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Potential origins of varying
constants

• Multidimensional string theories predict
variable constants

• the dark energy issue requires a fine tuned
cosmological constant

• a dynamical scalar field appears more likely
• outstanding consequences in case of

observed variation:
• existence of scalar fields, possible

reconstruction of the quintessence potential
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26 fundamental physical constants for the current
model. Most prominent ones:

• the mass of the up quark
• the mass of the down quark
• the mass of the charmed quark
• the mass of the strange quark
• the mass of the top quark
• the mass of the bottom quark
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Where can variation be expected?

• the mass of the electron
• the mass of the electron neutrino
• the mass of the muon
• the mass of the mu neutrino
• the mass of the tau
• the mass of the tau neutrino
• 4 numbers for the Maki-Nakagawa-Sakata

matrix
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Where can variation be expected?

• the mass of the Higgs boson
• the expectation value of the Higgs field
• the U(1) coupling constant
• the SU(2) coupling constant
• the strong coupling constant
• the cosmological constant
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Where can variation be expected?

Of the selected 26 constants, 22 are related to
the yet to be discovered Higgs!
Not very helpful from an astronomer’s point of
view...
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Fundamental constants accessible
by astronomy

• the finestructure constant α ≡
q2

~c

• the proton-to-electron mass ration µ

both can be probed by QSO absorption lines
• mp ∝ ΛQCD (strong)

• me ∝ the vacuum expectation value of the
Higgs field (weak)

• µ =
mp

me
= ratio of strong to weak forces!
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Variations in α and µ

• in case of a dynamical scalar field being
responsible for varying α, the other gauge
and Yukawa couplings are expected to vary
as well

• for GUTs there is a direct relation between α̇
and µ̇

µ̇
µ
∼

Λ̇QCD

ΛQCD
− v̇

v
∼ R α̇

α

• R is not well defined and model dependent
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Variations in α and µ

• combined measurements of α and µ are of
importance

• in general the strong-coupling is running
faster than α and ∆µ is expected to be larger
than ∆α
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measurements on ∆α

• cooled laboratory atomic clocks using
hyperfine frequencies in 133Cs and 87Rb give a
limit of 10−15 yr−1

• extrapolated linearly to t = 10 Gyr: ∆α ≤ 10−5

• Oklo reactor yields roughly ∆α ≤ 10−7

• radioactive decay (187Re→187Os) of
meteorites: ∆α ≤ 10−6
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A constant variation of constants?

Linearity is a mere assumption and may not
apply, neither temporally nor spatial.
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Measurements on cosmological
scales

• CBR (z = 1000): ∆α ≤ 10−2

• BBN (z = 109): ∆α ≤ 10−2
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Constraints via primordial
nucleosynthesis

∂ ln Ya/∂ ln Xi D 3He 4He 6Li 7Li

GN 0.94 0.33 0.36 1.4 -0.72

α 2.3 0.79 0.00 4.6 -8.1

τn 0.41 0.15 0.73 1.4 0.43

me -0.16 -0.02 -0.71 -1.1 -0.82

QN 0.83 0.31 1.55 2.9 1.00

mN 3.5 0.11 -0.07 2.0 -12

BD -2.8 -2.1 0.68 -6.8 8.8

BT -0.22 -1.4 0 -0.20 -2.5

B3He -2.1 3.0 0 -3.1 -9.5

B4He -0.01 -0.57 0 -59 -57

B6Li 0 0 0 69 0

B7Li 0 0 0 0 -6.9

B7Be 0 0 0 0 81

(Thomas Dent et al. 2008)

– p. 20



Measurements in QSO absorption
systems

• measurements at different high redshifts
• high spatial and temporal coverage
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Quasar absorption line
spectroscopy

(Springel et. al 2006)
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Absorption systems, i.e., H2

• highly inhomogeneous, clumpy distribution

(H.Hirashita et al. 2003)
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Absorption systems, i.e., H2

• highly inhomogeneous, clumpy distribution
• observable only in dense systems

(H.Hirashita et al. 2003)
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Absorption systems

• H2 found in ≈ 15% DLA (Petitjean et al. 2006)

• H2 transitions at ≈ 950 − 1050 Å
• for zabs ≥ 2.5 redshifted into Ly forest
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Absorption systems

molecular hydrogen H2

• electron-vibro-rotational transitions depend
on reduced mass of molecule

• different dependence for different transitions
• distinguish cosmological redshift of a line from

the shift caused by possible variation of µ

• λobs = λrest × (1 + zabs)(1 + Ki
∆µ
µ

)

(Thompson 1975)
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sensitivity coefficient Ki = d ln λ0
i

d ln µ
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sensitivity coefficient Ki = d ln λ0
i

d ln µ
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Variations in µ

• Reinhold et al. (2006) measure: ∆µ/µ = (20 ± 6) ppm
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Variations in α

• Many-Multiplet Method:
• Relativistic corrections
• Metal lines show different sensitivity to α:

ωz = ωo + q · x
with xz = (αz/α)2 − 1
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Variations in α

Sensitivity coefficient Q = q/ωz (Dzuba 1999)
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Variations in α

• Chand et al. (2004): ∆α/α = (−0.6 ± 0.6) ppm
in 23 systems
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Variations in α

SIDAM vs MM
• Single Ion Differential α Measurement
• exclusive use of FeII:
• change of sign in Q
• small isotopic shifts
• same photo-ionisation structure
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Variations in α

• Results for HE0515-4414 at zabs = 1.1

• Levshakov et al. (2006): ∆α/α = (−0.1 ± 1.8) ppm

• Chand et al. (2006): ∆α/α = (+0.5 ± 2.4) ppm

• Results for Q1101-264 at zabs = 1.84

• Levshakov et al. (2007): ∆α/α = (5.4 ± 2.5) ppm

no final results – research continues (luckyly)
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Outlook

• Methods are refined steadily
• Ongoing debate about data analysis
• Several space-based missions expected, i.e.,

ACES at the end of 2009 promising an
improvement of α by a factor of 50

• High demands on all steps involved during
analysis

• a better understanding of the physics involved
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More data

please
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