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A6: Mathematical Aspects of String Compactification

The aim of the project is the study of generalised
supersymmetric string compactifications. In particular the

investigation of manifolds with SU(3)- and
SU(3)×SU(3)-structure as possible string backgrounds is

proposed. The consistent embedding of D-branes,
orientifold-planes and background fluxes is also planned.
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Aim of this research

To further develop the relations between the mathematics and physics
of manifolds with SU(3)× SU(3) structure

Methods of investigation:

I Extend the class of supersymmetric compactifications that have been studied to
date.

I Consider configurations of supergravity solitons (D-branes) that give rise to
domain walls in four-dimensional spacetimes.

I Our goal is to understand the constraints placed on the internal geometry and
their consequences for low-energy physics.

What are the benefits of studying domain walls in flux
compactifications for physics and mathematics?
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Introduction - String theory compactifications

We will consider string theory compactifications at the level of the low energy
effective field theory - 10D supergravity.

To have interesting ‘beyond standard model’ phenomenology we would like to have
some supersymmetry remaining the 4D:

δψM = ∇Mε = 0 ,

where ψM is the gravitino (graviton superpartner), ε is an infinitesimal spinor
parameter and∇M is the usual covariant derivative on spinors (M = 0, . . . , 9).

Compactifying amounts to saying the 10D spacetime has a compact, 6D component:

M10 = M4 × Y ,

M4 is a 4D maximally symmetric spacetime xµ, (µ = 0, . . . , 3) and Y is a 6D compact
Riemannian manifold ym, (m = 4, . . . , 9).
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Introduction continued - constraints from supersymmetry

The differential equations δψM = 0 imply integrability conditions on the spinors:

[∇M,∇N ]ε =
1
4

RMNPQΓPQε = 0

where RMNPQ & ΓPQ are the 10D Riemann tensor and gamma matrices. The external
(M,N = µ, ν) parts of this imply that

I M4 is flat Minkowski spacetime and ε = ε(y).

The remaining internal parts give conditions on Y , in particular on its structure group
which tells you how to patch together local frames over all of Y .

I Globally ∃ ε on Y ⇒ Y has a reduced structure group SU(3) ⊂ SO(6) and a
complex structure J : TY → TY , J2 = −1, formed from a bilinear of ε.

I Also,∇mε(y) = 0 ⇒ Y is Ricci-flat. It is a (complex) Calabi-Yau manifold.
See e.g. V. Cortes SFB Lectures ’07
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Introduction contd.

The 4D field theory which appears from the Calabi-Yau compactification of Type II
supergravity hasN = 2 supersymmetry i.e. 8 supercharges.

The goal for theorists is to find a compactification of string theory to 4D which has
spontaneously brokenN = 1 supersymmetry and a Standard Model sector (One of
string theory’s ‘other’ problems).

One way to extend toN = 1 supersymmetry in 4D is to include fluxes (i.e. form
fields) on the internal manifold Y . (see e.g. Graña ‘05, Gurrieri et al ‘02)

⇒ ∇Mε 6= 0, and Y is no longer Ricci-flat - what is the interplay between these new
geometries and the physics ofN = 1 compactifications?
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Some details on N = 1 compactifications Graña et al ‘04 -‘05

We will consider warped compactifications of Type II supergravity which preserve
4D Poincaré invariance andN = 1 supersymmetry,

10D metric ansatz

ds2 = e2A(y)ηµνdxµdxν + gmn(y)dymdyn

A(y) is known as a warp factor, and all other fields which appear later will only have
y−dependence e.g. the scalar dilaton Φ, and the higher degree form fields F(n) &
H(3).

I The appearance of the internal form fields, or fluxes, has a major effect on the
geometry:

Internal fluxes ⇒ Rmn 6= 0 and Y is a manifold with torsion i.e. ∇Mε 6= 0.
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N = 1 constraints on Y - ∃ two SU(3) structures

As inN = 2 Calabi-Yau compactifications supersymmetry constrains the geometry,
but now δψM = 0 is more complicated.

ForN = 1 supersymmetry in 4D we decompose the 10D spinors as

ε(i) = ζ+(x)⊗ η(i)
± (y) + c.c. , (i = 1, 2)

I One can easily see again that ε = ε(y), i.e. ζ(x) = ζ is constant.

I Also, ∃ 2 globally defined internal spinors η(1), η(2), with chirality ±, each
defining a reduced structure group G = SU(3) ⊂ SO(6) associated to the
tangent bundle TY .

In order to study this pair of structure groups and the differential conditions on the
spinors η(i)

± it is convenient to use Generalised Complex Geometry.

8 / 16



Generalised complex geometry and TY ⊕ T?
Y Hitchin ’02, Gualtieri, Witt ’04

Consider the formal sum of the tangent and cotangent bundles over Y: TY ⊕ T?Y .

I Sections of TY ⊕ T?Y are a sum of a vector field plus a one-form: X + ξ.

I TY ⊕ T?Y has SO(6, 6) structure, and η(1), η(2) ∼ J ⇒ SU(3)× SU(3).

A generalised almost complex structure J : TY ⊕ T?Y → TY ⊕ T?Y with J 2 = −1.

