Physics beyond the Standard Model at the ILC

Mikael Berggren¹

¹DESY Hamburg

Presentation at the SFB seminar, Zeuthen, February 2008

Mikael Berggren (DESY)

Physics beyond the Standard Model at the IL

• • • • • • • • • • • • •

Outline

Presenting B1

2 The Terascale

- 3 The Terascale: How to get there
 - The linear collider
- 5 The detector and the physics

6 Conclusions

• • • • • • • • • • • • •

Project leaders: J. Haller, J. List, and P. Zerwas

Five sub-projects:

- Measurements of basic SUSY parameters.
- 2 Dark Matter scenarios in SUSY.
- Higgs and SUSY particles beyond the MSSM.
- Reconstruction of the fundamental SUSY theory and its breaking mechanism.
- Multi-loop precision studies in SUSY.

This talk will concentrate on the experimental side, ie. sub-project 2.

Currently active people: The project leaders, the speaker, P. Bechtle, D.Käfer and:

C. Bartels, I. Marchesini, P. Schade, N. d'Ascenzo (PhD students) and O. Stempel (Diploma student)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why New Physics at the Terascale ?

• Theoretically

- SM will have problems if no Higgs below that scale: Unitarity bound in WW scattering, triviality, M_n ≤ Γ(H)
- Fine-tuning: New physics can't be too far from the EW-scale to solve the problem.
- tt threshold, v=246 GeV ...

Experimentally

- LEP: The Higgs must be just around the corner.
- g-2: 3σ deviation from SM would like something with mass O(100 GeV) in the loops.
- WMAP, EGRET, ... : We need dark matter, and something with mass *O*(100 GeV) looks most likely.

Why New Physics at the Terascale ?

Theoretically

- SM will have problems if no Higgs below that scale: Unitarity bound in WW scattering, triviality, M_h ≤ Γ(H)
- Fine-tuning: New physics can't be too far from the EW-scale to solve the problem.
- tt threshold, v=246 GeV ...

• Experimentally

- LEP: The Higgs must be just around the corner.
- g-2: 3σ deviation from SM would like something with mass C(100 GeV) in the loops.
- WMAP, EGRET, ... : We need dark matter, and something with mass O(100 GeV) looks most likely.

Why New Physics at the Terascale ?

Theoretically

- SM will have problems if no Higgs below that scale: Unitarity bound in WW scattering, triviality, M_h ≤ Γ(H)
- Fine-tuning: New physics can't be too far from the EW-scale to solve the problem.
- tt threshold, v=246 GeV ...

Experimentally

- LEP: The Higgs must be just around the corner.
- g-2: 3σ deviation from SM would like something with mass $\mathcal{O}(100 \text{ GeV})$ in the loops.
- WMAP, EGRET, ... : We need dark matter, and something with mass $\mathcal{O}(100 \text{ GeV})$ looks most likely.

EGRET : excess of γ :s with E > 1 GeV.

WMAP haze : excess of microwaves from the centre of the galaxy,

Fits well with $\tilde{\chi}^0$ annihilation, with $M_{\tilde{\chi}^0} \mathcal{O}(100 \text{ GeV})$.

The EGRET γ :s are from π^0 decays, the WMAP microwaves are from syncrotron radiation of *e*:s in the galactic *B*-field. (arXiv:0705.3655v1: Evidence (I) for Dark Matter Annihilations In

EGRET : excess of γ :s with E > 1 GeV.

WMAP haze : excess of microwaves from the centre of the galaxy,

Fits well with $\tilde{\chi}^0$ annihilation, with $M_{\tilde{\chi}^0} \mathcal{O}(100 \text{ GeV})$.

The EGRET γ :s are from π^0 decays, the WMAP microwaves are from syncrotron radiation of *e*:s in the galactic *B*-field. (arXiv:0705.3655v1: Evidence (!) for Dark Matter Annihilations In

EGRET : excess of γ :s with E > 1 GeV.

WMAP haze : excess of microwaves from the centre of the galaxy,

Fits well with $\tilde{\chi}^0$ annihilation, with $M_{\tilde{\chi}^0} \mathcal{O}(100 \text{ GeV})$.

The EGRET γ :s are from π^0 decays, the WMAP microwaves are from syncrotron radiation of *e*:s in the galactic *B*-field. (arXiv:0705.3655v1: Evidence (I) for Dark Matter Annihilations In

Dan Hooper - Indirect Signals of Particle Dark Matte

EGRET : excess of γ :s with E > 1 GeV.

WMAP haze : excess of microwaves from the centre of the galaxy,

Fits well with $\tilde{\chi}^0$ annihilation, with $M_{\tilde{\chi}^0} \mathcal{O}(100 \text{ GeV})$.

