Axion-like particle and hidden photon search with a microwave shining through the wall experiment

M. Betz

CERN, Geneva Karlsruhe Institute of Technology

DESY ALPS Seminar Hamburg 10/2012

Outline

- **Overview** of "microwaves (not) shining through the wall" at CERN
- Design of the **cavities**
 - Some WISP radiation patterns
- Electromagnetic shielding
- Analog and digital signal processing

 Crash course: Mixers and the superhetrodyne receiver
- The HSP measurement run in 03/2012
- The axion measurement run in 09/2012
- Outlook

Motivation for WISP search

- WISP = Weakly Interacting sub-eV particles
 - Axion like particles (ALPs), hidden sector photons (HSPs), chameleons etc.
 - Very weak coupling to standard model particles, they live in a "hidden sector"
- The axion was proposed to "wash away" the strong CP problem
 - still a popular (theoretical) solution
- Some WISPs are excellent candidates for cold dark matter

How is energy transferred into the solar corona over a cold spot?

Why is there stronger "gravitational lensing" than expected?

Why do clusters of stars rotate faster on their outskirts than predicted?

Weakly interacting Sub-eV particles (WISPs) like axions or hidden sector photons could be the answer!

Motivation for using microwaves

Optical LSW

- A simple wall blocks photons but not WISPs
- High Q resonators are possible but expensive and delicate (nm tolerances)

Microwave LSW

- ✓ Q-factors around 10⁵ are no problem (mm tolerances)
- ✓ Powerful detection methods!
- The "wall" becomes a 3D EM. shielding challenge
- Photon energy is limited!

Motivation for using microwaves

Overview of the HSP setup

Some of the challenges involved:

- Detecting a microwave signal below -210 dBm (10⁻²⁴ W)
- Providing electromagnetic shielding of > **300 dB** at 3 GHz within 15 cm
- Keeping both cavities on tune for > 11 h

The setup in the laboratory

- (A) Emitting cavity
- (B) Detecting cavity
- (C) EM. Shielding enclosure, containing the signal receiver
- (D) Custom feed-trough filter for 230 V mains

Engineering aspects

1. Designing the cavities

2. EM. Shielding

3. Signal detection

Choice of cavity technology

for HSPs

- P_{trans} = Power transferred between the cavities due to WISPs
- Most significant parameters to optimize:
 - Q factors
 - Magn. field B (for ALPs)
- Quality factor (Q) of a cavity = circulating power / power loss per cycle
- We want high Q factors!

Equations from "A Cavity Experiment to Search for Hidden Sector Photons", J. Jaeckel, A. Ringwald

Choice of cavity technology

Choice of cavity mode

Normalized Q for various cylindrical cavity modes (air-filled).

From: D. Pozar, Microwave Engineering

TE₀₁₂

Choice of cavity geometry

Figure 15. Mode lattice for cylindrical resonators [3, p. 832]. [© 1947 IRE (now IEEE)].

break degeneration!

Fields in the cavity

Cavity	$\mathbf{f_{res}}$	$\mathbf{Q}_{\mathbf{L}}$	$\mathrm{BW}_{\mathrm{3dB}}$	coupling
Emitting	2.956 757 GHz	22 659	$130.5 \mathrm{~kHz}$	1.067
Detecting	2.956 757 GHz	22 538	$131.2 \mathrm{~kHz}$	1.096

Material: Silver coated brass (non magnetic) with a flash of gold to prevent oxidation

Cavity	$\mathbf{f_{res}}$	$\mathbf{Q}_{\mathbf{L}}$	$\mathrm{BW}_{\mathrm{3dB}}$	coupling
Emitting	2.956 757 GHz	22 659	$130.5 \mathrm{~kHz}$	1.067
Detecting	2.956 757 GHz	22538	131.2 kHz	1.096

The radiated field outside the cavity

$$B(\mathbf{x},t) = \chi m_{\gamma'}^2 \int_V d^3 \mathbf{y} \frac{\exp(\mathrm{i}k|\mathbf{x}-\mathbf{y}|)}{4\pi|\mathbf{x}-\mathbf{y}|} a_{\mathrm{em}}(t) A_{\omega_0}(\mathbf{y}),$$

Geometric form factor of 2 cavities with 15 cm spacing between them

next to each other
on top of each other

Tune of the emitting cavity

- If the cavity is on tune, reflected power should be close to zero
- We monitor and record this during the whole experimental run
- During warm up, the cavity drifts by ≈ 1 MHz, this is significant!
 (3 dB bandwidth ≈ 130 kHz)
- the drift is compensated by the tuning screw manually
- Once in thermal equilibrium, the cavity is stable 16

