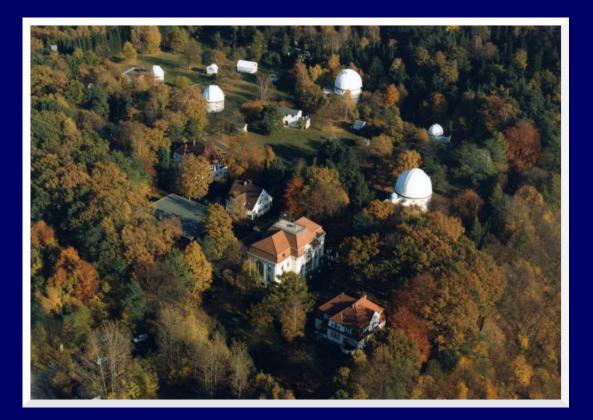

The ongoing quest for variation of the fundamental physical constants


Martin Wendt – Hamburger Sternwarte – C4

SFB Meeting DESY Zeuthen 14.+15.02.2008

The ongoing quest for variation of the fundamental physical constants

Martin Wendt – Hamburger Sternwarte – C4

SFB Meeting DESY Zeuthen 14.+15.02.2008

Short introduction of theory behind variation

- Short introduction of theory behind variation
- What is affected?

- Short introduction of theory behind variation
- What is affected?
- Fundamental physical constants

- Short introduction of theory behind variation
- What is affected?
- Fundamental physical constants
- Local measurements

- Short introduction of theory behind variation
- What is affected?
- Fundamental physical constants
- Local measurements
- Measurements throughout the universe

- Short introduction of theory behind variation
- What is affected?
- Fundamental physical constants
- Local measurements
- Measurements throughout the universe
- Various variations

- Short introduction of theory behind variation
- What is affected?
- Fundamental physical constants
- Local measurements
- Measurements throughout the universe
- Various variations
- Outlook

 Multidimensional string theories predict variable constants

- Multidimensional string theories predict variable constants
- the dark energy issue requires a fine tuned cosmological constant

- Multidimensional string theories predict variable constants
- the dark energy issue requires a fine tuned cosmological constant
- a dynamical scalar field appears more likely

- Multidimensional string theories predict variable constants
- the dark energy issue requires a fine tuned cosmological constant
- a dynamical scalar field appears more likely
- outstanding consequences in case of observed variation:

- Multidimensional string theories predict variable constants
- the dark energy issue requires a fine tuned cosmological constant
- a dynamical scalar field appears more likely
- outstanding consequences in case of observed variation:
- existence of scalar fields, possible reconstruction of the quintessence potential

26 fundamental physical constants for the current model.

- the mass of the up quark
- the mass of the down quark

- the mass of the up quark
- the mass of the down quark
- the mass of the charmed quark

- the mass of the up quark
- the mass of the down quark
- the mass of the charmed quark
- the mass of the strange quark

- the mass of the up quark
- the mass of the down quark
- the mass of the charmed quark
- the mass of the strange quark
- the mass of the top quark

- the mass of the up quark
- the mass of the down quark
- the mass of the charmed quark
- the mass of the strange quark
- the mass of the top quark
- the mass of the bottom quark

- the mass of the up quark
- the mass of the down quark
- the mass of the charmed quark
- the mass of the strange quark
- the mass of the top quark
- the mass of the bottom quark
- 4 numbers for the Kobayashi-Maskawa matrix

the mass of the electron

- the mass of the electron
- the mass of the electron neutrino

- the mass of the electron
- the mass of the electron neutrino
- the mass of the muon

- the mass of the electron
- the mass of the electron neutrino
- the mass of the muon
- the mass of the mu neutrino

- the mass of the electron
- the mass of the electron neutrino
- the mass of the muon
- the mass of the mu neutrino
- the mass of the tau

- the mass of the electron
- the mass of the electron neutrino
- the mass of the muon
- the mass of the mu neutrino
- the mass of the tau
- the mass of the tau neutrino