The EGRET γ :s are from π^0 decays, the WMAP microwaves are from syncrotron radiation of *e*:s in the galactic *B*-field. (arXiv:0705.3655v1: Evidence (!) for Dark Matter Annihilations In The WMAR Haze)

EGRET : excess of γ :s with E > 1 GeV.

WMAP haze : excess of microwaves from the centre of the galaxy,

Fits well with $\tilde{\chi}^0$ annihilation, with $M_{\tilde{\chi}^0} \mathcal{O}(100 \text{ GeV})$.

The EGRET γ :s are from π^0 decays, the WMAP microwaves are from syncrotron radiation of *e*:s in the galactic *B*-field. (arXiv:0705.3655v1: Evidence (!) for Dark Matter Annihilations In The WMAP Haze)

Two lines of approach

- Highest possible energy: Explore as much as possible of new the landscape \rightarrow LHC.
- e Highest possible precision: Make a detailed map of parts of the new landscape → ILC.

LHC :

- Circular pp
 collider.
- Length 27 km.
- *E_{CMS}* = 14 TeV
- $\mathcal{L} = 10^{34}$
- Collides extended objects.

ILC :

- Linear e^+e^- collider.
- Length 31 km.
- *E_{CMS}* = 500 GeV
- $\mathcal{L} = 2 \ 10^{34}$
- Collides point-like objects.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why is LHC circular and ILC linear ?

 $\Delta(E)\sim rac{E^4}{m^4}R$ and $(m_e/m_p)^4pprox 10^{-13}$ Cost : circular $\propto aE+b\Delta(E)$ linear $\propto L\propto E$

 $R \sim E$ (at fixed B field)

For a proton machine, $\Delta(E) \approx 0$, so the circular always wins. For an electron machine, sooner or later the the $\Delta(E)$ term will dominate, and then the linear finaly machine wins.

Why is LHC circular and ILC linear ?

$$\Delta(E) \sim rac{E^4}{m^4} R$$
 and $(m_e/m_p)^4 \approx 10^{-13}$
Cost : circular $\propto aE + b\Delta(E)$
linear $\propto L \propto E$

$R \sim E$ (at fixed B field)

For a proton machine, $\Delta(E) \approx 0$, so the circular always wins. For an electron machine, sooner or later the the $\Delta(E)$ term will dominate, and then the linear finaly machine wins.

Why is LHC circular and ILC linear ?

$$\Delta(E) \sim rac{E^4}{m^4} R$$
 and $(m_e/m_p)^4 \approx 10^{-13}$
Cost : circular $\propto aE + b\Delta(E)$
linear $\propto L \propto E$

 $R \sim E$ (at fixed B field)

For a proton machine, $\Delta(E) \approx 0$, so the circular always wins. For an electron machine, sooner or later the the $\Delta(E)$ term will dominate, and then the linear finaly machine wins.

The ILC

- E_{CMS} tunable between 200 and 500 GeV.
- Total length 31 km
- $\int {\cal L} \sim 500 \; \text{fb}^{-1}$ in 4 years
- Upgradeable to 1TeV
- Polarisation e⁻: 80% (e⁺: 60%)
- 2 experiments, but (possibly) only one interaction region.
- Concurrent running with the LHC

Mikael Berggren (DESY)

The linear collider

The ILC: Political & financial situation

- End of 2007, both the US¹ and the UK withdraw their support.
- In view of this, the schedule for the machine has changed, partly only in terminology.
- The detector LOI has been delayed 6 month (early 2009).
- More than 2 detectors will still be considered after the LOI.

¹By Congress. The president has since re-installed support, but for the next fiscal year (when there will be a new president ...)

The linear collider

The ILC: Political & financial situation

- End of 2007, both the US¹ and the UK withdraw their support.
- In view of this, the schedule for the machine has changed, partly only in terminology.
- The detector LOI has been delayed 6 month (early 2009).
- More than 2 detectors will still be considered after the LOI.

¹By Congress. The president has since re-installed support, but for the next fiscal year (when there will be a new president ...)

ILD: Merge the (mostly European) LDC and the (mostly Asiatic) GLD !

First meeting in January in Zeuthen. \approx 150 participants. Our main work till the LOI: Detector optimisation.

- Massive simulation of many detectors: LDC, GLD, 2 intermediate.
- Start \sim now, done \sim end of this summer.
- Single particles of all kinds.
- SM and beyond SM bench-marks.
- "strange" channels.

Mikael Berggren (DESY)

イロト イヨト イヨト イヨト

ILD: Merge the (mostly European) LDC and the (mostly Asiatic) GLD ! First meeting in January in Zeuthen. \approx 150 participants.

Our main work till the LOI: Detector optimisation.

