
THREE-A
Here we will look at a completely new facility in Form. The idea is to simplify output

expressions. We define simplification as writing the expression with as small a number of
numerical operations as possible. This is an old and not very easy problem. Of course we
can take the approach that this has been studied thoroughly by compiler builders. There is
however a difference between what a compiler may do and what we may do: For a compiler
(a+ b) + c is not the same as a+ (b+ c) due to numerical precision problems. Also, using a
high level of optimization with the compiler may need very much time, and on some of the
bigger routines I had it even crash by lack of address space.

One of our test cases is an expression for a one loop four-point Feynman diagram inside a
2 → 4 reaction, multiplied by the conjugate of a tree graph. This diagram contains 639727
terms with about 4.8× 106 arithmetic operations and it definitely is not the worst. The file is
anywhere from 25 to 30 Mbytes depending on whether we can use tabulator characters. Our
task is now to do better than this, because if we have to do more than 200,000 diagrams the
eventual Monte Carlo program becomes a bit unwieldy.



Let us take this formula with its 639727 terms and see how much we can squeeze it. We
have put the formula in a file named testx3.sav and we can read it with the program

Load testx3.sav;

Sigma loaded

Local test = Sigma;

.sort

Time = 0.66 sec Generated terms = 639727

test Terms in output = 639727

Bytes used = 27495480

Delete storage;

.end

Time = 0.92 sec Generated terms = 639727

test Terms in output = 639727

Bytes used = 27495480



When we print the output it looks like

Delete storage;

Format O0;

Bracket x1,x3,x4,xlevi,zk;

Print +f;

.end

Time = 1.40 sec Generated terms = 639727

test Terms in output = 639727

Bytes used = 22747648

test=

+xlevi*(-24*amel2*amdq2^2*es1235*xcp5-24*amel2*amdq2^2*es1235

*xcp1+48*amel2*amdq2^2*es1234*xcp5+72*amel2*amdq2^2*es1234

*xcp1+48*amel2*amuq2*amdq2*es1235*xcp5+48*amel2*amuq2*

amdq2*es1235*xcp1-48*amel2*amuq2*amdq2*es1234*xcp6-48*

amel2*amuq2*amdq2*es1234*xcp5-24*amel2*amuq2^2*es1235*xcp5

-24*amel2*amuq2^2*es1235*xcp1+48*amel2*amuq2^2*es1234*xcp6



-72*amel2*amuq2^2*es1234*xcp1+96*amel2*ammu2*amdq2*es2345*

xcp7+192*amel2*ammu2*amdq2*es2345*xcp5+48*amel2*ammu2*

and more than 400000 extra lines.

The format statement is a basically a dummy statement because O0 is the default. The
output is bracketted in the Feynman parameters, xlevi (which indicates whether there is a
Levi-Civita tensor and hence the terms are imaginary), and the parameter zk which indicates
whether there are powers of Q2 in the answer. Each two powers of zk indicate one power of Q2.
The denominator with its Q.Q and its Feynman parameters is an overal factor and taken for
granted. The x1, x3, x4 are Feynman parameters and we want to have the expressions for the
47 different brackets we have in this expression. We want to use a simultaneous optimization
of these 47 expressions, which is done by using the bracket statement.



Now we switch to a higher format level. This may make the program crash, because it
needs a rather big amount of workspace and it does not warn about that (still needs some
attention). Hence we use a special file that defines a number of setup parameters to tune
Form to the computer at hand and to the problem:

LargeSize 1G

SmallSize 200M

ScratchSize 500M

TermsInSmall 1M

MaxTermSize 50K

WorkSpace 40M

The workspace of 40 Mbytes should be more than enough. We have now



Delete storage;

Format O1;

Bracket x1,x3,x4,xlevi,zk;

Print +f;

.end

Time = 1.40 sec Generated terms = 639727

test Terms in output = 639727

Bytes used = 22747648

Z1_=5*xnlb;

Z2_=-6+Z1_;

Z3_=xnlb*Z2_;

Z4_=11+Z3_;

Z5_=ammu2*Z4_;

Z6_=3-xnlb;

Z7_=xnlb*Z6_;

Z8_=3*Z7_;

Z9_=-8+Z8_;



Z10_=e3e1*Z9_;

.

.

. almost 350000 lines

.

.

