- Develop strategy for physics analysis with <u>early data</u> in the top working group.
- We will present our ideas today. On going discussion with D. Charleton (FDR), M. Bosman (top), K. Assamagan (TAG), A. Holloway (Stream), T. LeCompte & L. D. Ciaccio (SM) et al. We would love feedback today.
- Inviting contributors. Take part in physics analysis aimed at early data in the way we will analyse real data. See page 6 and 7.

Aim of the Project

- ✓ Production of common $D^{1/2/3}PD$.
- ✓ Event selection using TAG/Trigger/Condition DB.
- Study physics trigger menus for all luminosities.
- Replicate DPD and analyse remotely (down to T2).
- Development of common tools for analysis.
- ✓ Study usability of ARA (how fast?)
- Exercise physics analysis with early data using all the goodies above...

◆ FDR-1: February '08

- ◆ Integrated lumi ~ I pb-I.
- ◆ Mostly at 10³¹ cm⁻² s⁻¹ and short period at 10³² cm⁻² s⁻¹. No pile-up
- Lowest unprescaled thresholds: e10 (21 Hz), μ10(18 Hz), τ60 (10 Hz), γ20 (7 Hz), j120 (9Hz).
- egamma, muon, jetTauEtmiss, minbias, express and calibration streams. Might be more for 10³².

◆ FDR-2: May '08

- ◆ Integrated lumi ~50-100 pb-1.
- \bullet Include 10^{33} cm⁻² s⁻¹.
- ♦ With pile-up

cm ⁻² s ⁻¹	10 ³¹	10 ³³	10 ³⁴
pb ⁻¹ s ⁻¹	10 ⁵	10 ³	10 ²
s to 1pb ⁻¹	10 ⁵	10 ³	10 ²
h to 50pb ⁻¹	1500	15	1.5

(Just a reminder)

FDR Parameters

Physics Contents in FDR

	σ (pb)	σ*BR	Eff.*Acc.	Num at 1 pb ⁻¹	Num at 50 pb ⁻¹
pp->J/ψ (μ6μ4)				30,000	1,500,000
W		20510	15%	3,077	153,825
Wbb		111	15%	17	833
Z		2015	15%	302	15,113
tT	833	461	10%	46	2,305
t-chan single t	246	80	1%	1	40
	(Eff.*Acc	c. is a rough	n estimate.	BR include	es e/mu/tau)

- FDR includes Min-bias, QCD, DY, W/Z, B, top etc.
- Signal study in FDR-I not feasible but thousands of Ws to start studying background and reco and trigger perf.
- FDR-II gives enough data for many tT analyses.

Physics Analysis Cases: FDR I

- Little signal for top signal studies but relevant studies possible and the following discussed:
 - Measure efficiency of lepton triggers with tag'n'probe.
 - Study fake rate at 10³¹ with unprescaled trigger.
 - Study strategy for combined trigger, trigger overlap and monitoring trigger.
 - ▶ Enough high-pt jet to study jet energy scale. ($\sim \mu b$ for pt > 100 GeV)
 - Multi jet rate and study p_{T3}/p_{T1} and p_{T4}/p_{T1} as a function of eta/E.
 - ▶ Ratio of W+I/W+2/W+3 and more. Low statistics for 4 jets.
 - Estimate QCD events in W/top samples.
- May overlap with SM activity? Contributors are welcome!

From BNL Jamboree in Dec. 20

Physics Analysis Cases: FDR2

- Good prospect for tT reco already seen with (pre) commissioning analysis.
- Feasible studies that goes beyond the current studies:
 - \blacktriangleright tT cross section without missing E_T .
 - Differential cross section as a function of top pt
 - Delta phi/eta between tops (or just measure bbbar directions to approximate esp. with high pt top.)
 - Study soft muon tagging for cleaner top sample and study heavy flavour fraction (Wbb, Wcc, Wcj, Wbj) in W+jets.
 - Lower trigger threshold by combining triggers and increase efficiency with ORing triggers.
 - ▶ Jet multiplicity and JES versus luminosity (pile-up). More discussion needed.
- Let us know if you are interested in working on these.