- Massive simulation of many detectors: LDC, GLD, 2 intermediate.
- Start \sim now, done \sim end of this summer.
- Single particles of all kinds.
- SM and beyond SM bench-marks.
- "strange" channels.

Mikael Berggren (DESY)

イロト イヨト イヨト イヨト

ILD: Merge the (mostly European) LDC and the (mostly Asiatic) GLD ! First meeting in January in Zeuthen. \approx 150 participants. Our main work till the LOI: Detector optimisation.

- Massive simulation of many detectors: LDC, GLD, 2 intermediate.
- Start \sim now, done \sim end of this summer.
- Single particles of all kinds.
- SM and beyond SM bench-marks.
- "strange" channels.

Mikael Berggren (DESY)

イロト イヨト イヨト イヨト

ILD: Merge the (mostly European) LDC and the (mostly Asiatic) GLD ! First meeting in January in Zeuthen. \approx 150 participants. Our main work till the LOI: Detector optimisation.

• Massive simulation of many detectors: LDC, GLD, 2 intermediate.

- Start \sim now, done \sim end of this summer.
- Single particles of all kinds.
- SM and beyond SM bench-marks.
- "strange" channels.

Mikael Berggren (DESY)

Detector optimisation ? Isn't an ILC detector \approx LEP detector ? No.

- LEP was a Z factory. σ_Z is huge. At ILC, physics is in small σ processes (Higgs, SUSY, gauge boson self-couplings, ...)
- Higher energy.
- Beam-strahlung.
- New technologies makes a better detector possible!
- OK, then just do whatever todays technology allows for. Not that simple ...
 - Better resolution \Rightarrow Higher cost.

Detector optimisation ? Isn't an ILC detector \approx LEP detector ? No.

- LEP was a Z factory. σ_Z is huge. At ILC, physics is in small σ processes (Higgs, SUSY, gauge boson self-couplings, ...)
- Higher energy.
- Beam-strahlung.
- New technologies makes a better detector possible!
- OK, then just do whatever todays technology allows for. Not that simple ...
 - Better resolution \Rightarrow Higher cost.

Detector optimisation ? Isn't an ILC detector \approx LEP detector ? No.

- LEP was a Z factory. σ_Z is huge. At ILC, physics is in small σ processes (Higgs, SUSY, gauge boson self-couplings, ...)
- Higher energy.
- Beam-strahlung.
- New technologies makes a better detector possible!

OK, then just do whatever todays technology allows for. Not that simple ...

Better resolution ⇒ Higher cost.

Detector optimisation ? Isn't an ILC detector \approx LEP detector ? No.

- LEP was a Z factory. σ_Z is huge. At ILC, physics is in small σ processes (Higgs, SUSY, gauge boson self-couplings, ...)
- Higher energy.
- Beam-strahlung.
- New technologies makes a better detector possible!
- OK, then just do whatever todays technology allows for. Not that simple ...
 - Better resolution ⇒ Higher cost.

Detector optimisation ? Isn't an ILC detector \approx LEP detector ? No.

- LEP was a Z factory. σ_Z is huge. At ILC, physics is in small σ processes (Higgs, SUSY, gauge boson self-couplings, ...)
- Higher energy.
- Beam-strahlung.
- New technologies makes a better detector possible!

OK, then just do whatever todays technology allows for. Not that simple ...

• Better resolution \Rightarrow Higher cost.

Detector optimisation ? Isn't an ILC detector \approx LEP detector ? No.

- LEP was a Z factory. σ_Z is huge. At ILC, physics is in small σ processes (Higgs, SUSY, gauge boson self-couplings, ...)
- Higher energy.
- Beam-strahlung.
- New technologies makes a better detector possible!

OK, then just do whatever todays technology allows for. Not that simple ...

• Better resolution \Rightarrow Higher cost.

Detector optimisation ? Isn't an ILC detector \approx LEP detector ? No.

- LEP was a Z factory. σ_Z is huge. At ILC, physics is in small σ processes (Higgs, SUSY, gauge boson self-couplings, ...)
- Higher energy.
- Beam-strahlung.
- New technologies makes a better detector possible!

OK, then just do whatever todays technology allows for. Not that simple ...

- Better resolution \Rightarrow Higher cost.
- Better performance in one aspect might mean worse in another:
 Eg. More points → Tracking better. But More points → more material → worse calorimetry. Or: Higher granularity → better calorimetry. But Higher granularity → more cables → worse hermiticity, ...

... can be

- Purely technological: What can be done in terms of point-resolutions, power-consumtion, sampling rate, ...
 Typically bench-marks on single particles or jets.
- Physics-driven: What implications does various choices have on the physics we want to do.

Bench-marks on full physics simulation.

Project B1-ii is heavily committed to the second item.