- the mass of the electron
- the mass of the electron neutrino
- the mass of the muon
- the mass of the mu neutrino
- the mass of the tau
- the mass of the tau neutrino
- 4 numbers for the Maki-Nakagawa-Sakata matrix

the mass of the Higgs boson

- the mass of the Higgs boson
- the expectation value of the Higgs field

- the mass of the Higgs boson
- the expectation value of the Higgs field
- the U(1) coupling constant

- the mass of the Higgs boson
- the expectation value of the Higgs field
- the U(1) coupling constant
- the SU(2) coupling constant

- the mass of the Higgs boson
- the expectation value of the Higgs field
- the U(1) coupling constant
- the SU(2) coupling constant
- the strong coupling constant

- the mass of the Higgs boson
- the expectation value of the Higgs field
- the U(1) coupling constant
- the SU(2) coupling constant
- the strong coupling constant
- the cosmological constant

Where can variation be expected?

Of the selected 26 constants, 22 are related to the yet to be discovered Higgs! Not very helpful from an astronomer's point of view...

• the finestructure constant $\alpha \equiv \frac{q^2}{\hbar c}$

- the finestructure constant $\alpha \equiv \frac{q^2}{\hbar c}$
- the proton-to-electron mass ration μ

- the finestructure constant $\alpha \equiv \frac{q^2}{\hbar c}$
- the proton-to-electron mass ration μ

both can be probed by QSO absorption lines

- the finestructure constant $\alpha \equiv \frac{q^2}{\hbar c}$
- the proton-to-electron mass ration μ

both can be probed by QSO absorption lines • $m_{\rm p}\propto\Lambda_{\rm QCD}$ (strong)

- the finestructure constant $\alpha \equiv \frac{q^2}{\hbar c}$
- the proton-to-electron mass ration μ
- both can be probed by QSO absorption lines
 - $m_{
 m p} \propto \Lambda_{
 m QCD}$ (strong)
 - $m_{\rm e} \propto$ the vacuum expectation value of the Higgs field (weak)

- the finestructure constant $\alpha \equiv \frac{q^2}{\hbar c}$
- the proton-to-electron mass ration μ
- both can be probed by QSO absorption lines
 - $m_{
 m p} \propto \Lambda_{
 m QCD}$ (strong)
 - $m_{\rm e} \propto$ the vacuum expectation value of the Higgs field (weak)
 - $\mu = \frac{m_{\rm p}}{m_{\rm e}} =$ ratio of strong to weak forces!

 in case of a dynamical scalar field being responsible for varying α, the other gauge and Yukawa couplings are expected to vary as well

- in case of a dynamical scalar field being responsible for varying α , the other gauge and Yukawa couplings are expected to vary as well
- for GUTs there is a direct relation between $\dot{\alpha}$ and $\dot{\mu}$

- in case of a dynamical scalar field being responsible for varying α, the other gauge and Yukawa couplings are expected to vary as well
- for GUTs there is a direct relation between $\dot{\alpha}$ and $\dot{\mu}$

$$\frac{\dot{\mu}}{\mu} \sim \frac{\dot{\Lambda}_{\rm QCD}}{\Lambda_{\rm QCD}} - \frac{\dot{v}}{v} \sim R \frac{\dot{\alpha}}{\alpha}$$

- in case of a dynamical scalar field being responsible for varying α, the other gauge and Yukawa couplings are expected to vary as well
- for GUTs there is a direct relation between $\dot{\alpha}$ and $\dot{\mu}$

$$\frac{\dot{\mu}}{\mu} \sim \frac{\dot{\Lambda}_{\rm QCD}}{\Lambda_{\rm QCD}} - \frac{\dot{v}}{v} \sim R \frac{\dot{\alpha}}{\alpha}$$