From BNL Jamboree in Dec. 20

Full Analysis Flow Model I

A model encompassing D¹PD, D²PD and D³PD/ntuple. The main analysis model to be exercised in FDR.

DIPD with FDR-I

e/mu inclusive D¹PD:

ElectronCollection / PhotonCollection
MuidMuonCollection / StacoMuonCollection
Cone4HTTopoParticleJets / Kt4HTTopoParticleJets
MET_* / ObjMET_*
VxPrimaryCandidate
TrackParticleCandidate
CaloCalTopocluster
Trigger Decisions / Objects

Need input to finalise the thinning and slimming. More discussion in PAT later.

- ◆ D¹PD defines analysis datasets and their contents. Only relevant containers and details are selected to reduce data size without compromising physics.
- ◆ Generic contents for FDR-I possibly shared by a number of groups. We'd start with "inclusive lepton (e/mu)" D¹PD similar to the one discussed in the AM report.
- ◆ Include egamma/muon streams removing overlapping events and bad quality events using TAG database.
- ◆ Common validation plots should be implemented
- ◆ Tools based on: AODtoDPD by Sven plus production transformation.
- ◆ For FDR-2 add specific Z/W/top-like D¹PDs using TAG objects. More later.

D^{2/3}PD Contents

- ◆ D²DP and D³DP have more specific contents for specific analysis.
- ◆ D²DP is in POOL format. D³DP has equivalent contents in flat ntuple format.
- ◆ Contents follows <u>CSC TopView ntuple</u>. TopView analysis with common object preselection, overlap removal, trigger match, and additional UserData coming from existing tools, including <u>"commissioning" tT analysis</u>.
- igoplus Replicate the D^{2/3}PDs to Tier2.
- ◆ Produced using PANDA/GANGA at group level.
- ♦ What's the time-scale for D^{1/2/3}PD production?

ROOT analysis

- Recommended to use ARA in final ROOT analysis. Portability issues (only works on linux) keeps flat ntuples still relevant but one should try to move to ARA.
- ♦ Several use-cases. e.g.
 - ◆ Download D^{2/3}DP to local disk using dq2_get and analyse on local cluster. Size and speed issue should be monitored.
 - Send GANGA job to the computing site that holds the DPD and process remotely. Marcello has an example that works with <u>SFrame</u>.
 - Use PROOF to analyse DPD in parallel using TSelector (e.g. BNL).
- Good public frameworks available such as SPyRoot and SFrame but needs to become compatible with ARA.
- Try and use Tier 2/3. Higher navigability on Grid.

TAG

- ◆ So far, the weakest-link in analysis but more relevant with real data.
- ♦ We have come up with use-cases exercising both file and DB:
 - ✓ Merge streams with no overlap to produce DPD.
 - ✓ Reject events with bad data quality.
 - ✓ Selection on reco mass and other derived quantity as well as trigger decision. Define reproducible common selection for common samples such as inclusive W, Z and Top.
 - ✓ Fast/first method to validate the contents of AOD.
 - ✓ Re-generating iteration of <u>TAG</u> using cache.
- ♦ What's the status of the tools and DB? Do APIs exist for DB access? How about trigger DB?

TAG and Data Quality

- Problematic events will be introduced in FDR. First option for physics analysis is to ignore these dodgy events.
- LAr cell problem planned and flagging of bad events. Is this going to be reflected in condition/TAG database? (will "Good for physics" word be used in FDR?
- In any case there'll be bad lumi blocks (4/3000 in streamtest), bookkeeping would be minimal if TAG knows about them.
- Condition database would reflect the most up to date status (and once "bad" may turn "good"), but physics analysis may prefer to say "we used TAG version xx-xx-xx" rather than "we used condition database on this year, this day, this hour, this minute and this second".
- Strong use-cases for TAG selection for early physics analysis. Selection based on TAG object will come later when we are more confident with it.

