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The Diagrammatic Challenge

# loops 0 1 2 3+

# 2 → 2 topologies 4 99 2214 50051

typical accuracy 10% 1% .1% .01%

general procedure known yes yes 1 → 1 no

current limits 2 → 8 2 → 6 2 → 2 1 → 1

Plus:

• Phase-space integration,

• Subtraction of IR poles,

• Treatment of unstable particles,

• Numerical difficulties,

• . . .
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Why Higher Orders?

Precision: Higher Orders are seen experimentally

Example 1: Example 2:
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Why Higher Orders?

Indirect effects of particles beyond the kinematical limit

↑
inaccessible

(too heavy to be produced)

↑
indirectly visible,

requires precision measurements

Example: Most BSM physics.

T. Hahn, Automated one-loop calculations with FormCalc 7 – p.4



Why Higher Orders?

“Rare” (loop-mediated) events

e.g. light-by-light scattering:

γ

γ

γ

γ

Example: Almost entire B-physics programme.
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Current State of the Art

Partial results, Special cases

Established techniques, Full results
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Feynman Diagram Cookbook

1. Draw all possible types of diagrams with the given number
of loops and external legs

Topological task, no physics input needed∗

∗ Well, almost: need to know allowed adjacencies in physics model, e.g. renormalizable theories have at most

3- and 4-point vertices.
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Feynman Diagram Cookbook

2. Figure out what particles can run on each type of diagram

e

e

t

tH
e

e

t

tG0

e

e

t

tγ
e

e

t

tZ

Combinatorial task, requires physics input (model)

In this case, in the SM, three of the topologies were not realized though one was realized multiply.

Note further that the e-e-scalar couplings are suppressed by m2
e
/M2

W
and thus usually neglected.

These are selections one would typically make at this stage, i.e. diagrammatically.
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Feynman Diagram Cookbook

3. Translate the diagrams into formulas by applying the
Feynman rules

e

e

t

tγ = 〈v1| ieγµ |u2〉
︸ ︷︷ ︸

left vertex

gµν
(k1 + k2)2

︸ ︷︷ ︸

propagator

〈u4|
(
− 2

3
ieγν

)
|v3〉

︸ ︷︷ ︸

right vertex

Database look-up
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Feynman Diagram Cookbook

4. Contract the indices, take the traces, etc.

e

e

t

tγ =
8πα

3s
F1 , F1 = 〈v1| γµ |u2〉 〈u4| γµ |u3〉

Also, compute the fermionic matrix elements, e.g. by squaring
and taking the trace:

|F1|2 = Tr {(/k1 −me)γµ(/k2 +me)γν}Tr {(/k4 +mt)γ
µ(/k3 −mt)γ

ν}
= 1

2
s2 + st+ (m2

e +m2

t − t)2

Algebraic simplification
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Feynman Diagram Cookbook

5. Write the results up as a . . . . . . . . . . . . . . . . .
(put favourite language here)

program

5a. Debug that program

6. Run it to produce numerical values

Programming
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Recipe for Feynman Diagrams

Thanks to and (and many others) we have a
Recipe for an ARBITRARY Feynman diagram up to one loop

➀ Draw all possible types of diagrams topological task

➁ Figure out what particles can run combinatorical task
on each type of diagram

➂ Translate the diagrams into formulas by database look-up
applying the Feynman rules

➃ Contract the indices, take the traces, etc. algebraic simplification

➄ Write up the results as a computer program programming

➅ Run the program to get numerical results waiting
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Programming Techniques

• Very different tasks at hand.

• Some objects must/should be handled symbolically, e.g.
tensorial objects, Dirac traces, dimension (D vs. 4).

• Reliable results required even in the presence of large
cancellations.

• Fast evaluation desirable (e.g. for Monte Carlos).

Hybrid Programming Techniques necessary

Symbolic manipulation (a.k.a. Computer Algebra) for the
structural and algebraic operations.