How it looks like in practice (for axions)

Tune of the **detecting** cavity (1)

- Tune is less critical as there is no power dissipation
- The most significant noise source in our setup is thermal noise from the cavity walls
- The cavity's spectral noise power is measured before and after each run by the VSA
- Its maximum indicates the resonant frequency

The detecting cavity did not have enough time to warm up, a drift of the tune can be observed, we loose some signal power

Engineering aspects

1. Designing the cavities

2. EM. Shielding

3. Signal detection

Electromagnetic shielding (for HSPs)

We **need** to reduce the field strenght by a factor of 10^{13} That is $20*\log(10^{13}) = 260 \text{ dB}$ The cavities are not perfect, they provide ≈ 110 dB of shielding each, which is not enough

Electromagnetic shielding

- EM shielding is a 2 step process:
 - 1. Construction of a shielding box
 - 2. Filtering of **all** cables going in and out of the box
- For step 1 we use a big piece of waveguide with custom made end caps
- It will contain the detection cavity and signal analyzer
- Air circulation!

How to measure screening attenuation

- A magnetic near field probe (HP 11940A) connected to a spectrum analyzer is used to determine local field-strength
- Essentially a calibrated antenna
- A signal source was placed inside the shielding box, radiating a test signal at 3 GHz
- We measured outside the box in 20 cm distance:
 - With open shielding box (H_0)
 - With closed shielding box (H_1)
- The screening attenuation (SA) is the difference in received power (in dBm)

$$SA = 20 * \log \left| \frac{H_0}{H_1} \right|$$

• The probe is also very useful to localize leaks

EM shielding: Lessons learned

0.1 mm holes

Most important: The weakest spot of the shielding determines its overall performance!

Only when <u>ALL</u> the lights are turned out, the room becomes **really** dark

00

Electromagnetic shielding

- EM shielding is a 2 step process:
 - 1. Construction of a shielding box
 - 2. Filtering of **all** cables going in and out of the box

• Our plan for step 2:

Which cables do we have	How to filter them
230 V AC power	Custom low pass filter
10 MHz reference signal	Transmission over optical fibre
Ethernet	Transmission over optical fibre

Feeding **power** in the shielding enclosure

A second order low-pass filter was built from an inductive and a capacitive element

Capacitive element 100 nF feed-trough capacitor, **IL = 90 dB**

RF connectors on **each component** allow to measure them **individually** on a Network Analyzer. Thus we can estimate the performance of the complete filter

Inductive element: tube made from lossy ferrite **IL = 60 dB**

DC and 50 Hz can pass, GHz signals are attenuated by ≈150 dB

Optical feed-troughs

- Analog and digital (Ethernet) optical transceivers are commercially available
- We use a short metal pipe for feeding the fibres in the shielding box
- ... we have a **hole in the shielding**, what is the effect on screening attenuation?
- Pipe = Circular waveguide of length *I* and diameter *d*:
 - $\mathbf{f} > \mathbf{f_c} \rightarrow$ Wave propagation, $f_c \approx \frac{17.6 \ GHz}{d \ [cm]}$
 - $f \ll f_c \rightarrow$ Aperiodic propagation, attenuation increases exponentially with *I*: *IL* [dB] $\approx 32 I / d$
- Any kind of **metallic conductor** can not be fed through this pipe!!! This would allow TEM waves to propagate at any frequency

Electromagnetic shielding

We achieved > **300 dB** electromagnetic shielding at 3 GHz within 15 cm distance, that's a reduction in signal power by a factor of **10**³⁰

The background signal in the experiment will be thermal noise, not EM crosstalk between the cavities Measured shielding effectivity

Emitting cav.	$>110~\mathrm{dB}$
Detecting cav.	>110 dB
Shielding box	$\approx 90~\mathrm{dB}$
Sum	>310 dB
Needed [*]	$>258~\mathrm{dB}$

*for meaningful results

We will soon implement a reference transmitter, inside the shielding, which allows us to measure the screening attenuation in real-time during the measurement run

Engineering aspects

1. Designing the cavities

2. EM. Shielding

3. Signal detection

Signal processing: Noise temp.