• *R* is not well defined and model dependent

- combined measurements of α and μ are of importance

- combined measurements of α and μ are of importance
- in general the strong-coupling is running faster than α and $\Delta\mu$ is expected to be larger than $\Delta\alpha$

 cooled laboratory atomic clocks using hyperfine frequencies in $^{133}\rm{Cs}$ and $^{87}\rm{Rb}$ give a limit of $10^{-15}~\rm{yr}^{-1}$

- cooled laboratory atomic clocks using hyperfine frequencies in $^{133}\rm{Cs}$ and $^{87}\rm{Rb}$ give a limit of $10^{-15}~\rm{yr}^{-1}$
- extrapolated linearly to t = 10 Gyr: $\Delta \alpha \le 10^{-5}$

- cooled laboratory atomic clocks using hyperfine frequencies in ¹³³Cs and ⁸⁷Rb give a limit of 10⁻¹⁵ yr⁻¹
- extrapolated linearly to t = 10 Gyr: $\Delta \alpha \le 10^{-5}$
- Oklo reactor yields roughly $\Delta \alpha \leq 10^{-7}$

- cooled laboratory atomic clocks using hyperfine frequencies in ¹³³Cs and ⁸⁷Rb give a limit of 10⁻¹⁵ yr⁻¹
- extrapolated linearly to t = 10 Gyr: $\Delta \alpha \le 10^{-5}$
- Oklo reactor yields roughly $\Delta \alpha \leq 10^{-7}$
- radioactive decay (187 Re \rightarrow 187 Os) of meteorites: $\Delta \alpha \leq 10^{-6}$

A constant variation of constants?

Linearity is a mere assumption and may not apply, neither temporally nor spatial.

Measurements on cosmological scales

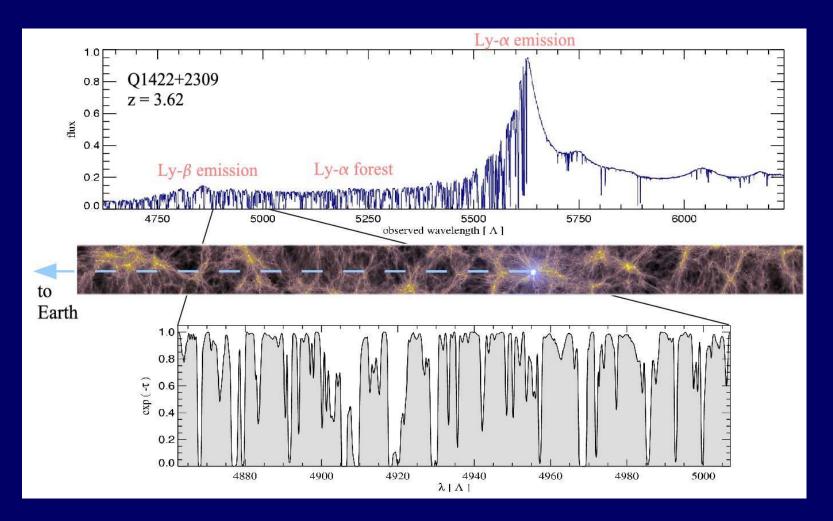
Measurements on cosmological scales

• CBR (z = 1000): $\Delta \alpha \le 10^{-2}$

Measurements on cosmological scales

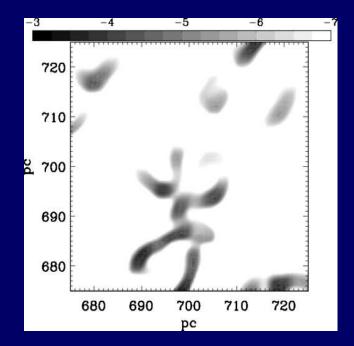
- CBR (z = 1000): $\Delta \alpha \le 10^{-2}$
- BBN ($z = 10^9$): $\Delta \alpha \le 10^{-2}$