Compiled high-level language (e.g. Fortran) for the numerical
evaluation.
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Automated Diagram Evaluation

Diagram Generation:

• Create the topologies
• Insert fields
• Apply the Feynman rules
• Paint the diagrams

Algebraic Simplification:

• Contract indices
• Calculate traces
• Reduce tensor integrals
• Introduce abbreviations

Numerical Evaluation:

• Convert Mathematica output to Fortran code
• Supply a driver program
• Implementation of the integrals

Symbolic manipulation
(Computer Algebra)
for the structural and
algebraic operations.

Compiled high-level
language (Fortran) for
the numerical evaluation.

FeynArts

Amplitudes

FormCalc

Fortran Code

LoopTools

|M|2 Cross-sections, Decay rates, . . .
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One-loop since mid-1990s

Automated NLO computations is an industry today, with
many packages becoming available in the last few years:

• GoSam, HELAC-NLO, aMC@NLO, MadLoop, OpenLoops,
BlackHat, Rocket, . . .

Here: FeynArts (1991) + FormCalc (1995)
FormCalc was doing largely the same as FeynCalc (1992) but used FORM for
the time-consuming tasks, hence the name FormCalc.

• Feynman-diagrammatic method,

• Analytic calculation as far as possible (any model),

• Generation of code for the numerical evaluation of the
squared matrix element.

So much for NLO ‘revolution.’
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Plan

Walk through the general setup of these programs and show
some perhaps non-standard applications.

• ‘Standard Candle’ — e+e− → t t̄,

• Resumming a coupling — ∆b,

• Example from flavour physics — ∆Ms.
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FeynArts

Find all distinct ways of connect-
ing incoming and outgoing lines

CreateTopologies

Topologies

Determine all allowed
combinations of fields

InsertFields

Draw the results
Paint

Diagrams

Apply the Feynman rules

CreateFeynAmp
Amplitudes

further
processing
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CreateTopologies

Algorithm: Start from Zero-leg Topologies and successively
add external legs. This is not entirely self-sufficient, but few
people would even want to use FeynArts beyond three loops.

Starting
Topology
(hard-coded)

−→

ր

−→

ց

etc.
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Three Levels of Fields

Generic level, e.g. F, F, S

C(F1, F2, S) = GLPL +GRPR PR,L = (1l ± γ5)/2

Kinematical structure completely fixed, most algebraic
simplifications (e.g. tensor reduction) can be carried out.

Classes level, e.g. -F[2], F[1], S[3]

ℓ̄iνjG : GL = − i emℓ,i√
2 sin θwMW

δij , GR = 0

Coupling fixed except for i, j (can be summed in do-loop).

Particles level, e.g. -F[2,{1}], F[1,{1}], S[3]

insert fermion generation (1, 2, 3) for i and j
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Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[ identifier ,

loop momenta,
generic amplitude,
insertions ]

GraphID[Topology == 1, Generic == 1]
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Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[ identifier,

loop momenta ,

generic amplitude,
insertions ]

Integral[q1]
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Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[ identifier,
loop momenta,

generic amplitude ,

insertions ]

I

32 Pi4
RelativeCF .........................................prefactor

FeynAmpDenominator[
1

q12 - Mass[S[Gen3]]2
,

1

(-p1 + q1)2 - Mass[S[Gen4]]2
] .................loop denominators

(p1 - 2 q1)[Lor1] (-p1 + 2 q1)[Lor2] ........ kin. coupling structure

ep[V[1], p1, Lor1] ep*[V[1], k1, Lor2] ...........polarization vectors

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]]

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]], ................. coupling constants
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Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[ identifier,
loop momenta,
generic amplitude,

insertions ]

{ Mass[S[Gen3]],

Mass[S[Gen4]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]],

RelativeCF } ->

Insertions[Classes][{MW, MW, I EL, -I EL, 2}]
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Sample Paint output

\begin{feynartspicture}(150,150)(1,1)

