SUSY Searches at CMS in the Fully Hadronic Channel

Project B2 - Supersymmetry at the Large Hadron Collider

Christian Autermann, Ulla Gebbert, Kolja Kaschube, Friederike Nowak, Benedikt Mura, <u>Christian Sander</u>, Peter Schleper, Torben Schum, Jan Thomsen

Institut für Experimentalphysik, Universität Hamburg

SFB 676 Workshop in Zeuthen - 15th February 2008

Susy at the LHC

The Project B2

Supersymmetry at the Large Hadron Collider

The Goals

- Discovery of supersymmetry
- Determination of model parameters (in particular the sparticle masses)

The Challenges

- Understanding of the detector (reconstruction efficiencies, energy resolutions ...)
- Separation of SUSY signal against SM background
- Suppression of combinatorial and SUSY background to access SUSY mass parameters by kinematic properties

イロト イヨト イヨト イヨト

Outline

- Introduction
- SM background rejection and discovery of SUSY
- Determination of parameters by reconstruction of mass edges
- Constraining the parameter space
- Global kinematic fits
- Summary

Why is it so nice?

Simultanous Solution with Supersymmetry (SUSY)

- SUSY particles change running of couplings
- Hierarchy/fine tuning: SUSY-contributions have opposite sign \rightarrow cancellation \rightarrow logarithmic scale dependence
- DM: lightest neutralino is (often) perfect candidat (massive, stable, only weak interaction)

So far no discovery, only hints \rightarrow supersymmetry is broken

mSUGRA \rightarrow 5 new Parameters

- m₀: unified mass of the fermion partners
- m_{1/2}: unified mass of the gauge boson partners
- tan β: ratio of the VEVs of the 2 Higgs doublets
- unified trilinear coupling A₀, sign(μ)

Contraints on the Parameter Space

- Higgs mass m_h > 114.4 GeV
- $Br(b \to X_s \gamma) = (3.43 \pm 0.36) \times 10^{-4}$
- $\Delta a_{\mu} = (27 \pm 10) \times 10^{-10}$
- $\Omega_{DM} = 0.113 \pm 0.008$
- SUSY mass limits from LEP
- Theoretical constraints: EWSB, LSP neutral
- Direct detection limits from nuclear recoils and v fluxes from sun or earth

Susy at the LHC

Agreed mSUGRA Benchmark Points

G. L. Bayatian et al., Physics TDR vol. II, J. Phys. G 34 (2007) 995

0	Cond	lor /	ш	om	hura)
υ.	Sanu	iei (п	am	bury)

Agreed mSUGRA Benchmark Points

G. L. Bayatian et al., Physics TDR vol. II, J. Phys. G 34 (2007) 995

Susy Signature

In the Fully Hadronic Decay Mode

Example diagram: χ_1^{\pm} χ_1 χ_1^0

Signature

Cascade decay of primary produced SUSY particles

- *R*-parity conserving models

 → LSP at end of decay chain is stable
 → 𝔼_T
- Many jets
- Jet pairs compatible with a W^{\pm} or a Z

Compact Muon Solenoid

- Multi purpose detector at the LHC
- Operating at CM energy $\sqrt{s} = 14 \text{ TeV}$
- Inner magnetic field $B \approx 4$ T
- HCAL mostly inside the magnet \rightarrow 7...10 interaction length

Susy at the LHC

Compact Muon Solenoid

Event Display

- Physic objects (jets or tracks) are composed from detector signals
- Response of HCAL towers is important for jet physics and ∉_T → HCAL calibration
- Pile-Up from other interactions (~20 events at high lumi) makes it more difficult

SM Backgrounds QCD, *tt*, *W*+jets and *Z*+jets

proton - (anti)proton cross sections

Preselection cuts

- *N_{jets}* > 3 (signal signature)
- $\Delta \phi(\not\!\!\!E_T, j_{1,2,3}) > 0.3$ (QCD rejection)
- $\not\!\!E_T + E_{t,j_2} + E_{t,j_3} + E_{t,j_4} > 500 \text{ GeV}$ (S/B optimization)
- *E*_{t,j1} > 180 GeV and *E*_{t,j2} > 110 GeV (S/B optimization)
- Indirect lepton veto, cleanup ...