Constraints via primordial nucleosynthesis


		<u> </u>			
$\partial \ln Y_a / \partial \ln X_i$	D	³ He	4 He	⁶ Li	⁷ Li
G_N	0.94	0.33	0.36	1.4	-0.72
α	2.3	0.79	0.00	4.6	-8.1
$ au_n$	0.41	0.15	0.73	1.4	0.43
m_e	-0.16	-0.02	-0.71	-1.1	-0.82
Q_N	0.83	0.31	1.55	2.9	1.00
m_N	3.5	0.11	-0.07	2.0	-12
B_{D}	-2.8	-2.1	0.68	-6.8	8.8
B_{T}	-0.22	-1.4	0	-0.20	-2.5
$B_{3\mathrm{He}}$	-2.1	3.0	0	-3.1	-9.5
$B_{4\mathrm{He}}$	-0.01	-0.57	0	-59	-57
$B_{6\mathrm{Li}}$	0	0	0	69	0
B _{7Li}	0	0	0	0	-6.9
$B_{7\mathrm{Be}}$	0	0	0	0	81

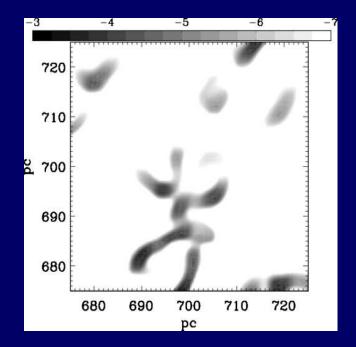
(Thomas Dent et al. 2008)

Measurements in QSO absorption systems


- measurements at different high redshifts
- high spatial and temporal coverage

Quasar absorption line spectroscopy

(Springel et. al 2006)


Absorption systems, i.e., H₂

highly inhomogeneous, clumpy distribution

(H.Hirashita et al. 2003)

Absorption systems, i.e., H₂

- highly inhomogeneous, clumpy distribution
- observable only in dense systems

(H.Hirashita et al. 2003)

• H_2 found in $\approx 15\%$ DLA (Petitjean *et al.* 2006)

- H_2 found in $\approx 15\%$ DLA (Petitjean *et al.* 2006)
- H_2 transitions at $\approx 950 1050$ Å

- H_2 found in $\approx 15\%$ DLA (Petitjean *et al.* 2006)
- H_2 transitions at $\approx 950 1050$ Å
- for $z_{\rm abs} \ge 2.5$ redshifted into Ly forest

- electron-vibro-rotational transitions depend on reduced mass of molecule
- different dependence for different transitions

- electron-vibro-rotational transitions depend on reduced mass of molecule
- different dependence for different transitions
- distinguish cosmological redshift of a line from the shift caused by possible variation of μ

- electron-vibro-rotational transitions depend on reduced mass of molecule
- different dependence for different transitions
- distinguish cosmological redshift of a line from the shift caused by possible variation of μ

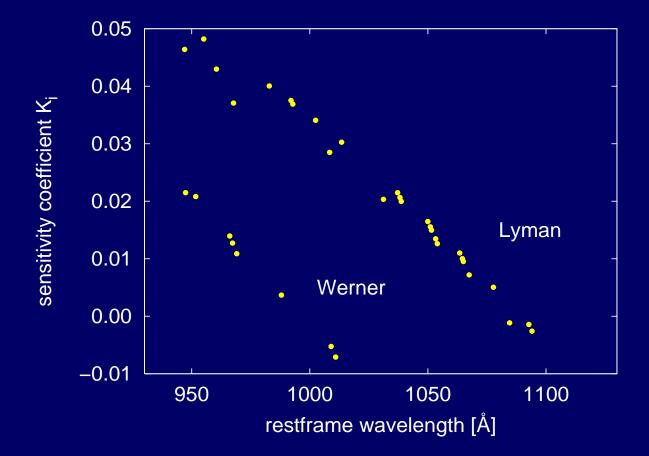
•
$$\lambda_{\text{obs}} = \lambda_{\text{rest}} \times (1 + z_{\text{abs}})(1 + K_i \frac{\Delta \mu}{\mu})$$

