Geometry for 2-Form Gauge Fields

Konrad Waldorf Department Mathematik Universität Hamburg

Joint project with Urs Schreiber, Christoph Schweigert and Danny Stevenson

SFB-Tagung in Zeuthen, Februar 2008

Before we come to geometry for 2-form gauge fields:
What is a 1-form gauge field?
What is geometry for a 1-form gauge field?

Before we come to geometry for 2-form gauge fields:

What is geometry for a 1-form gauge field?

What is a 1-form gauge field?

▶ It describes a gauge theory for point-like particles, for

example electrodynamics.

Before we come to geometry for 2-form gauge fields:

What is a 1-form gauge field?

► It describes a gauge theory for point-like particles, for example electrodynamics.

What is geometry for a 1-form gauge field?

► A hermitian line bundle with connection.

Electrodynamics on \mathbb{R}^n

Relevant:

- a metric
- ▶ a field strength F (2-form) satisfying Maxwell's equations

$$dF = 0$$
 and $d \star F = J$.

Electrodynamics on \mathbb{R}^n

Relevant:

- a metric
- \triangleright a field strength F (2-form) satisfying Maxwell's equations

$$dF = 0$$
 and $d \star F = J$.

Auxiliary structure:

- ▶ gauge potential A (1-form) satisfying dA = F.
- ▶ different choices of *A* are related by a gauge transformation,

$$A' = A + \frac{1}{\mathrm{i}} \,\mathrm{d} g g^{-1}$$

for a function $g: \mathbb{R}^n \to U(1)$.

Example: Charged Particle

We describe the particle by a curve

$$\phi: [0,1] \to \mathbb{R}^n$$
.

For simplicity, we assume $\phi(0) = \phi(1)$.

▶ The particle gathers a contribution of

$$S_F(\phi) = \oint \phi^* A$$

to its action.

By Stokes' Theorem, this contribution is gauge invariant.

Electrodynamics on Curved Spacetime

What is different when one replaces \mathbb{R}^n by a general manifold M?

▶ depending on the topology of *M* it may be that no **global** gauge potential *A* exists.

Electrodynamics on Curved Spacetime

What is different when one replaces \mathbb{R}^n by a general manifold M?

depending on the topology of M it may be that no global gauge potential A exists.

We can still work locally:

Cover the manifold by open sets,

$$M = \bigcup_{\alpha \in A} U_{\alpha}.$$

▶ The sets U_{α} can be chosen topologically so good that there exist **local** gauge potentials A_{α} with $dA_{\alpha} = F|_{U_{\alpha}}$.

▶ On two-fold intersections $U_{\alpha} \cap U_{\beta}$ **two** local gauge potentials are present: A_{α} and A_{β} . They differ by a gauge transformation

$$A_{\beta} = A_{\alpha} + \frac{1}{i} \, \mathrm{d} g_{\alpha\beta} g_{\alpha\beta}^{-1}.$$

On three-fold intersections, we demand a consistency condition:

$$g_{\alpha\gamma}=g_{\beta\gamma}\cdot g_{\alpha\beta}.$$

The particle is now described by a curve

$$\phi: [0,1] \rightarrow M$$
.

Can we define the contribution to its action?

The particle is now described by a curve

$$\phi: [0,1] \rightarrow M$$
.

Can we define the contribution to its action?

▶ In general, no.

The particle is now described by a curve

$$\phi : [0,1] \to M$$
.

Can we define the contribution to its action?

- ▶ In general, no.
- ▶ What we **can** define is the **exponential** of this contribution:

$$\exp\left(\mathrm{i} S_L(\phi)\right) := \prod_{i=1}^N \exp\left(\mathrm{i} \int_{t_i-1}^{t_i} \phi^* A_{\alpha(i)}\right) \cdot g_{\alpha(i)\alpha(i+1)}(\phi(t_i))$$

This is still enough to derive the **equations of motion**!

The particle is now described by a curve

$$\phi: [0,1] \rightarrow M$$
.

Can we define the contribution to its action?