Physics driven detector optimisation

First three (very important) non-B1 examples:

• Total Higgs cross-section: Study $ee \rightarrow ZH \rightarrow \mu\mu X$, (Z going to $\mu\mu$). Study recoil-mass \Rightarrow Higgs cross-section independent of decay-mode- momentum resolution !

- Piggs Branching ratios: Separate H → bb or cc or qq micro-vertex detector !
- Gauge boson self-couplings: Separte ZZ and WW fully hadronic events - Calorimetry !

4 D b 4 A b

Physics driven detector optimisation

First three (very important) non-B1 examples:

- Total Higgs cross-section: Study $ee \rightarrow ZH \rightarrow \mu\mu X$, (*Z* going to $\mu\mu$). Study recoil-mass \Rightarrow Higgs cross-section independent of decay-mode- momentum resolution !
- Piggs Branching ratios: Separate H → bb or cc or qq micro-vertex detector !
- Gauge boson self-couplings: Separte ZZ and WW fully hadronic events - Calorimetry !

Physics driven detector optimisation

First three (very important) non-B1 examples:

• Total Higgs cross-section: Study $ee \rightarrow ZH \rightarrow \mu\mu X$, (Z going to $\mu\mu$). Study recoil-mass \Rightarrow Higgs cross-section independent of decay-mode- momentum resolution !

- Piggs Branching ratios: Separate H → bb or cc or qq micro-vertex detector !
- Gauge boson self-couplings: Separte ZZ and WW fully hadronic events - Calorimetry !

A D b 4 A b

Physics driven detector optimisation: B1

On-going or just started analyses

- Low $\Delta(M)$ SUSY forward region
- 2 Model independent WIMP search photon detection
- Gravitino LSP with extremely long-lived NLSP Entire HCAL concept
- Up-coming analyses
 - $\tilde{\tau}$ polarisation
 - $2 \ \tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mu \mu$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Low $\Delta(M)$ SUSY

WMAP \Rightarrow Dark Matter (DM) of \sim 25% established with an error \sim 10%.

 \Rightarrow Strong constraints on SUSY. Co-annihilation region: Too keep the dark matter content within limits, the NLSP must be close to the LSP (cross-section and number density)

 \Rightarrow Low $\Delta(M)$ SUSY

In this region, the NLSP is the $\tilde{\tau}$.

Low $\Delta(M)$ SUSY

WMAP \Rightarrow Dark Matter (DM) of \sim 25% established with an error \sim 10%.

\Rightarrow Strong constraints on SUSY.

Co-annihilation region: Too keep the dark matter content within limits, the NLSP must be close to the LSP (cross-section and number density)

 \Rightarrow Low $\Delta(M)$ SUSY

In this region, the NLSP is the $\tilde{\tau}$.

WMAP \Rightarrow Dark Matter (DM) of \sim 25% established with an error \sim 10%.

 \Rightarrow Strong constraints on SUSY. Co-annihilation region: Too keep the dark matter content within limits, the NLSP must be close to the LSP (cross-section and number density)

 \Rightarrow Low $\Delta(M)$ SUSY

In this region, the NLSP is the $\tilde{\tau}$.

WMAP \Rightarrow Dark Matter (DM) of \sim 25% established with an error \sim 10%.

 \Rightarrow Strong constraints on SUSY. Co-annihilation region: Too keep the dark matter content within limits, the NLSP must be close to the LSP (cross-section and number density)

 \Rightarrow Low $\Delta(M)$ SUSY

In this region, the NLSP is the $\tilde{\tau}$.

How to measure $M_{\tilde{\tau}}$:

- From the spectrum: End-point and "knee" given by M_{τ̃} and M_{χ̃1}⁰.
- If the "knee" isn't accessible (too soft), get by M_{μ̃} and M_{χ̃1}⁰ from μ̃ spectrum, M_{τ̃} from end-point only.
- From the cross-section: Best sensitivity close with *E_{beam}* close to *M_˜*.
- The two are largely independent, and give similar errors on $M_{\tilde{\tau}} \Rightarrow$ combine.

How to measure $M_{\tilde{\tau}}$:

- From the spectrum: End-point and "knee" given by *M_{τ̃}* and *M_{χ̃1}*.
- If the "knee" isn't accessible (too soft), get by M_μ and M_{χ1}⁰ from μ spectrum, M_τ from end-point only.
- From the cross-section: Best sensitivity close with *E*_{beam} close to *M*₇.

The two are largely independent, and give similar errors on $M_{\tilde{\tau}} \Rightarrow$ combine.

How to measure $M_{\tilde{\tau}}$:

- From the spectrum: End-point and "knee" given by M_{τ̃} and M_{χ̃1}⁰.
- If the "knee" isn't accessible (too soft), get by M_μ and M_{χ1}⁰ from μ spectrum, M_τ from end-point only.
- From the cross-section: Best sensitivity close with *E_{beam}* close to *M₇*.