- electron-vibro-rotational transitions depend on reduced mass of molecule
- different dependence for different transitions
- distinguish cosmological redshift of a line from the shift caused by possible variation of μ

•
$$\lambda_{\text{obs}} = \lambda_{\text{rest}} \times (1 + z_{\text{abs}})(1 + (K_i)\frac{\Delta\mu}{\mu})$$

Absorption systems

molecular hydrogen H₂

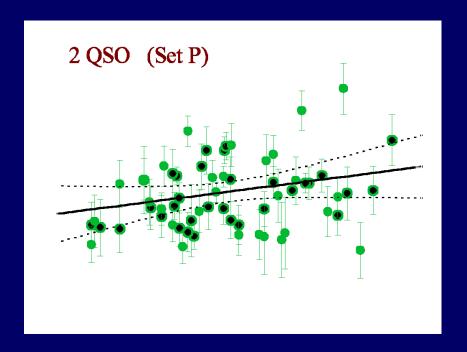

- electron-vibro-rotational transitions depend on reduced mass of molecule
- different dependence for different transitions
- distinguish cosmological redshift of a line from the shift caused by possible variation of μ

•
$$\lambda_{\text{obs}} = \lambda_{\text{rest}} \times (1 + z_{\text{abs}})(1 + (K_i)\frac{\Delta\mu}{\mu})$$

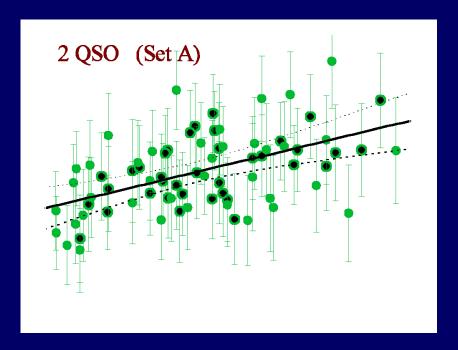
(Thompson 1975)

sensitivity coefficient $K_i = \frac{d \ln \lambda_i^0}{d \ln \mu}$

sensitivity coefficient $K_i = \frac{d \ln \lambda_i^0}{d \ln \mu}$

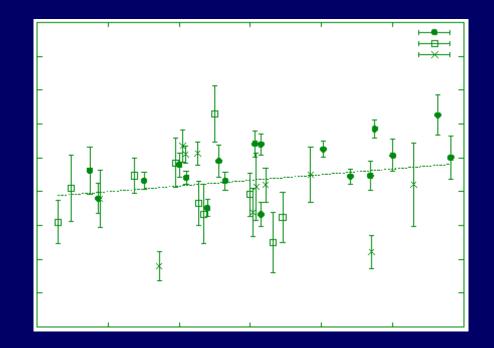

(Reinhold et al. 2006)

Various variations


• Reinhold *et al.* (2006) measure: $\Delta \mu / \mu = (20 \pm 6)$ ppm

- Reinhold *et al.* (2006) measure: $\Delta \mu / \mu = (20 \pm 6)$ ppm
- merging two quasars Q0347-383 and Q0405-443

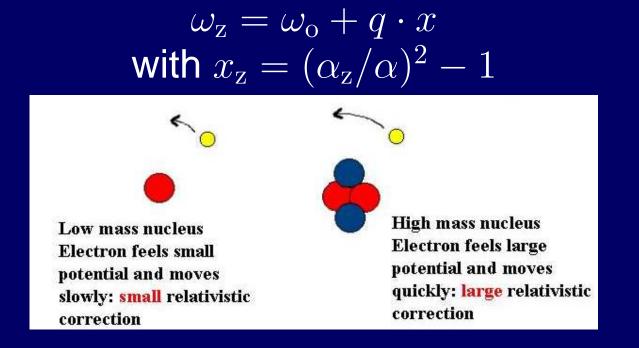
- Reinhold *et al.* (2006) measure: $\Delta \mu / \mu = (20 \pm 6)$ ppm
- merging two quasars Q0347-383 and Q0405-443