More than 7 orders of magnitude larger background (in optimistic SUSY scenarios)

< 6 b

THE 1 A

SUSY Discovery

 $\bullet~S/B\sim300$ can be achieved at LM1 with a signal efficiency of $\sim10\%$

 For such optimistic scenarios with light SUSY masses → almost bg free SUSY sample; discovery might be more difficult for heavier masses

Diploma thesis of Jan Thomsen (Sep. 2007)

0	Sand	or 1	ш	am	hu	~~\
υ.	Sanu	ei (am	bu	IY)

Determination of Mass Parameters

In the Fully Hadronic Decay Mode

- For one decay chain: combine following objects to invariant squark mass
 - LSP χ^0
 - Two W-jets
 - Quark jet of the decaying squark
- LSP momenta not measured
 → no peak in the invariant trijet mass but . . .
- Distribution of *m_{jjj}* with a lower and upper mass edge
- Big problem: combinatorial background (e.g. 7 jets → 720 dijet and 153 trijet combinations)

Mass Edges

Luc Pape, CMS internal note

Triparton Mass [GeV]

100

< ロ > < 同 > < 回 > < 回 >

300 400 500 600 700

Find Hadronic W^{\pm} s and Zs

Suppression of Combinatorial Background

detector level:

- Candidates are all jet pairs wich can be combined to an invariant mass between 60 and 110 GeV
- θ* is the angle (in the W rest frame) of a W-jet to the flight direction of the W
- Other discriminating variables are: *p_T* of *W* candidate and angle Δφ between *E_T* and *W*
- Low W reco efficiency at low p_T due to low jet reco eff.
- Low W reco efficiency at high p_T due to W-jet merging

• • • • • • • • • • • •

Boson Candidate Rate

generator level:

Tops in SUSY

- One hadronic decaying top has one true dijet W combination
- Wrong dijet W combinations have invariant mass "near" the W mass
 → more than one W candidate per top due to detector smearing
- Separation of candidates in two classes
 - Top-W-candidates which can be combined with one further jet to top quark
 - SUSY-W-candidates which can not be combined to top

< ロ > < 同 > < 回 > < 回 >

Boson Candidate Rate

Probing the mSUGRA Parameter Space

$\mathcal{L}=3~\text{fb}^{-1}$	LM3	LM4	LM8	LM10	НМЗ	HM4
N _{SUSY,tot}	136400	71500	36300	230	140	310
N _{presel}	11600	9020	5740	15	48	80
N ^{Cand}	49600	33100	29000	88	140	514
$\epsilon_{Boson,tot}$	0.09	0.12	0.13	0.12	0.16	0.13
NCand SUSY-cut	790	670	360	1.0	2.5	4.3
$\epsilon_{SUSY-Boson}$	0.24	0.45	0.42	0.3	0.4	0.21
N ^{Cand}	2640	1560	1520	3.9	5.0	24
$\epsilon_{top-Boson}$	0.14	0.11	0.28	0.33	0.26	0.47
R	0.30	0.43	0.57	0.26	0.5	0.18

Purity of Boson from SUSY decays increased by a factor > 3

 Absolute number of W and Z candidates in different classes and ratios
 R = N^{Cand}_{SUSY-cut}/N^{Cand}_{top-cut} are varying for different mSUGRA parameters
 → Possible to distinguish between different models?

Diploma thesis of Friederike Nowak (Feb. 2008)

A B K A B K

Probing the mSUGRA parameter space

With χ^2 Methode

$\mathcal{L}=3~\text{fb}^{-1}$	N _{presel}	$N_B = N_{SUSY-cut}^{Cand} + N_{top-cut}^{Cand}$	$R = N_{SUSY-cut}^{Cand} / N_{top-cut}^{Cand}$
LM3	$11608 \pm 107, 7$	$7826\pm88,5$	$0,286\pm0,010$
LM4	$9022\pm95,0$	$5101\pm71,4$	$0,378\pm0,016$
LM8	$5740\pm75,8$	$4423\pm 66,5$	$0,223\pm0,010$
LM10	$17\pm4,1$	25 ± 5	$0,191\pm0,122$
HM3	$\textbf{46} \pm \textbf{6}, \textbf{8}$	16 ± 4	$0,143\pm0,123$
HM4	$\textbf{86} \pm \textbf{9}, \textbf{3}$	$73\pm 8,5$	$0,159\pm0,062$