The two are largely independent, and give similar errors on $M_{\tilde{\tau}} \Rightarrow$ combine.

How to measure $M_{\tilde{\tau}}$:

- From the spectrum: End-point and "knee" given by M_{τ̃} and M_{χ̃1}⁰.
- If the "knee" isn't accessible (too soft), get by M_μ and M_{χ1}⁰ from μ spectrum, M_τ from end-point only.
- From the cross-section: Best sensitivity close with *E*_{beam} close to *M*₇.

The two are largely independent, and give similar errors on $M_{\tilde{\tau}} \Rightarrow$ combine.

How to measure $M_{\tilde{\tau}}$:

- From the spectrum: End-point and "knee" given by M_{τ̃} and M_{χ̃1}⁰.
- If the "knee" isn't accessible (too soft), get by M_μ and M_{χ1}⁰ from μ spectrum, M_τ from end-point only.
- From the cross-section: Best sensitivity close with *E_{beam}* close to *M_˜*.
- The two are largely independent, and give similar errors on $M_{\tilde{\tau}} \Rightarrow$ combine.

Statistics dominated, ie. extremely good $\Delta(p)$ not needed.

The issue is the $\gamma\gamma$ background:

- Detect beam-remnant to low
 O: Very forward calorimetry and beam-delivery (the holes)
- $\sigma(\gamma\gamma) \approx 35$ nb, signal a few fb \Rightarrow very rare $\gamma\gamma$ configurations must be vetoable: eg $ee \rightarrow ee\mu\mu$ with one e and one μ at low angles: m.i.p.'s at low angles ? $ee \rightarrow eeqq \rightarrow eeXK^0$: K^0 at low angles ?

Statistics dominated, ie. extremely good $\Delta(p)$ not needed. The issue is the $\gamma\gamma$ background:

- Detect beam-remnant to low
 O: Very forward calorimetry and beam-delivery (the holes)
- 2 $\sigma(\gamma\gamma) \approx 35$ nb, signal a few fb \Rightarrow very rare $\gamma\gamma$ configurations must be vetoable: eg $ee \rightarrow ee\mu\mu$ with one e and one μ at low angles: m.i.p.'s at low angles ? $ee \rightarrow eeqq \rightarrow eeXK^0$: K^0 at

Generator cut set 2, different data cuts

Statistics dominated, ie. extremely good $\Delta(p)$ not needed. The issue is the $\gamma\gamma$ background:

- Detect beam-remnant to low
 O: Very forward calorimetry and beam-delivery (the holes)
- 2 $\sigma(\gamma\gamma) \approx 35$ nb, signal a few fb \Rightarrow very rare $\gamma\gamma$ configurations must be vetoable: eg $ee \rightarrow ee\mu\mu$ with one e and one μ at low angles: m.i.p.'s at low angles ? $ee \rightarrow eeqq \rightarrow eeXK^0$: K^0 at low angles ?

Statistics dominated, ie. extremely good $\Delta(p)$ not needed. The issue is the $\gamma\gamma$ background:

 Detect beam-remnant to low
 O: Very forward calorimetry and beam-delivery (the holes)

 o($\gamma\gamma$) ≈ 35 nb, signal a few fb ⇒ very rare $\gamma\gamma$ configurations must be vetoable: eg ee → eeµµ with one e and one µ at low angles: m.i.p.'s at low angles ? ee → eeqq → eeXK⁰ : K⁰ at low angles ?

Statistics dominated, ie. extremely good $\Delta(p)$ not needed. The issue is the $\gamma\gamma$ background:

- Detect beam-remnant to low
 O: Very forward calorimetry and beam-delivery (the holes)
- 2 $\sigma(\gamma\gamma) \approx 35$ nb, signal a few fb \Rightarrow very rare $\gamma\gamma$ configurations must be vetoable: eg $ee \rightarrow ee\mu\mu$ with one e and one μ at low angles: m.i.p.'s at low angles ? $ee \rightarrow eeqq \rightarrow eeXK^0$: K^0 at low angles ?

イロト イヨト イヨト イヨト

Statistics dominated, ie. extremely good $\Delta(p)$ not needed. The issue is the $\gamma\gamma$ background:

 Detect beam-remnant to low
 O: Very forward calorimetry and beam-delivery (the holes)

 $\sigma(\gamma\gamma) \approx 35$ nb, signal a few fb
 ⇒ very rare $\gamma\gamma$ configurations

 must be vetoable: eg
 ee → *ee*µµ with one e and

 one µ at low angles: m.i.p.'s at

 low angles ?

 ee → *eeqq* → *eeXK*⁰ : *K*⁰ at

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

low angles ?