\FADiagram{}

\FAProp(6.,10.)(14.,10.)(0.8,){ScalarDash}{-1}

\FALabel(10.,5.73)[t]{$G$}

\FAProp(6.,10.)(14.,10.)(-0.8,){ScalarDash}{1}

\FALabel(10.,14.27)[b]{$G$}

\FAProp(0.,10.)(6.,10.)(0.,){Sine}{0}

\FALabel(3.,8.93)[t]{$\gamma$}

\FAProp(20.,10.)(14.,10.)(0.,){Sine}{0}

\FALabel(17.,11.07)[b]{$\gamma$}

\FAVert(6.,10.){0}

\FAVert(14.,10.){0}

\end{feynartspicture} γ

γ

G

G

Technically: uses its own PostScript prologue.
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Editing Feynman Diagrams

The elements of the diagram are easy to recog-
nize and it is straightforward to make changes
e.g. to the label text using any text editor.
It is less straightforward, however, to alter the
geometry of the diagram, i.e. to move vertices
and propagators.

The FeynEdit tool lets the user:

• copy-and-paste the LATEX code into the
lower panel of the editor,

• visualize the diagram,

• modify it using the mouse, and finally

• copy-and-paste it back into the text.
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Excursion: Programming Own Diagram Filters

Or, What if FeynArts’ selection functions are not enough.

Observe the structure of inserted topologies:

TopologyList[__][t1, t2, ...]

ti: Topology[_][__] -> Insertions[Generic][g1, g2, ...]

gi: Graph[__][__] -> Insertion[Classes][c1, c2, ...]

ci: Graph[__][__] -> Insertion[Particles][p1, p2, ...]

Example: Select the diagrams with only fermion loops.

FermionLoop[t:TopologyList[___][__]] := FermionLoop/@ t

FermionLoop[(top:Topology[_][__]) -> ins:Insertions[Generic][__]] :=

top -> TestLoops[top]/@ ins

TestLoops[top_][gi_ -> ci_] := (gi -> ci) /;

MatchQ[Cases[top /. List@@ gi,

Propagator[Loop[_]][v1_, v2_, field_] -> field], {F..}]

TestLoops[_][_] := Sequence[]
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Algebraic Simplification

The amplitudes of CreateFeynAmp are in no good shape for
direct numerical evaluation.

A number of steps have to be done analytically:

• contract indices as far as possible,

• evaluate fermion traces,

• perform the tensor reduction / separate numerators,

• add local terms arising from D·(divergent integral),
• simplify open fermion chains,

• simplify and compute the square of SU(N) structures,

• “compactify” the results as much as possible.
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FormCalc Internals

FormCalc

Mathematica
FORM

FeynArts
amplitudes

Analytical
results

Fortran

Generated Code

SquaredME
RenConst

Driver
programs

Utilities
library
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FormCalc Output

A typical term in the output looks like

C0i[cc12, MW2, MW2, S, MW2, MZ2, MW2] *

( -4 Alfa2 MW2 CW2/SW2 S AbbSum16 +

32 Alfa2 CW2/SW2 S2 AbbSum28 +

4 Alfa2 CW2/SW2 S2 AbbSum30 -

8 Alfa2 CW2/SW2 S2 AbbSum7 +

Alfa2 CW2/SW2 S (T - U) Abb1 +

8 Alfa2 CW2/SW2 S (T - U) AbbSum29 )

= loop integral = kinematical variables

= constants = automatically introduced abbreviations
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Abbreviations

Outright factorization is usually out of question.
Abbreviations are necessary to reduce size of expressions.

AbbSum29 = Abb2 + Abb22 + Abb23 + Abb3

Abb22 = Pair1 Pair3 Pair6

Pair3 = Pair[e[3], k[1]]

The full expression corresponding to AbbSum29 is

Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[1]] +

Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[1]] +

Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[2]] +

Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[2]]
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Categories of Abbreviations

• Abbreviations are recursively defined in several levels.

• When generating code, FormCalc introduces another set
of abbreviations for the loop integrals.

In general, the abbreviations are thus costly in CPU time.
It is key to a decent performance that the abbreviations are
separated into different Categories:

• Abbreviations that depend on the helicities,

• Abbreviations that depend on angular variables,

• Abbreviations that depend only on
√
s.

