#### ILC at DESY

Experimental activities Ties Behnke PRC 8.11.2012

## Linear Collider Detector Activities

Driving force: development of a precision detector for the ILC (LC)

The ILD detector concept Letter of Intent 2009, detailed design report 2012, main editors from DESY

Ca 700 physicist from ca 30 countries



#### Precision detector, optimized for particle flow

- Precision vertexing and tracking, stress efficiency in the tracking
- Granular calorimetry
- Excellent hermeticity

1<mark>1/8/2012</mark>

PRC November 2012



### Activities



Development of an integrated detector concept

- overall optimization and layout
- physics capabilities
- Tools

Development of selected technologies

- Tracking/ vertexing system
- Calorimeter: hadronic calorimetry, forward calorimetry
- Beam instrumentation: polarisation

Activities not covered in this talk:

- Accelerator developments
- Positron source developments

## **Overall Detector Integration**

- Interface of the ILD detector with the accelerator
- Contribute to the development of a common push-pull system
- Overall mechanical integration of the detector.
- Provide a central instance for documentation and project tracking (EDMS) for ILD.

Conceptual study of the operation and design of the Iron Yoke in ILD





## **Linear Collider Physics**

#### **Study LHC physics in detail**

• Precision probe in clean, low background environment reveals underlying physics. Example Higgs

#### **Direct Discoveries**

- Color neutral states
- Higgs sector

#### **Discovery through precision**

• Precision tests of SM particles highly sensitive to new physics

(slide from Jim Brau, LCWS 2012)

### **Physics studies**

Make the physics case for the linear collider

- React to LHC discoveries and results
- React to new developments and improvements in theory and tools
- Document physics potential in the TDR



ne example studied at DESY

PRC November 2012

huon threshold scan a scenario compatible with smo, electroweak precision & LHC, -to-date ILC parameters

Outlook – underway:

 comprehensive study of "natural SUSY" / "Higgsino world" scenarios

# **Higgs Physics**

#### After the CERN discovery: understand how well the LC can do in more detail.

#### ZH @ 250 GeV (~mZ+mH+20GeV) :

- Higgs mass, width, J<sup>PC</sup>
- Gauge quantum numbers
- Absolute measurement of HZZ coupling (recoil mass)
- BR(h->VV,qq,II,invisible) : V=W/Z(direct), g, γ (loop)

ttbar @ 340-350GeV (~2mt) : ZH meas. Is also possible

- Threshold scan --> indirect meas. of top Yukawa coupling
- AFB, Top momentum measurements
- Form factor measurements

#### $\gamma\,\gamma \to$ HH @ 350GeV possibility

-> couplings to H (other than top)

#### vvH @ 350 - 500GeV :

- HWW coupling -> total width --> absolute normalization of couplings ZHH @ 500GeV (~mZ+2mH+170GeV) :
- Prod. cross section attains its maximum at around 500GeV -> Higgs self-coupling ttbarH @ 500GeV (~2mt+mH+30GeV) :
- Prod. cross section becomes maximum at around 700GeV.
- QCD threshold correction enhances the cross section -> top Yukawa measurable at 500GeV concurrently with the self-coupling

#### We can complete the mass-coupling plot at ~500GeV! 11/8/2012 PRC November 2012 K.Fujii @ LCWS12, Oct.24, 2012











6

# **Higgs Physics**

-> couplings to H (other than top)

 $y y \rightarrow HH @ 350GeV possibility$ 

#### After the CERN discovery: understand how well the LC can do in more detail.

#### ZH @ 250 GeV (~mZ+mH+20GeV):

- Higgs mass, width, J<sup>PC</sup>
- Gauge quantum numbers
- Absolute measurement of HZZ coupling (recoil mass)
- BR(h->VV,qq,II,invisible) : V=W/Z(direct), g, γ (loop)

ttbar @ 340-350GeV (~2mt) : ZH meas. Is also possible

- Threshold scan --> indirect meas. of top Yukawa coupling
- AFB, Top momentum measurements
- Form factor measurements

#### vvH @ 350 - 500GeV :

- HWW coupling -> total width --> absolute normalization of couplings ZHH @ 500GeV (~mZ+2mH+170GeV) :
- Prod. cross section attains its maximum at around 500GeV -> Higgs self-coupling ttbarH @ 500GeV (~2mt+mH+30GeV) :
- Prod. cross section becomes maximum at around 700GeV.
- QCD threshold correction enhances the cross section -> top Yukawa measurable at 500GeV concurrently with the self-coupling

We can complete the mass-coupling plot at ~500GeV! 11/8/2012 PRC November 2012 K.Fujii @ LCWS12, Oct.24, 2012



Central measurement: Higgs self coupling. Intense study ongoing in KEK, DESY will join this in the near future



6

#### Characterisation of WIMPs [arxiv:1206.6639, accepted by EPJC]

#### Pair creation of WIMPs+ ISR



- Predict from relic density  $\sigma(e^+e^- \rightarrow \chi\chi\gamma) \approx O(100 \text{ fb})$  $x \text{ BR } (\chi\chi \rightarrow e^+e^-)$
- Main background:  $e^+e^- \rightarrow vv\gamma$  suppress with polarisation!
- Full detector simulation, incl. systematic uncertainties
- Mass to %-level from γ recoil
- Discriminate s- vs p-wave product'n

#### Discovery sensitivity from



determine chiral structure of WIMPs



#### Software tools

Goal:

• Develop "easy to use" software framework for LC studies





Detailed simulation model of ECAL module

DESY plays a central role in the development, Maintenance, and application of the LC software suite. 11

## Event production for LC studies

- simulated and fully reconstructed
- >10M events with ILD\_01\_v05
- 50k simulation and 10k reconstruction jobs
- Iarge fraction done at DESY
- some benchmarks:
  - sim: 5-9 min / event
  - rec: 30-60 sec / event \* (w/o background)
  - rec: 45-210 sec / event \* (w/ background)



ILC GRID usage small compared to the LHC.