Test Data *d* against hypothesis *h*

In case of uncorrelated variables

$$\chi^{2} = \sum_{i=1}^{n} \frac{(d_{i} - h_{i})^{2}}{\sigma_{d,i}^{2} + \sigma_{h,i}^{2}}$$

In case of correlated variables

$$\chi^2 = (d-h)' A^{-1} (d-h)$$

With the covariance matrix

$$\mathbf{A} = \begin{pmatrix} \sigma_i^2 + \epsilon^2 \mathbf{x}_i^2 & \epsilon^2 \mathbf{x}_i \mathbf{x}_j \\ \epsilon^2 \mathbf{x}_i \mathbf{x}_j & \sigma_j^2 + \epsilon^2 \mathbf{x}_j^2 \end{pmatrix}$$

Errors

- Theory error from $\sigma_{tot} \sim$ 20%
- *N*_{presel} and *N*_B have correlated statistical errors ...
- ... and common systematic errors
 - Luminosity ~ 5%
 Jet energy scale ~ 10%
 ...conservative sum: ~ 20%
- *R* almost independent on systematic uncertainties

Probing the mSUGRA parameter space

Scan hypothesis and compare with pseudo data of HM4

- Boson candidate rate contains information in addition to absolute event rate → larger parts of the parameter space can be excluded
- Plans: include other observables (e.g. invariant 3-jet mass)

Mass Edges

detector level:

- Force the two W-jets on the invariant W mass → Improvement of position of kinematic mass edges
- **Plan:** use multivariate methods (e.g. maximum likelihood) to reduce combinatorial bg

Ulla Gebbert

Global Kinematic Fit of SUSY masses

Determine masses of SUSY particles in chain with a global fit

Unknown quantities

- 6 unmeasured parameters (2× Neutralino momentum)
- 4 SUSY masses (global parameters: same for all events)

7 Constraints

- $2 \times E_T$ balance (E_x and E_y)
- $2 \times p(q,q,\tilde{\chi}_1^0)^2 = M(\tilde{\chi}_1^{\pm})^2$
- $2 \times p(q,q,q,q,\tilde{\chi}_1^0)^2 = M(\tilde{q})^2$
- $1 \times p(q,q,q,q,q,\tilde{\chi}_1^0)^2 = M(\tilde{g})^2$

Benedikt Mura

Overconstrained system ...

- \dots for \geq 5 intermediate particles
- Example for 100 events:
 - 7×100 constraints
 - -6×100 unknown parameters
 - -4 global parameters
 - 96 constraints "left"

Global Fit of 3 Masses

- Problem: squark mass has large decay width → use MC squark mass in calculations
- Problem: E_T balance not perfect due to initial transverse momentum of sparticles → from MC information
- Use "toy" Monte Carlo
 - Take parton kinematics E_T , η , ϕ from generator info
 - Assume jet resolution as given in PTDR (barrel jet E_T)
 - Apply gaussian smearing for input quantities according to this resolution
- Choose arbitrary start values for unknown parameters

Very preliminary results

146 Events 900 Startvalues: Constraints 800 700 ● *M*(*g̃*) = 500 GeV 600 500 • $M(\tilde{\chi}_{1}^{\pm}) = 200 \text{ GeV}$ 400 300 • $M(\tilde{\chi}_1^0) = 100 \text{ GeV}$ 200 100 • $p_x = p_y = p_z = 100$ GeV for both neutralinos Iteration ŝ •M(a) ⊻^{1.08} ⊻^{1≟1.06} · M(70 Fit Result 1.04 1.02 *M*(*g̃*) = 397.3 GeV (MC: 394 GeV) • $M(\tilde{\chi}_{1}^{\pm}) = 127.4 \text{ GeV} (\text{MC}: 124)$ 0.98 0.96 GeV) 0.94 0.92 • $M(\tilde{\chi}_1^0) = 68.8 \text{ GeV} (\text{MC: 71 GeV})$ 0.9 5 15 20 25 30 Iteration

Summary

SUSY Searches in the Fully Hadronic Channel

- Discovery of SUSY might be easy (if nature is kind)
- Access to SUSY parameters might be much more difficult (if nature is unkind)
- Understanding of detector and suppression of combinatorial background is crucial
- Probing the mSUGRA parameter space by new observales like weak boson production rate
- Local kinematic fits to improve resolution of mass edges
- Global kinematic fits to determine sparticle masses?

A B F A B F