Maplesoft

Polynomials

Some insights into what Maple's so/ve command does under the hood

Erik Postma - software architect - epostma@maplesoft.com

Y Working with solve

* Find roots (zeroes) of the following expression:

expr = 65 —x—2:
plot(expr,x=-1..1)
fsolve(expr);
solve(expr=0);

* Replace x by the cosine of 7.
expr == expr

x=cos(?)
plot(expr,t=-1..1)
solve(expr=0);

* Looks just as straightforward - but it isn't!

plot(expr, t=-5..5)
solve(expr =0, AllSolutions)

e Issue 1: Periodicity

e Issue2:1s arccos(%) really a solution? It just means "the number between 0 and T whose

.2 .
cosine is —- ". It's another equation to solve!

* There is no "more elementary" way to represent the answer.
* This is just a convention: 7t is also just a conventional name for arccos(-1);+/ 2 isjusta
) . 2
conventional name for the positive zero of x™ — 2.

solve(a-exp(a) =z a);

map(print, [indices(FunctionAdvisor(LambertW), pairs)]) :

solve(6.132 cos(1)> — cos(t) —2.138=0);
solve(6132 cos(2—cos(t) _ 2138 0)
1000 1000
solve(6 132 cos(t) 2)" —cos(t) —a=0, t);
solve(6 132 cos(t) 21 _ cos(t) —a=0, t);

e "Most" polynomials of degree five and higher have no closed form solution. (For some
reasonable measure, closed form solutions exist only for a measure-0 subset of the whole space.
) Hence what we saw above is the typical situation.

* Even if there exists a closed form solution, it doesn't always make you happy:

solve(x9+3x8+6x7+5x6+2x5—3x4—x3+2x—2);

e What we really want solve to do is:
— Rewrite our systems of equations to simple equations
| — Ifapplicable, tell us the customary notation for the solution to such equations

Y How does solve work?

|« It all reduces to solving (systems of) polynomials in the end

¥ Solving single univariate polynomials

* Fundamental Theorem of Algebra: a non-constant univariate polynomial over a field K has a root
in an extension of K

3
- 2hasaroot\/7
x2 + 1 has aroot /
x4— 2x + 1 hasaroot1

* Given such a root a, we can divide by x - a and get a polynomial that has the same set of roots
except one occurrence of a (using long division) :

xz-i—l)
x—1

(x3—2] B
evala 3 =
-2

» We can keep doing this as long as the polynomial is not constant, so any univariate polynomial of
degree n can be written as:

evala(

c (x - xo) (x - xl) (x - xn)

* However, as we have seen, often the roots cannot be represented explicitly. In such a situation we
factor the polynomial in as many factors with suitable coefficients as possible, and tell the user
"it's the roots of these simpler factors". (For us, "suitable" = integer.)

factor(x4 —4x+ 4) =

solve(x4 — 4P+ 4) =

factor(xlo 202X+ —2x+1) =

Solve(xlo —2 x4 2+ =2+ 1) =

* Factoring happens in many steps, with many tricks and shortcuts. Let's take an example.

f==x8+3x7—5x6—25x5—47x4—47x3—15x2+5x+2:

* The first trick is to find if there are any repeated factors: if f= gz-h. If so, then

dif=2 gg'h+ gzh'zg - (2g"h + gh'), and therefore difandfshare a factor of g. If
X X

none of the factors are repeated (fis squarefree), then fand % fdo not share any factors. This

can be tested by computing the gcd:

_d
Jp= dx
ged(f,fp) =
ﬂ = evala(%) =
(x+1)

* Now we know /2 is squarefree. The so-called Landau-Mignotte bound says that any (integer) factor
of p has coefficients that are, in an absolute sense, at most
LMBUD)HZ_1 + d;l]. |p|2’,whered{£g%e(L)J.

—|—1
2

2

LME := procip :: polyrmom 3
loml d, nm;

d ;= Floor{degraalpl 2);

n:= mermp, 2);

return floor{binomial{d-1, Floar{d/2)-1) +
biromial{d-1, Floar{d /2}) * n);

LMB(f2) =

» We will use finite fields: most simple algorithms for completely factoring polynomials reduce to
factoring over finite fields, then build up the result in the original domain.