In models where the relic density Ω_{dm} depends on rate for $\tilde{\chi}^0 \tilde{\chi}^0 \rightarrow$ SM-particles, crossing-symmetry tells us what $ee \rightarrow \tilde{\chi}^0 \tilde{\chi}^0$ is.

Vary

- κ_e annihilation fraction to electrons
- Lorentz structure $(1 \gamma_5, 1 \text{ or } 1 + \gamma_5)$.
- Dominating partial-wave of the f.s.
- WIMP spin.
- ⇒ Get sensitivity for all such scenarios. How? $\tilde{\chi}^0$ is after all invisible ?!

Trick! Demand an ISR γ in the detector and nothing else.

In models where the relic density Ω_{dm} depends on rate for $\tilde{\chi}^0 \tilde{\chi}^0 \rightarrow$ SM-particles, crossing-symmetry tells us what $ee \rightarrow \tilde{\chi}^0 \tilde{\chi}^0$ is.

Vary

- κ_e annihilation fraction to electrons
- Lorentz structure $(1 \gamma_5, 1 \text{ or } 1 + \gamma_5)$.
- Dominating partial-wave of the f.s.

• WIMP spin.

- ⇒ Get sensitivity for all such scenarios. How? \tilde{v}^0 is after all invisible ?!
- Trick! Demand an ISR γ in the detector and nothing else.

In models where the relic density Ω_{dm} depends on rate for $\tilde{\chi}^0 \tilde{\chi}^0 \rightarrow$ SM-particles, crossing-symmetry tells us what $ee \rightarrow \tilde{\chi}^0 \tilde{\chi}^0$ is.

Vary

- κ_e annihilation fraction to electrons
- Lorentz structure $(1 \gamma_5, 1 \text{ or } 1 + \gamma_5)$.
- Dominating partial-wave of the f.s.
- WIMP spin.
- \Rightarrow Get sensitivity for all such scenarios.

How? $\tilde{\chi}^0$ is after all invisible ?!

Trick! Demand an ISR γ in the detector and nothing else.

In models where the relic density Ω_{dm} depends on rate for $\tilde{\chi}^0 \tilde{\chi}^0 \rightarrow$ SM-particles, crossing-symmetry tells us what $ee \rightarrow \tilde{\chi}^0 \tilde{\chi}^0$ is.

Vary

- κ_e annihilation fraction to electrons
- Lorentz structure $(1 \gamma_5, 1 \text{ or } 1 + \gamma_5)$.
- Dominating partial-wave of the f.s.
- WIMP spin.
- ⇒ Get sensitivity for all such scenarios. How? $\tilde{\chi}^0$ is after all invisible ?!

Trick! Demand an ISR γ in the detector and nothing else.

In models where the relic density Ω_{dm} depends on rate for $\tilde{\chi}^0 \tilde{\chi}^0 \rightarrow$ SM-particles, crossing-symmetry tells us what $ee \rightarrow \tilde{\chi}^0 \tilde{\chi}^0$ is.

Vary

- κ_e annihilation fraction to electrons
- Lorentz structure $(1 \gamma_5, 1 \text{ or } 1 + \gamma_5)$.
- Dominating partial-wave of the f.s.
- WIMP spin.
- \Rightarrow Get sensitivity for all such scenarios. How? $\tilde{\chi}^0$ is after all invisible ?!
- Trick! Demand an ISR γ in the detector and nothing else.

A (10) > A (10) > A (10)

Background: $ee \rightarrow \nu \nu \gamma$

- Recoil-mass peaks at M_Z
- If WIMP Lorentz-structure is different from $1 \gamma_5$, beam-polarisation will reduce background.
- Calculate the recoil mass to get M_{WIMP} from the threshold.
- Vary assumptions, M_{WIMP} , polarisation \Rightarrow discovery-reach and $\Delta(M_{WIMP})$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background: $ee \rightarrow \nu \nu \gamma$

- Recoil-mass peaks at M_Z
- If WIMP Lorentz-structure is different from $1 \gamma_5$, beam-polarisation will reduce background.
- Calculate the recoil mass to get M_{WIMP} from the threshold.
- Vary assumptions, M_{WIMP} , polarisation \Rightarrow discovery-reach and $\Delta(M_{WIMP})$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background: $ee \rightarrow \nu \nu \gamma$

- Recoil-mass peaks at M_Z
- If WIMP Lorentz-structure is different from 1 - γ₅, beam-polarisation will reduce background.

Calculate the recoil mass to get M_{WIMP} from the threshold. Vary assumptions, M_{WIMP} , polarisation \Rightarrow discovery-reach and $\Delta(M_{WIMP})$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background: $ee \rightarrow \nu \nu \gamma$

- Recoil-mass peaks at M_Z
- If WIMP Lorentz-structure is different from 1 - γ₅, beam-polarisation will reduce background.

