The top quark and Higgs boson masses and the stability of the electroweak vacuum

Sven-Olaf Moch

Universität Hamburg & DESY, Zeuthen

Theory Colloquium, Hamburg, Oct 24, 2012

Plan

- Top-quark mass
- Higgs boson mass
- Electroweak vacuum

Classical mechanics

- Mass is defined as product of density and volume of matter
 - classical concept

Classical mechanics

- Mass is defined as product of density and volume of matter
 - classical concept
- The quantity of matter is that which arises jointly from its density and magnitude.
 A body twice as dense in double the space is quadruple in quantity. This quantity
 I designate by the name of body or of mass.
 Newton

PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA.

DEFINITIONES.

DEFINITIO I.

Quantitas materiæ est mensura ejusdem orta ex illius densitate et magnitudine conjunctim.

A ER densitate duplicata, in spatio etiam duplicato, fit quadruplus; in triplicato sextuplus. Idem intellige de nive & pulveribus per compressionem vel liquefactionem condensatis. Et par est ratio corporum omnium, quæ per causas quascunque diversimode condensantur. Medii interea, si quod fuerit, interstitia partium libere pervadentis, hic nullam rationem habeo. Hanc autem quantitatem sub nomine corporis vel massæ in sequentibus passim intelligo. Innotescit ea per corporis cujusque pondus : Nam ponderi proportionalem esse reperi per experimenta pendulorum accuratissime instituta, uti posthac docebitur.

DEFINITIO 11.

Quantitas motus est mensura ejusdem orta ex velocitate et quantitate materiæ conjunctim.

Motus totius est summa motuum in partibus singulis; ideoque in corpore duplo majore, æquali cum velocitate, duplus est, & dupla cum velocitate quadruplus.

Classical mechanics

- Mass is defined as product of density and volume of matter
 - classical concept
- The quantity of matter is that which arises jointly from its density and magnitude.
 A body twice as dense in double the space is quadruple in quantity. This quantity
 I designate by the name of body or of mass.
 Newton

Atomic theory

- Mass is conserved Lavoisier
- Mass of body is sum of mass of its constituents $M(X) = N_A m_a(X)$ Avogadro

PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA.

DEFINITIONES.

DEFINITIO I.

Quantitas materiæ est mensura ejusdem orta ex illius densitate et magnitudine conjunctim.

A ER densitate duplicata, in spatio etiam duplicato, fit quadruplus; in triplicato sextuplus. Idem intellige de nive & pulveribus per compressionem vel liquefactionem condensatis. Et par est ratio corporum omnium, quæ per causas quascunque diversimode condensantur. Medii interea, si quod fuerit, interstitia partium libere pervadentis, hic nullam rationem habeo. Hanc autem quantitatem sub nomine corporis vel massæ in sequentibus passim intelligo. Innotescit ea per corporis cujusque pondus : Nam ponderi proportionalem esse reperi per experimenta pendulorum accuratissime instituta, uti posthac docebitur.

DEFINITIO 11.

Quantitas motus est mensura ejusdem orta ex velocitate et quantitate materiæ conjunctim.

Motus totius est summa motuum in partibus singulis; ideoque in corpore duplo majore, æquali cum velocitate, duplus est, & dupla cum velocitate quadruplus.

Classical mechanics

- Mass is defined as product of density and volume of matter
 - classical concept
- The quantity of matter is that which arises jointly from its density and magnitude.
 A body twice as dense in double the space is quadruple in quantity. This quantity
 I designate by the name of body or of mass.
 Newton

Atomic theory

- Mass is conserved Lavoisier
- Mass of body is sum of mass of its constituents $M(X) = N_A m_a(X)$ Avogadro

Special relativity

• Equivalence principle $E = mc^2$ Einstein

PHILOSOPHIÆ NATURALIS

PRINCIPIA MATHEMATICA.

DEFINITIONES.

DEFINITIO I.

Quantitas materiæ est mensura ejusdem orta ex illius densitate et magnitudine conjunctim.

A ER densitate duplicata, in spatio etiam duplicato, fit quadruplus; in triplicato sextuplus. Idem intellige de nive & pulveribus per compressionem vel liquefactionem condensatis. Et par est ratio corporum omnium, quæ per causas quascunque diversimode condensantur. Medii interea, si quod fuerit, interstitia partium libere pervadentis, hic nullam rationem habeo. Hanc autem quantitatem sub nomine corporis vel massæ in sequentibus passim intelligo. Innotescit ea per corporis cujusque pondus : Nam ponderi proportionalem esse reperi per experimenta pendulorum accuratissime instituta, uti posthac docebitur.

DEFINITIO 11.

Quantitas motus est mensura ejusdem orta ex velocitate et quantitate materiæ conjunctim.

Motus totius est summa motuum in partibus singulis; ideoque in corpore duplo majore, æquali cum velocitate, duplus est, & dupla cum velocitate quadruplus.

Kilogram

Definition

The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.