TAG Contents

- ◆ The TAG contains many objects of interest but mostly just the four vector + a little addition:
 - ◆ First 6 jets in event, ordered by descending Pt (Jet variables include Bjet Likelihood)
 - ◆ First 4 Electrons, 4 Muons, 2 Taus, 2 Photons, MissingEt (Tracking info also included)
 - ◆ Trigger words
 - ◆ Detector Status & Data Quality
 - ◆ Luminosity block
 - ◆ A 32-bit wide Physics WG-specific TagWord produced by running Athena algorithm.
- ◆ See https://twiki.cern.ch/twiki/bin/view/Atlas/PhysicsAnalysisWorkBookTAG

(Jet Pt from tT sample)

Group Word and DPD

- ◆ FDR-I:
 - ◆ Assuming very early run, objects in TAG may not be well understood.
 - ◆ Use TAG to merge streams and remove bad quality data and produce inclusive lepton (e/mu) D¹PD. To start testing group words, is it possible to flag (not remove) events based on group word (or any other TAG info)?

(TAG from tT events)

- **♦** FDR-2:
 - ◆ Loose cuts but start defining more specific DPDs. Share with SM and others.
 - \bullet Can we use TAG for D¹PD->D²PD? Or we have to make new TAG from D¹PD?
 - ◆ Current suggestion to go into group word (need feedback):
 - **★ Z-like D'PD**: >=2 loose e/mu (one with Pt>20GeV). Lep. Inv. mass > 50 GeV.
 - ◆ W-like D¹PD: >= I loose e/mu (Pt>5GeV) and MEt>20 GeV.
 - **♦ top-like D'PD**: W-like and >=2 jets with Pt>30 GeV.
 - ◆ Maybe dileptonic, fullhad and tau top DPDs?
- ◆ TAG need to be copied to D×PD to study group word selection.

Backup Slides (DPD contents)

At the Tip of Analysis Model

As per Analysis Model Report (click to download the file):

D'PD Primary DPD, POOL format

AOD Thinned, Skimmed and Slimmed to reduce size.

D²PD Secondary DPD, POOL format

Output of framework analysis. Preselected/Overlap-removed objects and additional UserData

D³PD Tertiary DPD, Flat Ntuple

The same content as D²DP but in Flat Ntuple format

It also suggests:

"A comparison to an AOD analysis implementing the final DPD in a single job is straightforward and ensures that results obtained from the DPD can be validated relatively easily" So we call:

DPD All-in-one-go DPD

Same as $D^{2/3}DP$ above but produced in one go without D^1DP . DPD' to indicate it's format is in Flat Ntuple.

<u>Terms</u>

As per our current convention:

Skimming: removal of events e.g. Reject events based on TAG selection.

Slimming: removal of details of object information e.g. Remove b-tag information from PJet.

Thinning: removal of container or object e.g. Only keep tracks near reconstructed object.

Ist Stage Analysis: common framework analysis

e.g. Object selection based on official selection. Common reference analysis. Calculate common UserData. Typically event level study.

Final Analysis: private analysis in ROOT

e.g. You name it! Event level study as well as sample level study.

D²PD Contents, detail

We have produced functional DPD for CSC, "TopView Ntuple" and we will
convert it into POOL based format. Let's quickly review the feedback on TopView
and the DPD contents:

Pros:

- Rich set of tools enables common object preselection and overlap
- Calculation of non-trivial UserData and full analysis.
- Configurable set of tools to customise the DPD contents.

Cons:

- There is always VERY good reasons not to remove objects.
- Overlap removal removes objects and things not recoverable.
- Finalising one common ntuple that makes everyone happy is a mission impossible and can shorten the life of the responsible person.
- Besides, no one should constrain our analysis more than necessary.
- Digital divide: for some it's useful, for others it's just a black box.
- Removal of object should be minimised while keeping the pros and transparency.

So what do we do?

- I. No removing objects from primary DPD due to preselection/overlap.

 Loose objects are frequently useful to estimate background normalisation, and signal efficiency.
- 2. Remove tracks and clusters far from reco objects. These are the heaviest containers, which that needs thinning.
- 3. Keep the standard POOL DPD.