Calculate the recoil mass to get M_{WIMP} from the threshold.

Vary assumptions, M_{WIMP} , polarisation \Rightarrow discovery-reach and $\Delta(M_{WIMP})$.

Background: $ee \rightarrow \nu \nu \gamma$

- Recoil-mass peaks at M_Z
- If WIMP Lorentz-structure is different from 1 - γ₅, beam-polarisation will reduce background.
- Calculate the recoil mass to get M_{WIMP} from the threshold.

Vary assumptions, M_{WIMP} , polarisation \Rightarrow discovery-reach and $\Delta(M_{WIMP})$.

Background: $ee \rightarrow \nu \nu \gamma$

- Recoil-mass peaks at M_Z
- If WIMP Lorentz-structure is different from 1 - γ₅, beam-polarisation will reduce background.
- Calculate the recoil mass to get M_{WIMP} from the threshold.

Vary assumptions, M_{WIMP} , polarisation \Rightarrow discovery-reach and $\Delta(M_{WIMP})$.

Image: A matrix

Detector issues:

- ECAL resolution reflects directly into the recoil mass.
- Hermeticity : Must not miss a possible second γ
- LumiCal : reduce fake missing E
- Photon ID : shower-splitting in reconstruction/ hardware.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Detector issues:

- ECAL resolution reflects directly into the recoil mass.
- Hermeticity : Must not miss a possible second γ
- LumiCal : reduce fake missing E
- Photon ID : shower-splitting in reconstruction/ hardware.

Detector issues:

- ECAL resolution reflects directly into the recoil mass.
- $\bullet\,$ Hermeticity : Must not miss a possible second $\gamma\,$
- LumiCal : reduce fake missing E
- Photon ID : shower-splitting in reconstruction/ hardware.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Detector issues:

- ECAL resolution reflects directly into the recoil mass.
- Hermeticity : Must not miss a possible second γ
- LumiCal : reduce fake missing E
- Photon ID : shower-splitting in reconstruction/ hardware.

< ロ > < 同 > < 回 > < 回 > < 回 >

Heavy \tilde{G} LSP (as opposed to GMSB) yields a very long life-time to the NLSP, typically the $\tilde{\tau}$, before it decays to $\tau \tilde{G}$

Signature:

- Heavy stable particle in the TPC (high dE/dx).
- 2 The $\tilde{\tau}$ might stop in the detector (mainly in the HCAL), and then decay at rest much later.

Heavy \tilde{G} LSP (as opposed to GMSB) yields a very long life-time to the NLSP, typically the $\tilde{\tau}$, before it decays to $\tau \tilde{G}$

Signature:

- Heavy stable particle in the TPC (high dE/dx).
- 2 The $\tilde{\tau}$ might stop in the detector (mainly in the HCAL), and then decay at rest much later.

How to measure

- $\tilde{\tau}$ lifetime from decay-rate.
- $\tilde{\tau}$ momentum gives $M_{\tilde{\tau}}$
- $M_{\tilde{G}}$ from $\tilde{\tau}$ -decay spectrum
- $\tilde{\tau}$ lifetime, $M_{\tilde{G}}$, and $M_{\tilde{\tau}}$ related

```
\Rightarrow measure M_{Planck} : Test of supergravity !
```

How to measure

- $\tilde{\tau}$ lifetime from decay-rate.
- $\tilde{\tau}$ momentum gives $M_{\tilde{\tau}}$
- $M_{\tilde{G}}$ from $\tilde{\tau}$ -decay spectrum
- $\tilde{\tau}$ lifetime, $M_{\tilde{G}}$, and $M_{\tilde{\tau}}$ related

```
\Rightarrow measure M_{Planck} : Test of supergravity !
```


How to measure

- $\tilde{\tau}$ lifetime from decay-rate.
- $\tilde{\tau}$ momentum gives $M_{\tilde{\tau}}$

M_Ğ from *τ̃*-decay spectrum
 τ̃ lifetime, *M_Ğ*, and *M_{τ̃}* related

```
\Rightarrow measure M_{Planck} : Test of supergravity !
```


• • • • • • • • • • • • •

How to measure

- $\tilde{\tau}$ lifetime from decay-rate.
- $\tilde{\tau}$ momentum gives $M_{\tilde{\tau}}$
- $M_{\tilde{G}}$ from $\tilde{\tau}$ -decay spectrum
- $\tilde{\tau}$ lifetime, $M_{\tilde{G}}$, and $M_{\tilde{\tau}}$ related

```
\Rightarrow measure M_{Planck} : Test of supergravity !
```