- ▶ In general, no.
- ▶ What we can define is the exponential of this contribution:

$$\exp\left(\mathrm{i} S_L(\phi)\right) := \prod_{i=1}^N \exp\left(\mathrm{i} \int_{t_i-1}^{t_i} \phi^* A_{\alpha(i)}\right) \cdot g_{\alpha(i)\alpha(i+1)}(\phi(t_i))$$

This is still enough to derive the **equations of motion**! Is this contribution still gauge invariant?

▶ It is invariant under **local** gauge transformations

$$A'_{lpha} = A_{lpha} + rac{1}{\mathrm{i}} \, \mathrm{d} h_{lpha} h_{lpha}^{-1} \qquad \qquad g'_{lphaeta} = g_{lphaeta} h_{eta}^{-1} h_{lpha}$$

Geometry: Line Bundles with Connection

Definition:

- 1. The collection $L := \{A_{\alpha}, g_{\alpha\beta}\}$ is a hermitian line bundle with connection of curvature F.
- 2. The collection $\{h_{\alpha}\}$ is an **equivalence** $L \to L'$.

Geometry: Line Bundles with Connection

Definition:

- 1. The collection $L := \{A_{\alpha}, g_{\alpha\beta}\}$ is a hermitian line bundle with connection of curvature F.
- 2. The collection $\{h_{\alpha}\}$ is an **equivalence** $L \to L'$.

Upshot:

- ► A 1-form gauge field is an equivalence class of hermitian line bundles with connection.
- ▶ The curvature of the connection is the field strength.
- The holonomy of the connection describes the coupling of charged particles to the field.

For a fixed a field strength F , are there non-equivalent choices of
line bundles with connection of curvature <i>F</i> ?

For a fixed a field strength F, are there non-equivalent choices of line bundles with connection of curvature F?

- In general, yes.
- ▶ **Theorem:** Equivalence classes of hermitian line bundles with connection of curvature F are parameterized by the cohomology group H¹(M, U(1)).

For a fixed a field strength F, are there non-equivalent choices of line bundles with connection of curvature F?

- In general, yes.
- ▶ **Theorem:** Equivalence classes of hermitian line bundles with connection of curvature F are parameterized by the cohomology group H¹(M, U(1)).

If F is any field strength, is there a line bundle with curvature F?

For a fixed a field strength F, are there non-equivalent choices of line bundles with connection of curvature F?

- In general, yes.
- ▶ **Theorem:** Equivalence classes of hermitian line bundles with connection of curvature F are parameterized by the cohomology group H¹(M, U(1)).

If F is any field strength, is there a line bundle with curvature F?

- ▶ In general: no.
- ► **Theorem:** There exists a line bundle with connection of curvature F if and only if

$$\int_{B} F \in \mathbb{Z}$$

for any 2-dimensional submanifold $B \subset M$.

Relevance of Line Bundles

Dirac's magnetic Monopoles:

Question: Why quantizes the existence of a sole magnetic monopole the electric charge?

Answer: For the field F of a monopole, no global gauge potential can be chosen. We thus need an hermitian line bundle with connection of curvature F. The existence of such line bundles quantizes F.

Relevance of Line Bundles

Dirac's magnetic Monopoles:

Question: Why quantizes the existence of a sole magnetic monopole the electric charge?

Answer: For the field F of a monopole, no global gauge potential can be chosen. We thus need an hermitian line bundle with connection of curvature F. The existence of such line bundles quantizes F.

Aharonov-Bohm effect:

Question: Electrons are affected by an "infinitely long and thin" solenoid although the field strength is zero. Why?

Answer: The line bundle is, though flat, non-trivial.

We leave particles and their gauge theories and come to strings .
What is a 2-form gauge field?
What is geometry for a 2-form gauge field?

We leave particles and their gauge theories and come to strings.

What is a 2-form gauge field?

▶ It describes a gauge theory for strings.

What is geometry for a 2-form gauge field?

We leave particles and their gauge theories and come to strings.

What is a 2-form gauge field?

▶ It describes a gauge theory for strings.

What is geometry for a 2-form gauge field?

► A hermitian gerbe with connection.