- Reinhold *et al.* (2006) measure: $\Delta \mu / \mu = (20 \pm 6)$ ppm
- merging two quasars Q0347-383 and Q0405-443

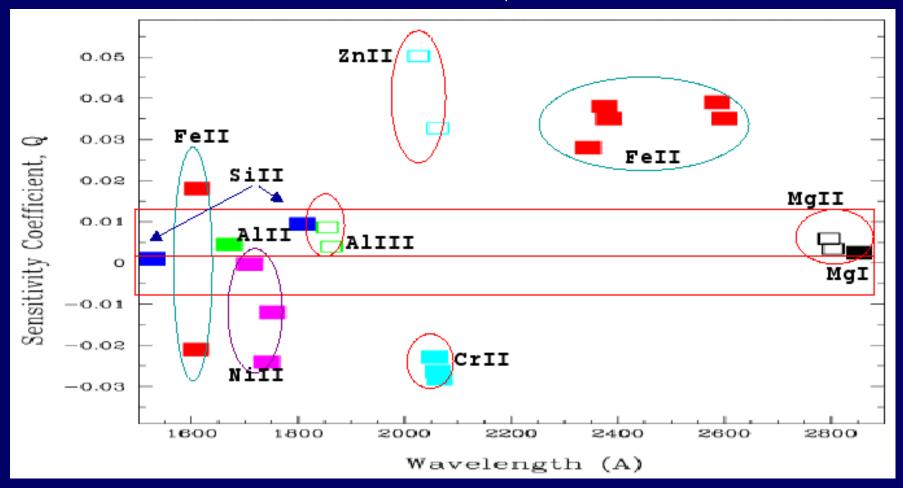
• Wendt and Reimers (2007): $\Delta \mu / \mu = (21 \pm 14)$ ppm

- Wendt and Reimers (2007): $\Delta \mu / \mu = (21 \pm 14)$ ppm
- for Q0347-383

- Wendt and Reimers (2007): $\Delta \mu / \mu = (21 \pm 14)$ ppm
- for Q0347-383

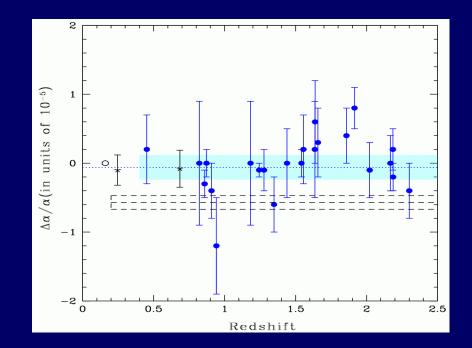


• Many-Multiplet Method:

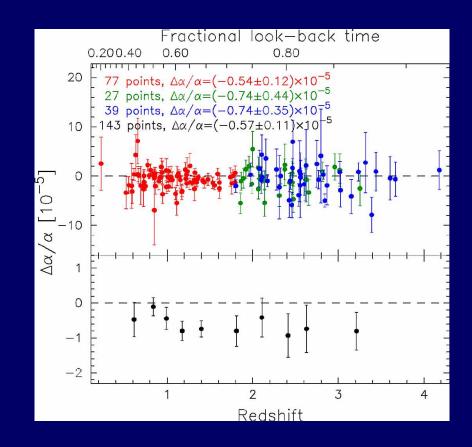

- Many-Multiplet Method:
- Relativistic corrections

- Many-Multiplet Method:
- Relativistic corrections
- Metal lines show different sensitivity to α :

- Many-Multiplet Method:
- Relativistic corrections
- Metal lines show different sensitivity to α :



Sensitivity coefficient $Q = q/\omega_z$ (Dzuba 1999)