 International prototype kilogram (IPK): made in 1889, 39 mm high, alloy of platinum and iridium

Orginal des Bureau International des Poids et Mesures

Standard Model

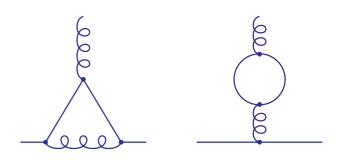
- Higgs boson gives mass to matter fields via Higgs-Yukawa coupling
 - large top quark mass m_t

QCD

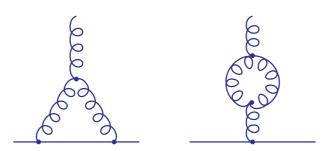
Classical part of QCD Lagrangian

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_b + \sum_{\text{flavors}} \bar{q}_i \left(i \not \!\!\!D - m_q \right)_{ij} q_j$$

- field strength tensor $F^a_{\mu\nu}$ and matter fields q_i, \bar{q}_j
- covariant derivative $D_{\mu,ij} = \partial_{\mu} \delta_{ij} + ig_s (t_a)_{ij} A^a_{\mu}$
- Formal parameters of the theory (no observables)
 - strong coupling $\alpha_s = g_s^2/(4\pi)$
 - quark masses m_q


Challenge

- Suitable observables for measurements of α_s, m_q, \ldots
 - comparison of theory predictions and experimental data

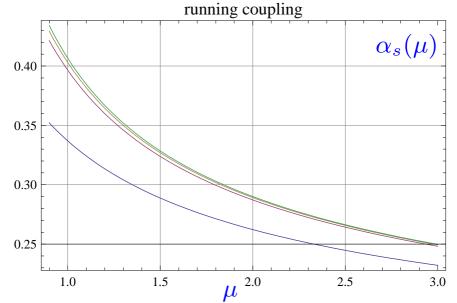

Renormalization

Quantum field theory

- Parameters of Lagrangian have no unique physical interpretation
 - radiative corrections require definition of renormalization scheme
- Running coupling constant α_s

- screening (like in QED)

- anti-screening (color charge of g)


Renormalization

Quantum field theory

- Parameters of Lagrangian have no unique physical interpretation
 - radiative corrections require definition of renormalization scheme
- Running coupling constant α_s
 - renormalization group equation for scale dependence

$$\mu^2 \frac{d}{d\mu^2} \alpha_s(\mu) = \beta(\alpha_s)$$

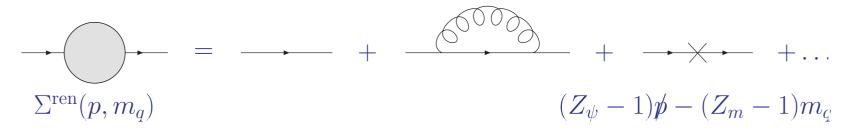
- perturbative expansion to four loops van Ritbergen, Vermaseren, Larin '97
- very good convergence of perturbative series even at low scales

Quark mass renormalization

• Heavy-quark self-energy $\Sigma(p, m_q)$

 $\longrightarrow + \longrightarrow \Sigma \longrightarrow + \longrightarrow \Sigma \longrightarrow - \Sigma \longrightarrow + \dots = \frac{i}{\not p - m_q - \Sigma(p, m_q)}$

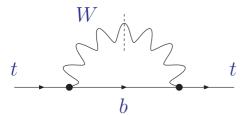
QCD


- QCD corrections to self-energy $\Sigma(p, m_q)$
 - dimensional regularization $D = 4 2\epsilon$

• one-loop: UV divergence $1/\epsilon$ (Laurent expansion)

$$\Sigma^{(1),\text{bare}}(p,m_q) = \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{m_q^2}\right)^{\epsilon} \left\{ \left(\not p - m_q \right) \left(-C_F \frac{1}{\epsilon} + \text{fin.} \right) + m_q \left(3C_F \frac{1}{\epsilon} + \text{fin.} \right) \right\}$$

• Relate bare and renormalized mass parameter $m_q^{
m bare} = m_q^{
m ren} + \delta m_q$


Quark mass renormalization

• Heavy-quark self-energy $\Sigma(p, m_q)$

 $\longrightarrow + \longrightarrow \Sigma \longrightarrow + \longrightarrow \Sigma \longrightarrow \Sigma \longrightarrow + \dots = \frac{\mathrm{i}}{\not p - m_q - \Sigma(p, m_q)}$

EW sector

- EW corrections to top quark self-energy
 - on-shell intermediate (virtual) W-boson
 - m_t complex parameter with imaginary part $\Gamma_t = 2.0 \pm 0.7$ GeV
 - $\Gamma_t > 1$ GeV: top quark decays before it hadronizes

Mass renormalization scheme

Pole mass

- Based on (unphysical) concept of top quark being a free parton
 - $m_q^{\rm ren}$ coincides with pole of propagator at each order

$$\not p - m_q - \Sigma(p, m_q) \Big|_{\not p = m_q} \to \not p - m_q^{\text{pole}}$$