How to measure

- $\tilde{\tau}$ lifetime from decay-rate.
- $\tilde{\tau}$ momentum gives $M_{\tilde{\tau}}$
- $M_{\tilde{G}}$ from $\tilde{\tau}$ -decay spectrum
- $\tilde{\tau}$ lifetime, $M_{\tilde{G}}$, and $M_{\tilde{\tau}}$ related

```
\Rightarrow measure M_{Planck} : Test of supergravity !
```


How to measure

- $\tilde{\tau}$ lifetime from decay-rate.
- $\tilde{\tau}$ momentum gives $M_{\tilde{\tau}}$
- $M_{\tilde{G}}$ from $\tilde{\tau}$ -decay spectrum
- $\tilde{\tau}$ lifetime, $M_{\tilde{G}}$, and $M_{\tilde{\tau}}$ related

```
\Rightarrow measure M_{Planck} : Test of supergravity !
```


Gravitino LSP with extremely long-lived NLSP

Detector issues:

- dE/dx in the TPC, and the resulting sensitivity.
- The HCAL is pulsed, ie. it is powered off between bunches, in order to keep power-consumption low, and to avoid the need for liquid cooling. Do we need to re-think the entire design ?
- What input from LHC/cosmology would trigger such a decision?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Despite the current political/economical problems in some contributing countries, the ILC is still on track.
- The detector LOI has only been delayed by 6 months.
- A massive, global simulation activity in view of the LOI is starting now.
- We are participating:
 - Model independent WIMP search : On track. C. Bartels
 - Low ∆(*M*) SUSY : Starting (fastsim analysis existing.) O. Stempel, MB
 - Gravitino LSP with extremely long-lived NLSP : Starting (fastsim analysis existing.) D. Käfer
 - $\tilde{\tau}$ polarisation : Starting P. Schade
 - $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mu \mu$: Starting. N. d'Ascenzo
 - Beam polarisation studies. Starting I. Marchesini

Conclusions

- Despite the current political/economical problems in some contributing countries, the ILC is still on track.
- The detector LOI has only been delayed by 6 months.
- A massive, global simulation activity in view of the LOI is starting now.
- We are participating:
 - Model independent WIMP search : On track. C. Bartels
 - Low ∆(M) SUSY : Starting (fastsim analysis existing.) O. Stempel, MB
 - Gravitino LSP with extremely long-lived NLSP : Starting (fastsim analysis existing.) D. Käfer
 - $\tilde{\tau}$ polarisation : Starting P. Schade
 - $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mu \mu$: Starting. N. d'Ascenzo
 - Beam polarisation studies. Starting I. Marchesini

Conclusions

- Despite the current political/economical problems in some contributing countries, the ILC is still on track.
- The detector LOI has only been delayed by 6 months.
- A massive, global simulation activity in view of the LOI is starting now.
- We are participating:
 - Model independent WIMP search : On track. C. Bartels
 - Low ∆(*M*) SUSY : Starting (fastsim analysis existing.) O. Stempel, MB
 - Gravitino LSP with extremely long-lived NLSP : Starting (fastsim analysis existing.) D. Käfer
 - $\tilde{\tau}$ polarisation : Starting P. Schade
 - $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mu \mu$: Starting. N. d'Ascenzo
 - Beam polarisation studies. Starting I. Marchesini

< 日 > < 同 > < 回 > < 回 > < □ > <

Conclusions

- Despite the current political/economical problems in some contributing countries, the ILC is still on track.
- The detector LOI has only been delayed by 6 months.
- A massive, global simulation activity in view of the LOI is starting now.
- We are participating:
 - Model independent WIMP search : On track. C. Bartels
 - Low ∆(M) SUSY : Starting (fastsim analysis existing.) O. Stempel, MB
 - Gravitino LSP with extremely long-lived NLSP : Starting (fastsim analysis existing.) D. Käfer
 - $\tilde{\tau}$ polarisation : Starting P. Schade
 - $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mu \mu$: Starting. N. d'Ascenzo
 - Beam polarisation studies. Starting I. Marchesini

イロト 不得 トイヨト イヨト

Conclusions

- Despite the current political/economical problems in some contributing countries, the ILC is still on track.
- The detector LOI has only been delayed by 6 months.
- A massive, global simulation activity in view of the LOI is starting now.
- We are participating:
 - Model independent WIMP search : On track. C. Bartels
 - Low Δ(*M*) SUSY : Starting (fastsim analysis existing.) O. Stempel, MB
 - Gravitino LSP with extremely long-lived NLSP : Starting (fastsim analysis existing.) D. Käfer
 - $\tilde{\tau}$ polarisation : Starting P. Schade
 - $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mu \mu$: Starting. N. d'Ascenzo
 - Beam polarisation studies. Starting I. Marchesini