Correct execution of the categories guarantees that almost no
redundant evaluations are made and makes the generated
code essentially as fast as hand-tuned code.
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Excursion: FORM 4 Features in FormCalc 8

FORM is able to handle very large expressions. To produce
(pre-)simplified expressions, however, terms have to be
wrapped in functions, to avoid immediate expansion:

a*(b + c) → a*b + a*c

a*f(b + c) → a*f(b + c)

The number of terms in a function is rather limited in FORM.

Idea: replace subexpressions by symbols (new FORM 4
feature) once final.

• Prevents expansion, preserves (pre-)simplified structure.

• Introduced symbols are largely inert in further operations.

• Returned (sub)expressions small enough to use fairly
aggressive simplification in Mathematica within
reasonable run-time.
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More Abbreviations

The Abbreviate Function allows to introduce abbreviations
for arbitrary (sub-)expressions and extends the advantage of
categorized evaluation.

The subexpressions are retrieved with Subexpr[].

Abbreviations and subexpressions from an earlier FormCalc
session must be registered before use:

RegisterAbbr[abbr]

RegisterSubexpr[subexpr]
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Numerical Evaluation

user-level code included in FormCalc, “parameter card”

generated code, “black box”

Cross-sections, Decay rates, Asymmetries . . .

SquaredME.F
master subroutine

abbr0s.F

abbr0a.F
...







abbreviations
(invoked only

when necessary)

born.F

self.F
...







form factors

xsection.F
driver program

run.F
parameters for this run

process.h
process definition

main.F

CPU-time (rough)

compute abbrtree
}

5%

compute abbr1-loop
}

95%

compute M
tree

}

.1 %

compute M
1-loop

}

.1 %
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Features of the Generated Code

• Extensible: default code serves (only) as an example.
Other ‘Frontends’ can be supplied, e.g. HadCalc, sofox.

• Modular: largely autonomous pieces of code provide

• kinematics,

• model initialization,

• convolution with PDFs.

• Re-usable: external program need only call
ProcessIni (to set up the process) and
ParameterScan (to set off the calculation).

• Interactive: Mathematica interface provides Mathematica
function for cross-section/decay rate.

• Parallel: built-in parallelization for helicity loop,
parameter scans.
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External Fermion Lines

An amplitude containing external fermions has the form

M =
nF

∑
i=1

ci Fi where Fi = (Product of) 〈u|Γi |v〉 .

nF = number of fermionic structures.

Textbook procedure: Trace Technique

|M|2 =
nF

∑
i,j=1

c∗i cj F
∗
i Fj

where F ∗
i Fj = 〈v| Γ̄i |u〉 〈u|Γj |v〉 = Tr

(
Γ̄i |u〉〈u| Γj |v〉〈v|

)
.
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Problems with the Trace Technique

PRO: Trace technique is independent of any representation.

CON: For nF Fi’s there are n2F F ∗
i Fj ’s.

Things get worse the more vectors are in the game:
multi-particle final states, polarization effects . . .

Essentially nF ∼ (# of vectors)! because all
combinations of vectors can appear in the Γi.

Solution: Use Weyl–van der Waerden spinor formalism to
compute the Fi’s directly.
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Fermion Chains

FormCalc uses Dirac (4-component) spinors in most of the
algebra (extension to D dim more obvious).

Move to 2-comp. Weyl spinors for the numerical evaluation:

〈u|
4
≡
(
〈u+|2 , 〈u−|2

)
, |v〉

4
≡
(

|v−〉2
|v+〉2

)

.

Every chiral Dirac chain maps onto a single Weyl chain:

〈u|PL γµγν · · · |v〉4 = 〈u−| σµσν · · · |v±〉2 ,
〈u|PR γµγν · · · |v〉4 = 〈u+| σµσν · · · |v∓〉2 .

FORM-like notation: 〈u| σµσνσρ |v〉 kµ1 εν2k
ρ
3
≡ 〈u| k1ε2k3 |v〉 .
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Fierz Identities

With the Fierz identities for sigma matrices it is possible to
remove all Lorentz contractions between sigma chains, e.g.