 Non EV-aware analysis must run on it just fine.
- 4. Use the same datasets for relevant analyses. Keep the contents generic
- 5. Analysis specific information should nonetheless be available. e.g. PJet_TRFTag2incl (object info calculated for a particular analysis)
- **6. Association should just be a link, no copying redundant information.** e.g. Not Electron_Truth_mother_pdgld but Electron.matchTo("Truth").mother(0).pdgld()
- 7. UserData should be accessible through "factorised method". e.g. PJet.UserData("TRFTag2incl"), PJet.UserData("Wdecay") etc.

And how do we do?

- I. No removing objects from primary DPD due to preselection/overlap. Selection will just flag: PJet.UserData("PassTopSel"), PJet.UserData("OverlapPJet")
- 2. Remove tracks and clusters far from reco objects. Remove if they are away from any reco/trigger/tru objects.
- 3. Keep the standard POOL DPD. No new format, just add info.
- 4. Use the same datasets for relevant analyses.

 Per analysis info is saved in persistified EventView. "SemilepView", "SingleTopView" etc.
- 5. Analysis specific information should nonetheless be available. As above. They are mostly collection of links and event level UserData.
- 6. Association should just be a link, no copying redundant information. Just keep element link of associated object. Also save
- 7. UserData should be accessible through "factorised method". Factorise UserData into EDM interface.

Backup Slides (FDR)

Representative sample of trigger items

❖ Some of the lowest threshold triggers that can run unprescaled at 10³¹

Signature	Physics Coverage	Rate @ 10 ³¹ (Hz)
e10, 2e5	b,c→e, DY, J/ψ, Y, W,Z, tt	21, 6
g20, 2g15	Direct Photon, photon pairs, γ -jet balance	6, <1
μ10, 2μ4	W, Z, tt, B-physics, DY, J/ψ, Y	19, 3
j120, 4j23	QCD, high PT final states, multi- jet final states	9, 5
τ20i+e10, τ20i+μ6	Z →ττ	1, 3
τ20i+xE30	W, tt	10
Minimum Bias	Pre-scaled trigger	4

Summary of EF rates from 13.0.30.4

Event	Filter		
Slice	Ra	te (Hz)	
Jet	34.9	(± 0.01)	
bjets	14.3	(± 0.06)	
Electron	33.7	(± 0.08)	
Photon	8.99	(± 0.02)	
Tau	33.5	(± 0.07)	
Muon	34.7	(± 0.7)	
Missing E _T	3.73	(± 0.009)	
Total E	0.925	(± 0.003)	
Total Jet E	1.67	(± 0.05)	
Topological + B-physics	13	(± 1)	
Combined	46	(± 1)	
Minimum Bias	0.0994	(± 0.0002) -	← 4 Hz in 13.0.40
Calibration	206	(± 5) ———	→ Fixed in 13.0.40
Total	382	(± 0.1)	

Stream rates

- Streams reflect configuration in 13.0.30.4
- Removed combined stream
 - Overlap with other streams considerably high.
- Muons & Bphysics merged
- Jets and tauEtmiss merged.
- Studies with different stream configuration ongoing.
 - But a baseline has been put in place for FDR-1.

Stream	Rate (Hz)	Unique Rate (Hz)
Combined	43	14.5
jets	48	33
egamma	41	30
tauEtMiss	43	27
muons	35	24
bphysics	13	9
minbias	0.1	0.1
TOTAL	223.1	137.6
express	20	0
calibration	207	199

FDR-1 Time Line

- January:
 - Sample preparation, mixing events
- ❖ Week of Feb. 4: FDR-1 run
 - Stream data through SFOs
 - Transfer to T0, processing of ES and CS.
 - Bulk processing completed by weekend.
 - Including ESD and AOD production
 - Regular shifts: DQ monitoring, Calibration and Tier-0 processing shifts
 - Expert coverage at Tier-1 as well to ensure smooth data transfer.
- Week of February 11:
 - AOD samples transferred to Tier-1s
 - DPD production at Tier-1.
- Week of February 18/25:
 - All data samples should be available for subsequent analysis.
- ❖ At some later point:
 - Reprocessing at Tier-1's and re-production of DPDs.
 - FDR-1 should complete before April and feedback into FDR-2