- On its resonant frequency, the cavities noise temp = its physical temp. = 300 K
- We expect a system noise temperature of 32.5 K
- For the added noise from the receiver, $T_{total} = T_1 + \frac{T_2}{G_1} + \frac{T_3}{G_1G_2} + \dots$ Friis formula applies:
 - The performance of the **first amplifier** determines the noise temperature of the whole receiving chain

Superhet receiver

- As we expect a sinusoidal WISP signal at known frequency, we are only interested in a narrow band of the received spectrum
- Goal: cut out a certain window of the input spectrum (at 3 GHz) and shift it down to a frequency the ADC can handle (< 48 kHz)
- Superhetrodyne = Greek for "another force becomes superimposed"
- Mixer (=signal multiplier) + local oscillator = "frequency shifter"

- **x**₁ is the **signal of interest** (radio station, reconverted axions, etc.)
- x_2 is the "local oscillator" (ω_{LO}): A sinusoidal signal of known and adjustable frequency
- The goal is to shift x_1 to a **fixed** "Intermediate frequency" (ω_{IF})
- All components after the mixer can now be implemented for the fixed IF while the receiver is still tuneable by changing ω_{LO}

Superhet receiver: Mixers

- For a simple mixer, frequency conversion is **ambiguous**!
- Input signals with the frequency
 ω_{sig} and ω_m will both end up at the
 same intermediate frequency
- ω_{sig} is the signal of interest
- ω_m is called the image or mirror frequency and not wanted

 $|\omega_1 - \omega_{|0}| = \omega_{|F|}$

$$\omega_{\rm sig} = \omega_{\rm LO} + \omega_{\rm IF}$$
$$\omega_{\rm m} = \omega_{\rm LO} - \omega_{\rm IF}$$

Superhet receiver: Mixers

- So for a given pass band of the IF – filter on the mixers output, there are always two pass bands on the mixers input
- The unwanted one being called the "mirror" or "image" band
- It can be mitigated by a filter on the mixers input

The commercial receiver

- So far we used the Agilent N9010A vector spectrum analyser to record data
- Essentially a (very expensive) superhet receiver
- Versatile but complex hardware (black box) optimized for large dynamic range
- Bottleneck: Can not acquire more than 5.10⁸ samples in one recording
 - We'd like to record up to 10¹⁰ samples (in 12 h at BW = 100 kHz), that's about 40 Gigabyte of data
- We need simple hardware optimized on frequency stability and low noise performance

The homebrew receiver (work in progress ...)

- 2 mixer stages (to reject the image response!)
- Optical input of the 3 GHz signal from the detecting cavity
- Allows indefinite recording time at 20 kHz BW
- High quality 16 bit audio ADC
- The two local oscillators and the ADC clock are phase locked to a common 10 MHz reference

Data processing

Fourier transformation is the optimum detection method for sinusoidal signals in white noise (Matched filter!)

Data processing: pushing the noise floor

power: $P_n = k_B BW_{res} T_{svs}$ $\mathbf{k}_{\mathbf{B}}$ = Boltzmann const. $BW_{res} = 1.5 / I$ resolution bandwidth I = length of the recorded time trace **T**_{sys} = system noise temp. Linear increase of signal to noise ratio with measurement time

Average noise

Data processing: pushing the noise floor

Longer time trace (I) = narrower resolution bandwidth = lower noise floor

Data processing: pushing the noise floor

The signal power stays constant

Frequency drifts

- To detect signals down to -230 dBm we need resolution bandwidths in the 10 μHz range
- This can be achieved with a FFT on a 24 h time trace
- Frequency drifts are unavoidable!
- But by phase locking source and analyzer we can eliminate relative frequency errors

The first HSP measurement run in March 2012

First HSP measurement run, March 2012

- 11.5 h reference run with **open shielding box**
 - We expect some EM. leakage
 - Proof that our setup is working
 - We define a window of +-1.5 mHz around the observed signal freq.