〈A| σµ |B〉 〈C| σµ |D〉 = 2 〈A|D〉 〈C |B〉

A B

C D

σµ

σµ

= 2

A

D

B

C
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Implementation

• Objects: |u±〉 ∼
(
u1
u2

)

, (σ · k) ∼
(
a b
c d

)

• Elementary Operations:

〈u|v〉 ∼ (u1 u2) ·
(
v1
v2

)

SxS

(( )σ · k) |v〉 ∼
(
a b
c d

)

·
(
v1
v2

)

VxS, BxS

Could fold elementary operations, but faster with single
inlined function call:

〈u| σµσνσρ |v〉 kµ1 kν2k
ρ
3
= 〈u| k1k2k3 |v〉

old = SxS(u, VxS(k1, BxS(k2, VxS(k3, v))))

new = ChainV3(u, k1, k2, k3, v)
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More Freebies

• Polarization does not ‘cost’ extra:
= Get spin physics for free.

• Better numerical stability because components of kµ are
arranged as ‘small’ and ‘large’ matrix entries, viz.

σµk
µ =

(

k0 + k3 k1 − ik2
k1 + ik2 k0 − k3

↓

)

Large cancellations of the form
√
k2 +m2 −

√
k2 when

m ≪ k are avoided: better precision for mass effects.
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Mathematica Interface

The Mathematica Interface turns the generated stand-alone
Fortran code into a Mathematica function for evaluating the
cross-section or decay rate as a function of user-selected
model parameters.

The benefits of such a function are obvious, as the whole
instrumentarium of Mathematica commands can be applied to
them. Just think of

FindMinimum[sigma[TB, MA0], {{TB, 5}, {MA0, 250}}]

ContourPlot[sigma[TB, MA0], {TB, 5}, {MA0, 250}]

...
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Mathematica Interface – Input

The changes to the code are minimal.

Example line in run.F for Stand-alone Fortran code:

#define LOOP1 do 1 TB = 5, 50, 5

Change for the Mathematica Interface:

#define LOOP1 call MmaGetReal(TB)

The variable TB is ‘imported’ from Mathematica now, i.e. the
cross-section function in Mathematica becomes a function of
TB hereby.

The user has full control over which variables are ‘imported’
from Mathematica and which are set in Fortran.
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Mathematica Interface – Output

Similar to the MmaGetReal invocations, the Fortran program
can also ‘export’ variables to Mathematica.

For example, the line that prints a parameter in the
stand-alone code is

#define PRINT1 SHOW "TB", TB

becomes

#define PRINT1 call MmaPutReal("TB", TB)

for the Mathematica Interface and transmits the value of TB to
Mathematica.
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Mathematica Interface – Usage

Once the changes to run.F are made, the program run is
compiled as usual:

./configure

make

It is then loaded in Mathematica with

Install["run"]

Now a Mathematica function of the same name, run, is
available. There are two ways of invoking it:

Compute a differential cross-section at
√
s = sqrtS:

run[sqrtS, arg1, arg2, ...]

Compute a total cross-section for sqrtSfrom 6
√
s 6 sqrtSto:

run[{sqrtSfrom, sqrtSto}, arg1, arg2, ...]
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Mathematica Interface – Data Retrieval

The output of the function run is an integer which indicates
how many records have been transferred. For example:

Para[1] = {TB -> 5., MA0 -> 250.}

Data[1] = {DataRow[{500.}, {0.0539684, 0.}, {2.30801 10^-21, 0.}],

DataRow[{510.}, {0.0515943, 0.}, {4.50803 10^-22, 0.}]}

Para contains the parameters exported from the Fortran code.
Data contains:

• the independent variables,
here e.g. {500.} = {√s},

• the cross-sections,

here e.g. {0.0539684, 0.} = {σtree
tot , σ

1-loop
tot }, and

• the integration errors,

here e.g. {2.30801 10^-21, 0.} = {∆σtree
tot ,∆σ1-loop

tot }.
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Parameter Scans

With the preprocessor definitions in run.F

one can either
• assign a parameter a fixed value, as in

#define LOOP1 TB = 1.5D0

• declare a loop over a parameter, as in

#define LOOP1 do 1 TB = 2,30,5

which computes the cross-section for TB

values of 2 to 30 in steps of 5.