Strings in Curved Spacetime

Relevant:

- a metric
- ► a field strength *H* (3-form)

Strings in Curved Spacetime

Relevant:

- a metric
- ▶ a field strength H (3-form)

Simplified Situation:

- ▶ there is a global gauge potential B (2-form) with dB = H.
- ▶ a charged string $\phi: \Sigma \to M$ couples to the gauge field by

$$S_{H}(\phi) := \int_{\Sigma} \phi^{*} B$$

In general, however, global gauge potentials do not exist.

If no ${\it global}$ gauge potential B can be chosen, we work locally:

- ▶ We cover M with open sets U_{α} with good topology. Then, we can choose local gauge potentials B_{α} .
- ▶ On two-fold intersections, there are two potentials present: B_{α} and B_{β} . They differ by a (1-form) gauge potential $A_{\alpha\beta}$:

$$B_{\beta} = B_{\alpha} + \mathrm{d}A_{\alpha\beta}.$$

▶ On three-fold intersections, three gauge potentials are present: $A_{\alpha\beta}$, $A_{\beta\gamma}$ and $A_{\alpha\gamma}$: they differ by a gauge transformation

$$A_{\alpha\gamma} = A_{\beta\gamma} + A_{\alpha\beta} + \frac{1}{\mathrm{i}} \,\mathrm{d} g_{\alpha\beta\gamma} g_{\alpha\beta\gamma}^{-1}$$

▶ On four-fold intersections, we demand that these gauge transformations satisfy the consistence condition

$$\mathsf{g}_{\beta\gamma\delta}\cdot\mathsf{g}_{\alpha\beta\delta}=\mathsf{g}_{\alpha\gamma\delta}\cdot\mathsf{g}_{\alpha\beta\gamma}.$$

Geometry: Gerbes with Connection

Definition: The data $\{B_{\alpha}, A_{\alpha\beta}, g_{\alpha\beta\gamma}\}$ is a hermitian gerbe with connection of curvature H.

Geometry: Gerbes with Connection

Definition: The data $\{B_{\alpha}, A_{\alpha\beta}, g_{\alpha\beta\gamma}\}$ is a hermitian gerbe with connection of curvature H.

Upshot:

- ► A 2-form gauge field is an equivalence class of hermitian gerbes with connection.
- ▶ The curvature of the connection is the field strength *H*.
- The holonomy of the connection describes the coupling of charged strings to the field.

Example: Wess-Zumino-Witten Models

ightharpoonup M = G is a compact Lie group, and the field strength H is given by

$$H:=\frac{k}{12\pi}\mathrm{tr}(g^{-1}\mathrm{d}g)^3.$$

Example: Wess-Zumino-Witten Models

▶ M = G is a compact Lie group, and the field strength H is given by

$$H:=\frac{k}{12\pi}\mathrm{tr}(g^{-1}\mathrm{d}g)^3.$$

- Question: Do gerbes with this curvature exist? Answer: Depends on k:
 - if G is simple and simply-connected for all $k \in \mathbb{Z}$.
 - if G = SO(3) only for $k \in 2\mathbb{Z}$.

Example: Wess-Zumino-Witten Models

► M = G is a compact Lie group, and the field strength H is given by

$$H:=\frac{k}{12\pi}\mathrm{tr}(g^{-1}\mathrm{d}g)^3.$$

- Question: Do gerbes with this curvature exist? Answer: Depends on k:
 - if G is simple and simply-connected for all $k \in \mathbb{Z}$.
 - if G = SO(3) only for $k \in 2\mathbb{Z}$.
- Question: Are there inequivalent choices? Answer: Depends on the topology of the group G:
 - if *G* is simple and simply-connected, no.
 - if $G = SO(4n)/\mathbb{Z}_2$, yes: two.

Recent Results that use the Geometry of Gerbes

- ▶ D-branes:
 - twisted vector bundles (Kapustin, hep-th/9909089)
 - gerbe modules (Gawędzki, hep-th/0701071)
- Unoriented string theories:
 - Jandl structures (Schreiber-Schweigert-KW, hep-th/0512283)
 - Classification of unoriented WZW models (Gawędzki-Suszek-KW, hep-th/0701071)
- ► Topological defect lines:
 - Gerbe bimodules (Fuchs-Schweigert-KW, hep-th/0703145)
- (in progress:) D-branes in unoriented string theories (Gawędzki-Suszek-KW).