First HSP measurement run, March 2012

- 11.5 h measurement run with closed shielding box
 - peaks within the window do not significantly exceed the peaks in other parts of the spectrum
 - No signal detected \rightarrow exclusion result

First HSP measurement run, March 2012

• We were sensitive enough to improve over current exclusion limits [1]

Thanks to J. Jaeckel for the collection of exclusion plot data

[1] M. Betz, F. Caspers, "A microwave paraphoton and axion detection experiment with 300 dB electromagnetic shielding at 3 GHz", proc. of IPAC 2012

The first axion LSW measurement run in June 2012

Axion LSW measurements (June 2012)

- We got a 1 week timeslot to use a large 0.5 T magnet at CERN
- Things which had to be done before:
 - Adjust the cavity couplers to the TM₀₁₀ mode at 1.755 GHz, which couples to ALPs
 - Find a new power amplifier for 1.755 GHz
 - Construct a smaller secondary shielding enclosure which fits inside the magnet

Electromagnetic shielding

The signal processing electronics can not easily operate in strong magnetic fields

Experiment is split into two parts

Shielding Box 1

Contains the axion detection cavity and will be placed in the magnet

Optical Fibre

Carries the weak signal from axion conversion to the measurement instruments, unaffected by ambient EM. noise and without comprising the shielding boxes

Shielding Box 2

Contains instruments for the detection of weak narrowband microwave signals and will be outside the magnet

The secondary shielding enclosure, ready to be placed in the magnet

Moving to the magnet hall

Resonant frequency:**1.754 GHz**Incident RF power:**7.3 W**Avg. reflected power:**0.7 W**

B_{max}

= 0.5 T

0

Results from the first run

• After the first 4h of recorded data, a surprise

Strange sidebands! But no signal where we would expect it

Did the axion finally reveal itself?

Results from the first run

- It turned out to be 2 problems:
 - EM. leakage
 - A different (cheaper) RF source was used, which did not lock cleanly to the 10 MHz reference signal
- Stuffing copper mesh in the seam and using a different RF source fixed the problem

Results from the second run

- After another 4h of recorded data
- Nothing visible, except thermal noise
- Smallest detectable signal: ≈ -205 dBm

Results from the second run expressed as an exclusion limit for ALPs

 $P_{\text{trans}} \sim \left(\frac{g B}{\omega_0}\right)^4 Q Q' |G|^2.$ Preliminary!

Same principle as for HSP but with a different formula [1]

[1] J. Jaeckel, A. Ringwald, A Cavity Experiment to Search for Hidden Sector Photons, <u>arXiv:0707.2063v1</u>

Plot from J. Jaeckel and A. Ringwald, Ann. Rev. of Nuc. and Particle Sci., 60, 405, 2010.

Conclusion

- Only exclusion results so far
- All in all, the microwaves shining through a wall experiment is a success
- We got the EMI issues under control and have a running experiment
- World record sensitivity for hidden sector photons at 10 μeV

 $P_{\text{trans}} \sim \left(\frac{g}{\omega_0}\right)^4 QQ' |G|^2.$ Outlook

We need a stronger magnet for the ALPs search:

- We are in contact with *Bruker BioSpin* in Karlsruhe
- They manufacture and test MRI magnets
- Warm bore = no problems with power dissipation
- Our current setup would fit in a 4.7 T magnet
- With some small modifications we could even use a 9.4 T magnet

More work needs to be done to understand the behaviour of the cavities & LNA in a strong magnetic field

Superconducting MRI magnet from Bruker BioSpin

Bonus slides: An EMI stress test

- Is our shielding good enough to do measurements next to an accelerator?
- Can we see any influence from ionizing radiation? [1]
- To do a first test, we operated our setup next to the Antiproton Decelerator (AD) at CERN
- $5 \cdot 10^{10}$ parasitic pions are injected in the ring every 100 s [2]
 - They decay within several turns (10⁻⁵ s) into muons and antineutrinos
 - Strong radiation peaks for a few μs, especially in line with the straight sections, even behind the concrete shielding
 - Average radiation level is $\approx 2^*$ background (safe)

[1] I. I. Kalikinski , "On microwave transition radiation", TECHNICAL PHYSICS VOLUME 43, NUMBER 2 FEBRUARY 1998

Results

• There is strong pulsed EMI in the hall

Triggered on each injection (radiation peaks), data taken during **81** injections

For comparison: Data taken while the AD was not active (no radiation)

The system is EMI leak tight The pulsed ionizing radiation **did not interfere** with the measurement This proofs that HSP measurements next to operational accelerating cavities are feasible

<u>Acknowledgements</u>

- Thanks to F. Caspers, M. Gasior and M. Thumm for making this work possible
- Thanks to Babette for organizing these seminars
- Many thanks for a large number of hints and inspiring discussions to K. Baker, A. Deveau, F. Hehl, J. Jäckel, A. Malagon, A. Martin, A. Ringwald, P. Slokum and K. Zioutas
- We are grateful for support from R. Jones, E. Jensen and the BE department management

Thank you!