Main Program:

LOOP1

LOOP2
...

(calculate
cross-section)

1 continue

Scans are “embarrassingly parallel” – each pass of the loop
can be calculated independently.
How to distribute the iterations automatically if the loops are
a) user-defined b) usually nested?
Solution: Introduce a serial number
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Unraveling Parameter Scans

subroutine ParameterScan( range )

integer serial
serial = 0

LOOP1
LOOP2

...

serial = serial + 1
if( serial /∈ range ) goto 1

(calculate cross-section)

1 continue
end

Distribution on N machines is now simple:

• Send serial numbers 1, N + 1, 2N + 1, . . . on machine 1,

• Send serial numbers 2, N + 2, 2N + 2, . . . on machine 2,
etc.
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Shell-script Parallelization

Parameter scans can automatically be distributed on a cluster
of computers:

• The machines are declared in a file .submitrc, e.g.
# Optional: Nice to start jobs with

nice 10

# i7

pcl301 4

pcl301a 4

pcl305 4

# Dual AMD

pcl247b 2

pcl321 2

...

• The command line for distributing a job is exactly the
same except that “submit” is prepended, e.g.

submit run uuuu 0,1000
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Code-generation Functions

FormCalc’s code-generation functions are now public and
disentangled from the rest of the code. They can be used to
write out an arbitrary Mathematica expression as optimized
Fortran code:

• handle = OpenFortran["file.F"]
opens file.F as a Fortran file for writing,

• WriteExpr[handle, {var -> expr, ...}]

writes out Fortran code which calculates expr and stores
the result in var,

• Close[handle]
closes the file again.
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Code generation

Traditionally: Output in Fortran.
Code generator is meanwhile rather sophisticated, e.g.

• Expressions too large for Fortran are split into parts, as in

var = part1

var = var + part2

...

• High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

• Many ancillary functions make code generation versatile
and highly automatable, such that the resulting code
needs few or no changes by hand.

Example: a significant part of FeynHiggs has been generated
this way.
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C Output and Improvements in Code Generation

• Output in C99 available now, makes integration into
C/C++ codes easier and allows for GPU programming.

SetLanguage["C"]

• Code better structured, e.g.

• Loops and tests handled through macros, e.g.
LOOP(var, 1, 10, 1) . . . ENDLOOP(var)

• Sectioning by comments, to aid automated
substitution e.g. with sed, e.g.
∗ BEGIN VARDECL . . . ∗ END VARDECL

• Introduced data types RealType and ComplexType for
better abstraction, can e.g. be changed to different
precision.
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Command-line parameters for model initialization

Extension of command-line argument parsing:

run :arg1 :arg2 ... uuuuu 0,1000

The ‘:’-arguments are passed to model initialization code.

Internal routines in xsection.F accordingly have additional
parameters argv, argc.

Application: FeynHiggs as Frontend for FormCalc-generated
code (model_fh.F)

run :fhparameterfile :fhflags uuuuu 0,1000

• FeynHiggs initializes MSSM (SM) parameters and passes them to
FormCalc code.

• No duplication of initialization code.

• Parameters consistent between Higgs-mass and cross-section
computation.
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The Model Files

One has to set up, once and for all, a

• Generic Model File (seldomly changed)
containing the generic part of the couplings,

Example: the FFS coupling

C(F, F, S) = GLPL +GRPR = ~G ·
(

PL

PR

)

AnalyticalCoupling[s1 F[j1, p1], s2 F[j2, p2], s3 S[j3, p3]]

== G[1][s1 F[j1], s2 F[j2], s3 S[j3]] .