Z50_=4*Z54_+Z50_;

Z50_=ammu2*Z50_;

Z30_=Z30_+Z37_+Z50_+Z48_;

Z30_=xcp5*Z30_;

Z2_=Z51_+Z44_+2*Z24_+2*Z43_+2*Z52_+Z47_+2*Z7_+4*Z49_+2*Z31_+2

*Z2_+4*Z14_+Z19_+2*Z8_+2*Z15_+Z28_+2*Z30_;

Z2_=24*Z2_;

test=xlevi*Z5_+x4*Z26_+x4*xlevi*Z226_+x4^2*Z167_+x4^2*xlevi*

Z53_+x4^3*Z166_+x4^3*xlevi*Z68_+x3*Z18_+x3*xlevi*Z35_+x3*x4*

Z82_+x3*x4*xlevi*Z126_+x3*x4^2*Z139_+x3*x4^2*xlevi*Z87_+x3^2*

Z96_+x3^2*xlevi*Z40_+x3^2*x4*Z25_+x3^2*x4*xlevi*Z23_+x3^3*

Z132_+x3^3*xlevi*Z111_+x1*Z9_+x1*xlevi*Z21_+x1*x4*Z69_+x1*x4*



xlevi*Z20_+x1*x4^2*Z57_+x1*x4^2*xlevi*Z39_+x1*x3*Z17_+x1*x3*

xlevi*Z11_+x1*x3*x4*Z29_+x1*x3*x4*xlevi*Z12_+x1*x3^2*Z41_+x1*

x3^2*xlevi*Z1_+x1^2*Z6_+x1^2*xlevi*Z10_+x1^2*x4*Z3_+x1^2*x4*

xlevi*Z34_+x1^2*x3*Z16_+x1^2*x3*xlevi*Z27_+x1^3*Z32_+x1^3*

xlevi*Z4_+zk^2*Z42_+zk^2*xlevi*Z13_+zk^2*x4*Z22_+zk^2*x4*

xlevi*Z36_+zk^2*x3*Z33_+zk^2*x3*xlevi*Z38_+zk^2*x1*Z45_+zk^2*

x1*xlevi*Z46_+Z2_;

20.09 sec out of 20.12 sec

If we have variables outside brackets, they are not part of the optimizations. This is needed
like this if we need their coefficients. In that case we speak of ‘simultaneous optimization’. The
variables Z are temporary variables that have been introduced by Form for this calculation.
They are called ‘extra symbols’ and we do have control over their representation:



ExtraSymbols,vector,w;

Delete storage;

Format O1,stats=on;

Bracket x1,x3,x4,xlevi,zk;

Print +f;

.end

Time = 1.43 sec Generated terms = 639727

test Terms in output = 639727

Bytes used = 22747648

w(1)=5*xnlb;

w(2)=-6+w(1);

w(3)=xnlb*w(2);

w(4)=11+w(3);

w(5)=ammu2*w(4);

w(6)=3-xnlb;

w(7)=xnlb*w(6);

.



.

.

w(16)+x1^2*x3*xlevi*w(27)+x1^3*w(32)+x1^3*xlevi*w(4)+zk^2*

w(42)+zk^2*xlevi*w(13)+zk^2*x4*w(22)+zk^2*x4*xlevi*w(36)+zk^2

*x3*w(33)+zk^2*x3*xlevi*w(38)+zk^2*x1*w(45)+zk^2*x1*xlevi*

w(46)+w(2);

*** STATS: original 33660P 4130889M 639679A : 4837888

*** STATS: optimized 2P 281714M 252897A : 534615

20.00 sec out of 20.02 sec

We have turned on the statistics of the optimization and we see that in the input there were
33660 exponent calls of at least a third power (a square counts as a multiplication), 4130889
multiplications and 639679 additions (subtractions counted as additions). In the output these
numbers are 2, 281714 and 252897 respectively. This is an improvement of almost an order
of magnitude. Actually the compiler does not do that well.



In O2 it tries for more complicated common subexpressions. This is called greedy opti-
mization. This is a search that is quadratic in the sizes of the subexpressions and also has to
traverse the system more than once. As a consequence it is much slower.

When we apply this to our big formula the result is

ExtraSymbols,vector,w;

Delete storage;

Format O2,stats=on;

Bracket x1,x3,x4,xlevi,zk;

Print +f;

.end

Time = 1.40 sec Generated terms = 639727

test Terms in output = 639727

Bytes used = 22747648

w(1)=2*xnlb;

w(2)=w(1)+3;

w(3)=2*amel2;

w(4)=w(2)*w(3);



.

.

.

x1^2*w(21)+x1^2*xlevi*w(6)+x1^2*x4*w(7)+x1^2*x4*xlevi*w(25)+

x1^2*x3*w(22)+x1^2*x3*xlevi*w(16)+x1^3*w(30)+x1^3*xlevi*w(23)

+zk^2*w(33)+zk^2*xlevi*w(31)+zk^2*x4*w(41)+zk^2*x4*xlevi*

w(45)+zk^2*x3*w(43)+zk^2*x3*xlevi*w(49)+zk^2*x1*w(26)+zk^2*x1

*xlevi*w(50)+w(1);

*** STATS: original 33660P 4130889M 639679A : 4837888

*** STATS: optimized 2P 186598M 220298A : 406900

3828.65 sec out of 3838.53 sec

and the number of operations has gone down from 534615 to 406900. But the execution time
has shot up enormously. This may be worthwhile, but only if the function has to be evaluated
very many times.



