Plasma Wakefield Acceleration Experiments at DESY – emphasis FLASH

E. Elsen & J. Osterhoff for the DESY & Uni Hamburg group

Pre-meeting of the Virtual InstitutePlasma wakefield acceleration of highly relativistic electrons with FLASH, SLAC, Oct 8, 2012

Plasma Wakefield Experiments and plans at DESY

Plasma Wakefield Experiments and plans at DESY

The goal

PIC simulation by Alberto Martinez de la Ossa

PIC simulation by Timon Mehrling

Why at FLASH? - Scienti

• FLASH offers unique electronbunch shaping capabilities

- triangular beams
- tailored bunch trains
 (e.g. with the addition of a PITZ-like gun-laser system)
- GeV beam energy
 - stiff beams (compared to e.g. PITZ and REGAE)
 - probe longitudinal and transverse field of plasma
 - $\gamma_{\text{beam}} \ge \gamma_{\text{wake}} \text{ for LPA}$

DESY TESLA-FEL 11-02 and FERMILAB-PUB 11-339-APC

Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

P. Piot,^{1,2} C. Behrens,³ C. Gerth,³ M. Dohlus,³ F. Lemery,¹ D. Mihalcea,¹ P. Stoltz,⁴ and M. Vogt³

¹Northern Illinois Center for Accelerator & Detector Development and Department of Physics, Northern Illinois University, DeKalb IL 60115, USA
²Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ³Deutsches Elektronen-Synchrotron DESY, Notkestraße 85 D-22607 Hamburg, Germany ⁴Tech-X Corporation, Boulder, CO 80303, USA (Dated: September 8, 2011)

Electron beam	Laser pulse	Scientific purpose
Single beam driver (various longitudinal shapes, durations)	_	Beam etching, stopping experiments
Single beam driver + short witness bunch (various longitudinal shapes, durations)	_	Witness acceleration experiments: Driver shape → transformer ratio study Witness shape → (slice) emittance, energy spread preservation study, beam loading Phase-space mapping Energy doubling+ (from 1 to 2+ GeV)
Multi-bunch driver + short witness bunch (longitudinally tailored)	_	Witness acceleration experiments: Bunch-train shape → transformer ratio study, beam loading Phase-space mapping Energy doubling+++ (from 1 to multiple GeV)
Short witness bunch (longitudinally tailored)	Wake driver	External bunch-injection experiments: Plasma beam dump Mapping of wake phase space Off-axis injection for tailored radiation source Witness shape → emittance, energy spread preservation study, beam loading Energy doubling++ (with 200 TW laser) Staging testbed FEL with undulator
Various schemes (also dielectrics!)	Probe pulse	Develop novel high-temporal resolution diagnostics: Optical transverse deflection cavity,

Multi bunch excitation – simulation

 Charge density increases linearly to cancel field under each bunch and excite the wake resonantly

Simulations of a High-Transformer-Ratio Plasma Wakefield Accelerator Using Multiple Electron Bunches

Efthymios Kallos^a, Patric Muggli^a, Thomas Katsouleas^a, Vitaly Yakimenko^b and Jangho Park^b

> ^aUniversity of Southern California, Los Angeles, CA 90089 ^bBrookhaven National Lab, Upton, NY 11973

Electron beam	Laser pulse	Scientific purpose
Single beam driver (various longitudinal shapes, durations)	_	Beam etching, stopping experiments
Single beam driver + short witness bunch (various longitudinal shapes, durations)	_	Witness acceleration experiments: Driver shape → transformer ratio study Witness shape → emittance, energy spread preservation study, beam loading Phase-space mapping Energy doubling+ (from 1 to 2+ GeV)
Multi-bunch driver + short witness bunch (longitudinally tailored)	_	Witness acceleration experiments: Bunch-train shape → transformer ratio study, beam loading Phase-space mapping Energy doubling+++ (from 1 to multiple GeV)
Short witness bunch (longitudinally tailored)	Wake driver	External bunch-injection experiments: Plasma beam dump Mapping of wake phase space Off-axis injection for tailored radiation source Witness shape → emittance, energy spread preservation study, beam loading Energy doubling++ (with 200 TW laser) Staging testbed FEL with undulator
Various schemes (also dielectrics!)	Probe pulse	Develop novel high-temporal resolution diagnostics: Optical transverse deflection cavity,

Construction

- Construction of FLASH II ongoing
 - dedicted lab foreseen

Beam transport scheme

• FLASH bunch extraction for plasma beamline is being worked on (with strong contributions of M. Scholz and W. Decking)

Magnet positions

Beam extraction @ FLASH

Beam extraction @ FLASH

Beam extraction @ FLASH

Plasma targets

Starting up tailored plasma cell development and characterisation at DESY

confer A.J.Gonsalves et al., Nature Physics AOP (2011)

Progress so far - simulations

- Plasma-simulation infrastructure is set up and running in Zeuthen and Hamburg (focused on REGAE and PITZ, right now)
- Developing interface for ASTRA/ ELEGANT to OSIRIS
- Preparing to employ full-scale 3D simulations with requirements of > 1 M core hours (~114 years of desktop PC with 100 GB RAM, Terabytes of data)
- Collaboration with UCLA initiated for access to code QuickPIC (reduced model for beam-driven studies, but way faster)
- Early simulations confirm feasibility of this project

Challenges of PWA studies at FLASH

- Generate
 - short bunches \rightarrow FLASH fs-bunch operation
 - charge ramps \rightarrow experimental studies (P. Piot, C. Behrens)
 - bunch trains \rightarrow requires work on gun laser-system
- Transport bunch into FLASH II tunnel
 - maintain beam properties (pulse duration, beam shape, emittance)
 - synchronise with laser to within few 10 fs rms
- Diagnostics
 - Iongitudinal and transverse characterisation of bunch development recent paper by T.Mehrling et al.
- Framework for experiments
 - get sufficient beam time, possibly symbiotic (or parasitic) operation
 - implement remote operation of plasma experiments

Conclusions

- FLASH provides ample opportunities and could become a unique facility for plasma-wakefield experiments
 - Multi-bunch patterns
 - Superb diagnostics
 - Controlled bunch charge distribution
 - Synchronised to multi-hundred TW system