{ NonCommutative[ ChiralityProjector[-1] ],

NonCommutative[ ChiralityProjector[+1] ] }
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The Model Files

One has to set up, once and for all, a

• Classes Model File (for each model)
declaring the particles and the allowed couplings

Example: the ℓ̄iνjG coupling in the Standard Model

~G(ℓ̄i, νj , G) =

(

G−
G+

)

=

(

− i emℓ,i√
2 sin θwMW

δij

0

)

C[ -F[2,{i}], F[1,{j}], S[3] ]

== { {-I EL Mass[F[2,{i}]]/(Sqrt[2] SW MW) IndexDelta[i, j]},

{0} }
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Current Status of Model Files

Model Files presently available for FeynArts:

• SM [w/QCD], normal and background-field version.
All one-loop counter terms included.

• MSSM [w/QCD].
Counter terms by T. Fritzsche.

• Two-Higgs-Doublet Model.
Counter terms not included yet.

• ModelMaker utility generates Model Files from the
Lagrangian.

• “3rd-party packages” FeynRules and LanHEP generate
Model Files for FeynArts and others.

• SARAH package derives SUSY Models.
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Partial (Add-On) Model Files

FeynArts distinguishes

• Basic Model Files and

• Partial (Add-On) Model Files.

Basic Model Files, e.g. SM.mod, MSSM.mod, can be modified by
Add-On Model Files. For example,

InsertFields[..., Model -> {"MSSMQCD", "FV"}]

This loads the Basic Model File MSSMQCD.mod and modifies it
through the Add-On FV.mod (non-minimal flavour violation).

Model files can thus be built up from several parts.
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Tweaking Model Files

Or, How to efficiently make changes in an existing model file.

Bad: Copy the model file, modify the copy. — Why?

• It is typically not very transparent what has changed.

• If the original model file changes (e.g. bug fixes), these do
not automatically propagate into the derivative model
file.

Better: Create a new model file which reads the old one and
modifies the particles and coupling tables.

• M$ClassesDescription = list of particle definitions,

• M$CouplingMatrices = list of couplings.
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Tweaking Model Files

Example: Introduce enhancement factors for the b–b̄–h0 and
b–b̄–H0 Yukawa couplings in the MSSM.

EnhCoup[ (lhs:C[F[4,{g_,_}], -F[4,_], S[h:1|2]]) == rhs_ ] :=

lhs == Hff[h,g] rhs

EnhCoup[other_] = other

M$CouplingMatrices = EnhCoup/@ M$CouplingMatrices

To see the effect, make a printout with the WriteTeXFile

utility of FeynArts.

The Hff[h,g] can be defined to include e.g. resummation effects, as in
double precision Hff(2,3)

data Hff /6*1/

Hff(1,3) = 1 - CA/(SA*TB)*Delta_b

Hff(2,3) = 1 + SA/(CA*TB)*Delta_b
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Linear Combinations of Fields

FeynArts can automatically linear-combine fields, i.e. one
can specify the couplings in terms of gauge rather than mass
eigenstates. For example:

M$ClassesDescription = { ...,

F[11] = {...,

Indices -> {Index[Neutralino]},

Mixture -> ZNeu[Index[Neutralino],1] F[111] +

ZNeu[Index[Neutralino],2] F[112] +

ZNeu[Index[Neutralino],3] F[113] +

ZNeu[Index[Neutralino],4] F[114]} }

Since F[111]. . . F[114] are not listed in M$CouplingMatrices,
they drop out of the model completely.
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Linear Combinations of Fields

Higher-order mixings can be added, too:

M$ClassesDescription = { ...,

S[1] = {...},

S[2] = {...},

S[10] == {...,

Indices -> {Index[Higgs]},

Mixture -> UHiggs[Index[Higgs],1] S[1] +

UHiggs[Index[Higgs],2] S[2],

InsertOnly -> {External, Internal}} }

This time, S[10] and S[1], S[2] appear in the coupling list
(including all mixing couplings) because all three are listed in
M$CouplingMatrices.

Due to the InsertOnly, S[10] is inserted only on tree-level
parts of the diagram, not in loops.
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Not the Cross-Section

Or, How to get things the Standard Setup won’t give you.