Essential service to enable the in-depth Linear Collider studies for the technical design report (DBD)

## New Tracking Code



Complete re-write of a very complex piece of code for

- Improved performance
- Long term maintainablility

11/8/2012

PRC November 2012

TPC tracking VTX tracking Combined tracking

## Technologies

- Do fundamental technology developments
- Develop solutions for the concrete case of an ILC detector
- Prototype the technologies
- Develop integration strategies

Done integrated into AIDA Helmholtz Alliance "Physics at the Terascale" Helmholtz detector portfolio

#### Vertex Detector

09+06

Vertex detector

Many technologies are under study worldwide

One of the key challenges: material budget

Goal: <0.3% X0 per double layer Prototype ladder 2011: 0.6% X0 achieved

DESY "testing" center, using our infrastructure and know how to establish the operation of the new sensors and new materials.

Baseline :

- 6 x MIMOSA26 thinned down to 50μm (developed for EUDET Telescope)
- Kaptonmetal flex cable
- Silicon carbide foam (8% density) stiffener, 2mm thick
- Wire bonding for flex outer world connection
- Digital readout



## Time projection chamber

TPC is part of central tracking in ILD.



#### Focus at DESY

- Development of an compact GEM based readout module (hardware, software)
- Operation and improvement of the LC-TPC test facility at DESY
- Support to non-DESY groups in the use of the LC-TPC test facility

#### DESY GridGEM module



Light weight, self-supporting GEM structure with minimal dead zones.



Test beam 2012: Operate sucessfully Three modules in large prototype with 1T B-field



#### Measured single point resolution.

# of Pulses



PRC November 2012

## Hadronic Calorimeter

- Hadronic calorimeter plays central role in a particle flow detector:
  - Final resolution for fully hadronic states is dominated by HCAL and confusion.

Hadronic tile calorimeter

- Close cooperation with Russian groups on SiPM readout
- Pioneered SiPM usage in HEP projects
- Excellent cooperation within Germany within Terascale Alliance
- Collaboration with many other groups within CALICE, synergy e.g. with ECAL in Japan

Last years: very successful test beam campaign with "physics prototype" to study and establish performance.







data and MC agree

on two particle

separation

# Analysis highlights

CALICE

30-GeV track

HEP

- Analysis of scintillator HCAL data nearly complete
- major role in establishing particle flow experimentally
- excellent calorimetry perfromance, too

Mean of recovered-measured [GeV

"r

a

10-GeV track

50

CALICE data

QGSP\_BERT

100

LHEP

precise validation of Geant 4 models







 DESY active in mechanics, electronics and system integration, test beam support, software, analysis

> test beam infrastructure: ECAL HCAL TCMT

ILD absorber: achieving tight tolerances in costeffective way





integrated electronics



### Future plans

- First layer of 2nd prototype under test this week at CERN so far successfully!
- Next: instrument one tower of ILD stack for electron test beam at DESY
- Then: "grow" a hadronic prototype, using same active parts for ILD and tungsten stacks
- Prove integration concept and study shower time structure
- Mechanics, readout ASICs and DAQ at hand EUDET heritage
- Test bench for different sensor SiPM and tile options







NOVERIDER 2012

## Forward Calorimeter

Zeuthen



LumiCal:

precise luminosity measurement, 10<sup>-3</sup> at ILC , 10<sup>-2</sup> at 3 TeV

BeamCal (and Pair Monitor):

- hermeticity (electron detection at low polar angles),
- assisting beam tuning (fast feedback from BeamCal and pair monitor data to machine)

#### Challenges:



## Module Design





Internationally highly recognised activity, strong synergy and spinoff to LHC (Beam monitoring) PRC November 2012

### Polarisation



Polarised beams: Improtant asset of the linear collider.

Need precision determination of the degree of polarisation: O(0.1%)

Development of precision calorimeters for the scattered electrons (positrons)



## Summary

- Detector development for the linear collider is an active area of research at DESY at both sites (Hamburg and Zeuthen)
- Central contributions to the design of an integrated detector concept
- Strong role in "core tools" for the international linear collider community
- Active contributions to a number of key technological challenges at the LC
- Closely integrated into the LC community but also more generically into the Helmholtz detector initiative

#### Testbeam setup

- Complete TPC test
   infrastructure
- Recent magnet
   upgrade within AIDA
- Service for other groups
- Lots of measurements campaigns (booked solid until march'13)





TESTSTRAHL 24/

PCMAG

PRC November 2012







### Simulation activities

- Simulation:
  - . Electrostatics
  - GEM amplification
  - Ion back drift
- . Track finding package
- Track Fitting implementatic
- Central Services for LCTPC.
  - . Coordination of SW activities
  - Conditions database
  - . Data storage coordination
  - Test beam data analysis packages



#### LC activities at DESY and Hamburg University

- LC Forum to support LC activities in Germany (see <a href="http://lcforum.desy.de">http://lcforum.desy.de</a>)
- Contributions to ILC TDR
- Polarised positrons for future colliders
  - Future collider projects require intense e+ beams
  - Polarised e+ enhance substantially the physics potential (ILC, CLIC)
  - Topic 1: Optimization of e+ source components
    - Positron production target <> extreme material stress (stress waves, damage)
  - Topic 2: Spin manipulation and transport
    - Source optimization to achieve high e+ polarisation
    - Simulation of spin transport from start to end
    - Spin manipulation to preserve the polarisation