* Iff=g - h is true over the integers, then equality also holds modulo any integer m - so if there is a
factorization over the integers, we will find it over the integers modulo m. Conversely, if we find a
factorization over the integers modulo m, it may not correspond to a factorization over the integers:

factor(2+ 2) =
Factor(x2 + 2) mod 3 =

* Demo here: use prime field Z/ (pZ) withp > 2 - LMB(f2): then we know for each coefficient
what the integer corresponding to it is.

* Best algorithm, but more complicated: use a small prime p, then "lift" factorization to rings
Z/(p"Z) with increasing n until p" > 2-LMB(f2).
» Take p := nextprime(2-LMB(f2)) =. Test that f2 is still squarefree if taken modulo p.

Ged(/2, diff (f2,x)) mod p =
e Use:x” —x=]_[g.
d|i
degree(g) =d
girreducible
gmonic

* We can use this to find the product of all irreducible factors of degree 1, 2, ...: fori=1, 2, ...,

compute gcd (12, X - x), then divide /2 by the factor we just found.

SplitDegrees ;= prodf :: polyrom
ol MEmeE,
P :: posint,
%)

lo=l fF, 1c, g, 4, xpi, resulk;

1c := leowffif,)
f :=F 5 1c mad p;
3 wpd 1= ¥
F Invardianmt: wpi = %[|:-"':i.':l mod FF

F Invardiant: ff is mot divisible by dirreducible
¥ factors of degres ¢ 4
for i while degredfF) »= 2% do
upi := Powmod{upi, p, FF,) mad p;
g = Ged{Ff, xpi - ») mod p;
ifg <* 1 then
result[di] = pg;
ff = QualFF, g,) mod p;
ermd if;
erd doj;

if ff <> 1 then
F Because of secormd dnvardarmt, fF must be
F irreducible.
result| deprad FF5] 1= FF;

SplitDegrees(12, x,p);

* So we know that /2 has four linear factors and one quadratic factor over Z/(97 Z).

p2 = nextprime(p) =
SplitDegrees(f2, x, p2);

* But only three quadratic factors over Z/ (101 Z)!

AEEE

* Since the factorization will be less coarse over the integers than over any prime field, we are better
off with the three quadratic factors.
* However, we may be able to use the single quadratic factor found over Z/ (97 Z):

rem(f?,xz—l—x—|-2,x) =
f3:= quo(fZ,x2+x+2,x) =

* This is indeed a valid factor over the integers, and we know it's irreducible because it was already
irreducible over Z/ (97 7).

* To find the » := 2 : irreducible factors (say f3a and f3b) of /3 over Z/ (101 Z) (which we know
have degreed := 2 :):

* The field Z/ (101 Z) [X]/ (f3) 1s a direct sum of two fields corresponding to f3a and f3b: a sum of
two 2-dimensional vector spaces over Z/ (101 Z). So we can write any polynomial of degree 3 or
less as a sum of a multiple of f3a and a multiple of /35 - but we don't know how.

* If we could get our hands on a multiple of f3a, we could find it by taking the gcd with /3.

* Take a pseudorandom elementg of Z/ (101 Z)[X]/ (f3) - that is, a polynomial of degree <

degree(f3) =.
g = Randpoly(degree(f3) - 1,x) mod p2 =

d
* Raise it to the power 1922—1 =, modulo /3 and modulo 101.

d
gpow = Powmod(g, %,]3, x) mod p2 =

* Now for algebra tells us that the f3a component of gpow is equal to + 1 for about half of the
choices of g and equal to -1 for also about half of the choices. (There is also a small chance that it
is 0.) The same is true for /3.