With the O3 option we use a method that changes the order of variables in the multivariate
Hornerscheme that we use. Because there are N! orderings when there are N variables we
cannot try all orderings and we use a Monte Carlo technique that comes from game theory,
called MCTS (Monte Carlo tree search). Because it is a Monte Carlo technique the outcome
depends on the random number seed (and various parameters that the use can set).

#do i = 1,5

ExtraSymbols,vector,w;

#message mctsconstant = 0.‘i’

Format O3,mctsconstant=0.‘i’,hornerdirection=backward,

method=csegreedy,mctsnumexpand=1000,stats=on;

#message CPU time till now: ‘time_’ sec.

Local test = Sigma;

B x1,x3,x4,xlevi,zk;

.sort

#Optimize test

.store

#enddo

.end



The results are

*** STATS: optimized 2P 163477M 207304A : 370785

*** STATS: optimized 3P 175169M 209676A : 384851

*** STATS: optimized 2P 176962M 210156A : 387122

*** STATS: optimized 2P 172261M 203804A : 376069

*** STATS: optimized 3P 170929M 212534A : 383469

for ‘mctsconstant’ is 0.1, 0.2, 0.3, 0.4, and 0.5 respectively. The number of operations is
bouncing around a bit and we do not see a pattern in which value of Cp is to be preferred.
This also took much CPU time. The five determinations took a bit more than 9 hours on a
slightly faster computer.



We have compared the current implementation with results from the literature and programs
we had access to.

7-4 resultant 7-5 resultant 7-6 resultant HEP(σ)
Original 29163 142711 587880 47424
Form O1 4968 20210 71262 6099
Form O2 3969 16398 55685 4979
Form O3 3015 11171 36146 3524
Maple 8607 36464 - 17889
Maple tryhard 6451 O(27000) - 5836
Mathematica 19093 94287 - 38102
HG + cse 4905 19148 65770 -
Haggies 7540 29125 - 13214

Number of operations after optimization by various programs. The number for the 7-5
resultant with ‘Maple tryhard’ is taken from Leiserson et al. For the 7-4 resultant they obtain
6707 operations, which must be due to a different way of counting. The same holds for the
7-6 resultant where they start with 601633 operations. The Form O3 run used Cp = 0.07
and 10× 400 tree expansions.



A better approach is to first use some ‘domain specific’ knowledge. In this case we have a
procedure that tries what happens if we shift variable as with

p1 · p2 → y1
m2 → y2
y1 → y1 + y2/2

Often in terms of the new y1 the expression may be shorter and by shifting we do not increase
the number of variables. This way we can make shifts in subsystems of coupling constants,
Feynman parameters, Levi-Civita tensors, gauge terms and dotproducts plus masses. The
result is that the number of terms in the expression can be reduced to

Multiply replace_(xcp8,xcp8-xcp4*(-1)/(1));

time = 1274.70: New number = 125497

Multiply replace_(xcp8,xcp8-xcp4*(2)/(1));

time = 1275.58: New number = 125129

~~~xcp1 to xcp8

doshift(Sig) pass 2 at time = 1322.63 sec

doshift finished at time = 1393.71 sec

After this we can see what happens next in the optimizations.



.store

Format O1,stats=on;

Local test1 = test;

Bracket x1,x3,x4,xlevi,zk;

.sort

#optimize test1

.sort

#clearoptimize

.store

Format O2,stats=on;

Local test2 = test;

Bracket x1,x3,x4,xlevi,zk;

.sort

#optimize test2

.sort

#clearoptimize

.store

Format O3,hornerdirection=backward,mctsconstant=0.05,



mctsnumexpand=1000,stats=on;

Local test3 = test;

Bracket x1,x3,x4,xlevi,zk;

.sort

#optimize test3

.sort

#clearoptimize

.end

which results in:

Time = 1405.12 sec Generated terms = 125129

Sig1 Terms in output = 125129

Bytes used = 6789144

Time = 1409.03 sec Generated terms = 48

Sig1 Terms in output = 48

Bytes used = 2324

*** STATS: original 1157P 793459M 125081A : 920854

*** STATS: optimized 2P 84402M 59353A : 143759



Time = 1409.18 sec Generated terms = 125129

Sig2 Terms in output = 125129

Bytes used = 6789144

Time = 1597.21 sec Generated terms = 48

Sig2 Terms in output = 48

Bytes used = 2324

*** STATS: original 1157P 793459M 125081A : 920854

*** STATS: optimized 2P 52250M 53857A : 106111

Time = 1597.36 sec Generated terms = 125129

Sig3 Terms in output = 125129

Bytes used = 6789144

Time = 3682.29 sec Generated terms = 48

Sig3 Terms in output = 48

Bytes used = 2324



*** STATS: original 1157P 793459M 125081A : 920854

*** STATS: optimized 1P 43142M 49629A : 92773

and we see that the number of operations has decreased dramatically, as well as the time for
the optimization. Which optimization level is the best depends on the number of function
evaluation you need. On the whole we have reduced the number of operations by about a
factor 50. And of course we will gain time back by having much shorter compilation times.


