Strong interactions at HERA and LHC beyond collinear approximation

Leszek Motyka

Hamburg University & Jagellonian University, Kraków

Overview

Motivation

 $\ensuremath{k_{T}}\xspace$ factorisation

Multiple interactions

Diffractive processes in pp collisions

Summary

Understanding events at HERA and LHC

- → LHC: the experiment designed to discover Higgs boson and (we wish!) New Physics
- \longrightarrow Shape of the signal in LHC is strongly affected by strong interactions
- → Discovery channels typically contain complicated multi-particle event topologies which may easily drown in QCD driven background
- → We need good understanding of strong interactions: HERA — excellent QCD laboratory that provides invaluable input into the LHC program

k_T factorisation

Collinear approach:

parton transverse $k_T \sim 0$

QCD radiation generates parton k_T

Strong kinematic effects of non-zero parton k_T

Price to pay: collinear parton densities $f(x, \mu^2)$ replaced by more complex unintegrated parton densities $F(x, k_T^2, \mu^2)$, also evolution and matrix elements require new calculations

HERA contribution: constraints on $F(x, k_T^2, \mu^2)$ and Monte Carlo implementation of k_T -factorisation: Hannes Jung's CASCADE

k_T effects at the LHC: $Z^0 b \bar{b}$ production

[M. Deak, F.Schwennsen], [S. Baranov, A. Lipatov, N. Zotov]

Future: more processes and NLO calculations (e.g. for heavy quark hadroproduction)

Multiple interactions

Fast growth of parton densities with energy \longrightarrow dense partonic system

 \longrightarrow multiple hard interaction within one pp or γp collision

Secondary hard interactions

Hadron production

Notion of multi-parton densities emerges \sim probabilities of finding *n*-partons in the proton

Multiple interactions \longrightarrow additional particle production in hard and soft domain \longrightarrow essential for underlying event structure

Evidence for multiple interactions in mini-jet photo-production at HERA

ZEUS: $\gamma p \longrightarrow$ four jets with $M_{4j} < 50 \text{ GeV}$

Production mechanisms:

single and multiple chains

Data compared to MC predictions with and without Multiple Interactions [B6]

Multiple interactions needed to get event shapes right

Relevance of multiple interactions for hard processes and J. Stirling]

Like-sign W production from double scattering only slightly smaller than single scattering production

Double scattering important for processes at electroweak scale!

→ Other channels? Background shape?

 \rightarrow Systematic analysis of double scattering contribution to interesting channels: background estimates and measurement of double parton distributions \rightarrow [B6]

Multi-parton evolution

Independent secondary interactions

- \longrightarrow increase of multiplicity but not $\langle p_T \rangle$
- \longrightarrow difficult to describe both n and $\langle p_T
 angle$

[G. Gustafsson]

Need to understand interaction between chains and effects on color flow

Chain swing: done for DIS [Bartels, Ryskin] \longrightarrow much more important for pp

Central exclusive diffraction

Concept: complement conventional measurement with forward detectors

Magnetic spectrometer: small loss of proton energy \longrightarrow drift outside the beam

Forward Proton measurement — precision trackers 420 meters downstream and a few millimeters from the beam

Complete event coverage and excellent mass resolution — up to O(1 GeV) accuracy

Exclusive Higgs boson production $pp \rightarrow p H p$

[V. Khoze, A. Martin, M. Ryskin, A. Kaidalov, J. Stirling,...]

-----> Precise information about final state: mass, decay width, quantum numbers

 \longrightarrow Favorable in case of SUSY scenarios: almost full coverage of $(M_A, \tan\beta)$ -plane at 3σ level [S. Heinemeyer et. al. , hep-ph:0708.3052]

 \longrightarrow Potential to resolve almost degenerate resonances

Main problem in exclusive diffractive Higgs: rescattering effects

Hard part calculable perturbatively but...

Secondary interactions may destroy the exclusive signature

HERA and Tevatron \longrightarrow

test case: diffractive dijets

Test of rescattering effects

Diffractive dijet production at Tevatron

factor of 10 suppression!

SFB 676, B6: Strong interaction at HERA and LHC... page 10/12

Non-universal rescattering effects

Rescattering affects the shape

Hard rescattering is important

[J. Bartels, S. Bondarenko, K. Kutak, LM]

Approach to resum multiple scattering corrections

Use gluonic ladders as effective degrees of freedom

QCD provides Feynman rules for emerging effective field theory

Define effective action in terms of effective fields $\mathcal{A}[f, f^{\dagger}; Y]$

Solve classical equations of motion to find classical field trajectories $\bar{f}(y, k^2)$ and $\bar{f}^{\dagger}(y, k^2)$ [S. Bondarenko, LM]

Scattering amplitudes in semi-classical limit: $S(Y; f_A, f_B^{\dagger}) = \sum_{\alpha} \Delta_{\alpha} \exp(-\mathcal{A}[\bar{f}_{\alpha}, \bar{f}_{\alpha}^{\dagger}; Y])$

 \longrightarrow Possible to define exclusive Higgs boson production in semi-classical limit

 \longrightarrow Ongoing activity: apply this formalism to DIS and $p\bar{p}$ data and apply to LHC physics [S. Bondarenko, LM]

B6 Summary

Main goals: \longrightarrow discover details of proton structure $(F_L!)$

→ understand better strong interactions

 \longrightarrow obtain precise description of hard events at LHC

Task	Ongoing	Aim
Collinear parton distributions	Parton distribution fits: total cross sections, heavy quarks, jets \longrightarrow gluon density F_L measurement Higher twist corrections	Optimal use of HERA data → precise parton densities
k_T -factorisation	Evaluation of matrix elements and cross sections with $k_T \neq 0$	More processes: accurate description of kinematics
Multi-parton interactions	HERA measurements of multiple interactions Perturbative estimates of color reconnection Multiple scattering background to discovery channels	Parametr tuning of MC Improved color flow \longrightarrow MC Systematic understanding and subtraction of MI background
Diffraction	HERA measurements \longrightarrow diffractive partons Effective field theory at high energies	Diffractive processes at LHC: understanding and applications to Higgs boson physics