Ged(gpow - 1, f3) mod p2 =
Ged(gpow + 1, f3) mod p2 =
Gced(gpow, f3) mod p2 =

* Bad luck? Try again.

expand((x2—|— 18)~(x2—|—73) —f3) mod p2 =

* We now know that if /3 has a factorization over the integers, it must be with factors congruent to

x> + 18 and x* + 73 modulo 101.
» The Landau-Mignotte bound says that the absolute value of coefficients of factors of /2, and

therefore of /3, must be less than LMB(f2) =. So the candidate factorization is
(x*+18) - (> +73 - 101) =.
* However, the coefficients must also be less than LMB(f3) =.

expand|((x2 + 18)-()62 —28)) =

* So /3 is irreducible over the integers.
* A full (integer) factorization of f= is therefore (x + 1)2 . (x2 +x+ 2) . (x4 — 10+ 1)

_factor(f) =

¥ Solving systems of polynomials

» What does "solving a system of polynomials" mean?
* Much more complicated than single polynomials

* Redundancy

* Positive-dimensional components of a solution:

restart

plots:-implicitplotj’d(x2 —y222 + 23, x=-0.5..05,y=-2.2,z=-1..1, numpoints =3- 103)
solve({x-z=0,y-z=0});

plots:-display(plottools:-polygon([[-1,-1,0], [-1,1,0], [1,1,0], [1,-1, 0]], color =red),
plottools:-line([0, 0,-11, [0, 0, 1], thickness =3, color = black));

* Several approaches: resultants, Grobner basis, triangular decomposition/regular chains

* All take exponential amounts of time, or worse, in the worst case

* Resultants are a classical technique useful for theoretical results, but rarely used in practice these
days

* For the rest, rewrite equations into some sort of normal form

* Grobner bases are fairly well known; implementations in most major computer algebra systems
(Maple has a well-regarded implementation of F4 by Faugere in its Groebner package)

* Triangular decomposition/regular chains: a similar idea, but a system is split into multiple simpler
systems; a bit like row reduction for matrices - make each equation involve one pivot variable and
only lesser variables than that

X y z -1 X ~Z X X X -1
X y2 z -1 | — y Tz) y) y -1 y
x y 2 -1 Z+2z -1 z -1 z z

solve({x2—|—y+z=1,x+y2+z=1,x+y—l—22=l}) =

(x=0,y=0,z=1}, {x=0,y=1,z=0}, {x=1,y=0,z=0}, {x=RootOf(ZZ+2 Z—1),y
=RootOf(Z2+2 Z—1),z=RootOf (Z2+2 Z—1)}

Solve({x2+y +z=1,x+y2+z=l,x+y —|—22=1}, 'explicit') =

(x=0,y=0,z=1}, {x=0,y=1,z=0}, {x=1,y=0,z=0}, {x=v2 —1,y=V2 —1,z=42

—1h{x=-1-V2,y=-1-V2,z=-1—J2}

|« 1 think the Maple package RegularChains is the only up to date implementation.

V¥ Solving systems with inequalities and inequations (over real
numbers)

* Inequalities: a < b ora < b; inequations: a # b
« Just inequations are relatively easy to deal with - use the same theory as before
* Inequalities mean we need to solve systems over the real numbers only

* Theory much less well-developed: for a quadratic univariate polynomial a F4bx+c= 0, we all

know that the discriminant b — 4 a ¢ determines whether the polynomial has 0, 1, or 2 real
solutions, but these pre-created rules don't exist for more complicated systems. This can now be
done, using both Grobner basis techniques and RegularChains.

with(RootFinding:-Parametric) :
cd = CellDecomposition([a CHbx+ec ZO], [x]);
NumberOfSolutions(cd);

map(print, CellDescription~ (cd, [seq(1..12)1])) :

e First cell: c-coordinate is between minus infinity and the first root of ¢ =0 (that is, ¢ < 0), and
2

b <0,anda < b—
4c

2
e Second cell: same except % <a <.

* Difficult to visualize volumes in 3D, but easy for 2D (that is, two parameters)

cd = CellDecomposition([x3 +ax*+ b-xy+ab=0, y2 +b-y Za], [x,y]);
NumberOfSolutions(cd);
CellPlot(cd, samplepoints, symbolsize=5, font= [HELVETICA, 15]);

cd:-SamplePoints[7] =
SampleSolutions(cd, %) =

Solve(CHax+ bxy+ab=0, y2 + b-y=a], [x,y],parametric);

value(%) assuming b =0
value(%) assuming a =4;

\0|—|

S

solve([a-x2 +bx+c< 0], [x],parametric)

with(RegularChains) :
R = PolynomialRing([x, y,a, b]) :
RegularChains:-LazyReal Triangularize([x3 +a-xt+ bxy+ab<O0, y2 +b-y=al,R)