Example: extract the Wilson coefficients for b → sγ.
tops = CreateTopologies[1, 1 -> 2]

ins = InsertFields[tops, F[4,{3}] -> {F[4,{2}], V[1]}]

vert = CalcFeynAmp[CreateFeynAmp[ins], FermionChains -> Chiral]

mat[p_Plus] := mat/@ p

mat[r_. DiracChain[s2_Spinor, om_, mu_, s1:Spinor[p1_, m1_, _]]] :=

I/(2 m1) mat[r DiracChain[sigmunu[om]]] +

2/m1 r Pair[mu, p1] DiracChain[s2, om, s1]

mat[r_. DiracChain[sigmunu[om_]], SUNT[Col1, Col2]] :=

r O7[om]/(EL MB/(16 Pi^2))

mat[r_. DiracChain[sigmunu[om_]], SUNT[Glu1, Col2, Col1]] :=

r O8[om]/(GS MB/(16 Pi^2))

coeff = Plus@@ vert //. abbr /. Mat -> mat

c7 = Coefficient[coeff, O7[6]]

c8 = Coefficient[coeff, O8[6]]
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Not the Cross-Section

Using FormCalc’s output functions it is also pretty
straightforward to generate your own Fortran code:

file = OpenFortran["bsgamma.F"]

WriteString[file,

SubroutineDecl["bsgamma(C7,C8)"] <>

"\tdouble complex C7, C8\n" <>

"#include \"looptools.h\"\n"]

WriteExpr[file, {C7 -> c7, C8 -> c8}]

WriteString[file, "\tend\n"]

Close[file]
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Aiding Operator Matching

As numerical calculations are done mostly using Weyl-spinor
chains, there has been a paradigm shift for Dirac chains to
make them better suited for analytical purposes.

• The Fierz identities rearrange fermion chains by
switching spinors, e.g.

〈1|Γi |2〉 〈3|Γj |4〉 = ∑ ckl 〈1|Γk |4〉 〈3|Γl |2〉

This is necessary to extract certain predefined structures
from the amplitude, most notably Wilson coefficients.
The FermionOrder option of CalcFeynAmp implements
Fierz methods for Dirac chains including the Colour

method which brings the spinors into the same order as
the external colour indices.
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Aiding Operator Matching

• The Evanescent option tracks operators before and after
Fierzing for better control of ε-dimensional terms.

• The Antisymmetrize option allows the choice of
completely antisymmetrized Dirac chains, i.e.
DiracChain[−1, µ, ν] = σµν .
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Summary and Outlook

• Serious perturbative calculations these days can
generally no longer be done by hand:
• Required accuracy, Models with many particles, . . .

• Hybrid programming techniques are necessary:
• Computer algebra is an indispensable tool because many

manipulations must be done symbolically.

• Fast number crunching can only be achieved in a compiled
language.

• Software engineering and further development of the
existing packages is a must:
• As we move on to ever more complex computations (more loops,

more legs), the computer programs must become more
“intelligent,” i.e. must learn all possible tricks to still be able to
handle the expressions.
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Finally

Using FeynArts and FormCalc is a lot like driving a car:

• You have to decide where to go (this is often the hardest
decision).

• You have to turn the ignition key, work gas and brakes,
and steer.

• But you don’t have to know, say, which valve has to
open at which time to keep the motor running.

• On the other hand, you can only go where there are
roads. You can’t climb a mountain with your car.

T. Hahn, Automated one-loop calculations with FormCalc 7 – p.67



Tutorial Suggestions

• Install FeynArts, FormCalc, LoopTools using e.g. the
FeynInstall script at http : //feynarts.de.

• Run one of the examples in the examples subdirectory.
Inspect the code, try changing things.

• If you are working on some project, try remodeling e.g.
the code of an example to compute your process.

• Try computing b → sγ. There is an implementation
similar to the one shown for ∆Ms in the FeynHiggs
package (gen/bsg subdirectory).
See also hep-ph/0607049.
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