• Chand *et al.* (2004): $\Delta \alpha / \alpha = (-0.6 \pm 0.6)$ ppm in 23 systems

• Chand *et al.* (2004): $\Delta \alpha / \alpha = (-0.6 \pm 0.6)$ ppm in 23 systems

• Murphy *et al.* (2004): $\Delta \alpha / \alpha = (-5.7 \pm 1.1)$ ppm based on 143 points

• Murphy *et al.* (2004): $\Delta \alpha / \alpha = (-5.7 \pm 1.1)$ ppm based on 143 points

SIDAM vs MM • Single Ion Differential α Measurement

SIDAM vs MM • Single Ion Differential α Measurement

• exclusive use of Fell:

SIDAM vs MM • Single Ion Differential α Measurement

- exclusive use of Fell:
- change of sign in Q

SIDAM vs MM • Single Ion Differential α Measurement

- exclusive use of Fell:
- change of sign in Q
- small isotopic shifts

SIDAM vs MM

- Single Ion Differential α Measurement
- exclusive use of Fell:
- change of sign in Q
- small isotopic shifts
- same photo-ionisation structure

• Results for HE0515-4414 at $z_{abs} = 1.1$

- Results for HE0515-4414 at $z_{\rm abs} = 1.1$
- Levshakov *et al.* (2006): $\Delta \alpha / \alpha = (-0.1 \pm 1.8)$ ppm

- Results for HE0515-4414 at $z_{abs} = 1.1$
- Levshakov et al. (2006): $\Delta \alpha / \alpha = (-0.1 \pm 1.8)$ ppm
- Chand *et al.* (2006): $\Delta \alpha / \alpha = (+0.5 \pm 2.4)$ ppm

- Results for HE0515-4414 at $z_{\rm abs} = 1.1$
- Levshakov *et al.* (2006): $\Delta \alpha / \alpha = (-0.1 \pm 1.8)$ ppm
- Chand *et al.* (2006): $\Delta \alpha / \alpha = (+0.5 \pm 2.4)$ ppm
- Results for Q1101–264 at $z_{abs} = 1.84$

- Results for HE0515-4414 at $z_{\rm abs} = 1.1$
- Levshakov *et al.* (2006): $\Delta \alpha / \alpha = (-0.1 \pm 1.8)$ ppm
- Chand *et al.* (2006): $\Delta \alpha / \alpha = (+0.5 \pm 2.4)$ ppm
- Results for Q1101-264 at $z_{\rm abs} = 1.84$
- Levshakov *et al.* (2007): $\Delta \alpha / \alpha = (5.4 \pm 2.5)$ ppm

- Results for HE0515-4414 at $z_{abs} = 1.1$
- Levshakov *et al.* (2006): $\Delta \alpha / \alpha = (-0.1 \pm 1.8)$ ppm
- Chand *et al.* (2006): $\Delta \alpha / \alpha = (+0.5 \pm 2.4)$ ppm
- Results for Q1101-264 at $z_{\rm abs} = 1.84$
- Levshakov *et al.* (2007): $\Delta \alpha / \alpha = (5.4 \pm 2.5)$ ppm

no final results – research continues (luckyly)

Methods are refined steadily

- Methods are refined steadily
- Ongoing debate about data analysis

- Methods are refined steadily
- Ongoing debate about data analysis
- Several space-based missions expected, i.e., ACES at the end of 2009 promising an improvement of α by a factor of 50

- Methods are refined steadily
- Ongoing debate about data analysis
- Several space-based missions expected, i.e., ACES at the end of 2009 promising an improvement of α by a factor of 50
- High demands on all steps involved during analysis

- Methods are refined steadily
- Ongoing debate about data analysis
- Several space-based missions expected, i.e., ACES at the end of 2009 promising an improvement of α by a factor of 50
- High demands on all steps involved during analysis
- a better understanding of the physics involved

More data

please