I Describes complex and symplectic manifolds, but more generally manifolds
which locally have a product form (Generalised Darboux Theorem)

complex k−fold × (6− 2k) symplectic manifold

The important point is that η(1), η(2) spinor bilinears are described using TY ⊕ T?Y .
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Supersymmetry conditions for N = 1 Minkowski compactifications

It turns out that it is possible to write the complete set of supersymmetry conditions
δψM = 0 in an elegant way:

e−2A+Φ(d + H∧)
ˆ
e2A−ΦΨ−

˜
= dA ∧ Ψ̄− +

eΦ

8
iF̃

(d + H∧)
ˆ
e2A−ΦΨ+

˜
= 0

with warp factor A and form fields F, H & scalar Φ (c.f. N = 2 : ∇mη = 0 on C.Y.)

The spinors η(i)
± have been combined into SU(3)× SU(3) bispinors

Ψ± = η
(1)
+ ⊗ η

(2)†
±

which can be understood as sums of bilinears or forms via a Fierz identity.
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What does this all mean?

SU(3)× SU(3) compactifications describe D = 4,N = 1 SUSY theories.

I If η(1) = η(2) and dΨ± = 0 then Y is a Calabi-Yau manifold, e.g. Ψ− = i
8 Ω -

the holomorphic volume form.

I In general the differential conditions forN = 1 supersymmetry in 4D imply the
SU(3)× SU(3) structure manifold Y is a twisted generalised Calabi-Yau
manifold.

I The resulting low-energy effective theories are actively studied, both forN = 1
andN = 2 supersymmetry, but explicit realisations of smooth compact
SU(3)× SU(3) geometries are hard to find.

I However, the formalism provides a compact way to deal with known
supergravity cases (e.g. SU(3) structure), as well as possible SU(3)× SU(3)
backgrounds that include stringy effects.
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Some flavour of current research collab. with Madrid and Munich

Current goal:

Extend our understanding of SU(3)× SU(3) backgrounds beyond
compactifications to 4D Minkowski and Anti-de Sitter spacetimes

I Apply previous tools to study 1
2 -supersymmetric solutions of theN = 1 theory

– i.e. the solitons of the supergravities ∼ D-branes in 10D.

I We focus on domain walls as they have applications in physics† and
mathematics∗.

† Dual gravity description of domain walls in supersymmetric gauge theories.

∗ Embedding 6D SU(3)× SU(3)-structure into 7D G2 × G2-structure manifolds.
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D = 4, N = 1 Domain Walls from 10D

Consider a D = 4 domain wall metric ansatz in 10D (β, δ = 0, . . . , 2):

ds2 = e2A(y,r)
“

e−2U(r)ηβδdxβdxδ + dr2
”

+ gmn(r, y)dymdyn

determined by a profile functionW(r) = 3A
2 + 5U

2 and a charge fdw

F = F̃ + dr ∧ fdw

Guided by the projection condition for a half-supersymmetric solution in 10D we
make an ansatz for the 4D projection

γrζ− = α∗ζ+

where α is a phase and γ is a 4D gamma matrix.
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Supersymmetry constraints for domain walls

Using the tools discussed above forN = 1 compactifications, we find the following
constraints on supersymmetric domain walls in terms of the spinor bilinears Ψ±

(d + H∧)
ˆ
e2A−ΦΨ+

˜
=

eΦ

8
fdw + e−A eW(r) Re∂r

“
e−W(r)Ψ−

” “
Mink.−−−→0

”
e−2A+Φ(d + H∧)

ˆ
e2A−ΦΨ−

˜
= dA ∧ Ψ̄− +

eΦ

8
iF̃

+e−A eW(r) Re∂r

“
e−W(r)Ψ+

” “
Mink.−−−→0

”

I This correctly reproduces the Minkowski and AdS constraints.

I The ∂r-term describes how Y can be understood as a manifold X7 = Y × Ir of
G2 × G2 structure - i.e. it describes a Hitchin flow (Witt; . . . Louis & Vaula).
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Domain walls in N = 1 supergravity

I We have constructed the supersymmetry constraints on 1
2 -supersymmetric

domain wall solutions ofN = 1 4D supergravity arising from SU(3)× SU(3)
compactifications.

I One can show that these are consistent with the corresponding field equations.

What makes this physically interesting?

I Such domain walls interpolate between different vacua in the string landscape.
Our constraints (∂r-terms) provide a starting point for studying the transitions
between vacua in SU(3)× SU(3) compactifications.

I They are gravity duals of domain walls inN = 1 super-Yang Mills theory,
about which there remain open questions e.g. dynamical description.
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Conclusions and future directions

I The interplay betweenN = 2 compactifications of supergravity and the
mathematics of Calabi-Yau manifolds can be extended to more
‘phenomenologically’ interesting cases.

I N = 1 compactifications are described by SU(3)× SU(3) structure manifolds,
harnessing the tools of generalised complex geometry. Spinor bilinears play an
important role.

I We have extended the analysis of SU(3)× SU(3) structure compactifications to
1
2 -supersymmetric domain wall solutions of the resultingN = 1 theory and
constructed the corresponding supersymmetry constraints.

I Our goal is to use these constraints to understand the properties of supergravity
and super-Yang Mills domain walls more thoroughly.
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