- Definition of pole mass ambiguous up to corrections $\mathcal{O}(\Lambda_{QCD})$
 - heavy-quark self-energy $\Sigma(p, m_q)$ receives contributions from regions of all loop momenta also from momenta of $\mathcal{O}(\Lambda_{QCD})$
 - bound from lattice QCD: $\Delta m_q \geq 0.7 \cdot \Lambda_{QCD} \simeq 200$ MeV Bauer, Bali, Pineda '11

\overline{MS} scheme

- \overline{MS} mass definition
 - one-loop minimal subtraction

$$\delta m_q^{(1)} = m_q \frac{\alpha_s}{4\pi} \, 3C_F \, \left(\frac{1}{\epsilon} - \gamma_E + \ln 4\pi\right)$$

• \overline{MS} scheme induces scale dependence: $m(\mu)$

Sven-Olaf Moch

Running quark mass

Scale dependence

- Renormalization group equation for scale dependence
 - mass anomalous dimension γ known to four loops Chetyrkin '97; Larin, van Ritbergen, Vermaseren '97

$$\left(\mu^2 \frac{\partial}{\partial \mu^2} + \beta(\alpha_s) \frac{\partial}{\partial \alpha_s}\right) m(\mu) = \gamma(\alpha_s) m(\mu)$$

• Plot mass ratio $m_t(163 \text{GeV})/m_t(\mu)$

Scheme transformations

- Conversion between different renormalization schemes possible in perturbation theory
- Relation for pole mass and \overline{MS} mass
 - known to three loops in QCD Gray, Broadhurst, Gräfe, Schilcher '90; Chetyrkin, Steinhauser '99; Melnikov, v. Ritbergen '99
 - EW sector known to $\mathcal{O}(\alpha_{\rm EW}\alpha_{\rm s})$ Jegerlehner, Kalmykov '04; Eiras, Steinhauser '06
 - example: one-loop QCD

$$m^{\text{pole}} = m(\mu) \left\{ 1 + \frac{\alpha_s(\mu)}{4\pi} \left(\frac{4}{3} + \ln\left(\frac{\mu^2}{m(\mu)^2}\right) \right) + \dots \right\}$$

Top quark mass

Experimental result CDF & D0 coll. 1207.1069

$m_t = 173.18 \pm 0.94 \, GeV$

Top quark mass

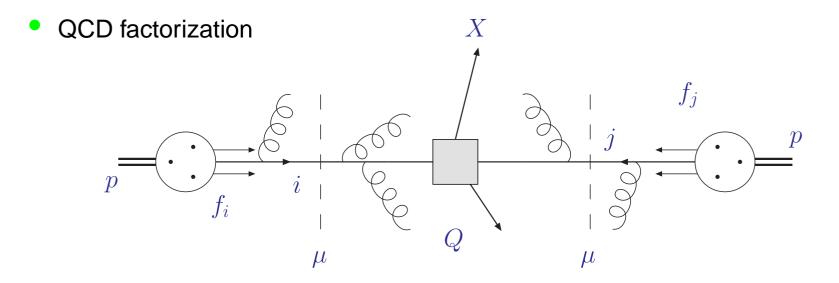
Experimental result CDF & D0 coll. 1207.1069

$m_t = 173.18 \pm 0.94 \, GeV$

Which is the value of the top quark mass ?

 $m_t = ?$

Top quark mass

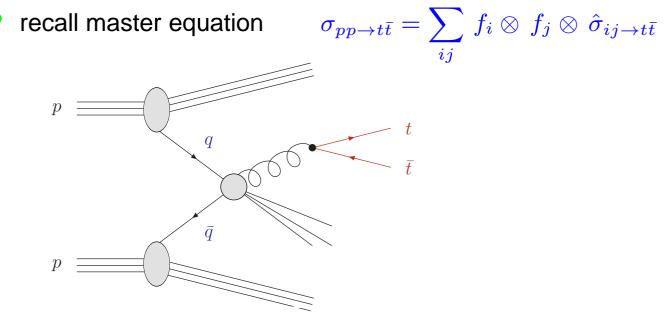

Experimental result CDF & D0 coll. 1207.1069 $m_{t} = 173.18 \pm 0.94 \, GeV$

Which is the value of the top quark mass ?

 $m_t = ?$

Which top quark mass has this value ? ? = $173.18 \pm 0.94 \,\text{GeV}$

QCD factorization

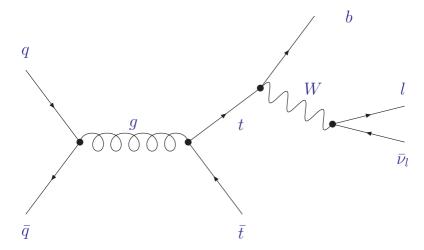


 $\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij\to X} \left(\alpha_s(\mu^2), Q^2, \mu^2, m_X^2 \right)$

- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - known to NLO, NNLO, ... ($\mathcal{O}(\text{few}\%)$) theory uncertainty)
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

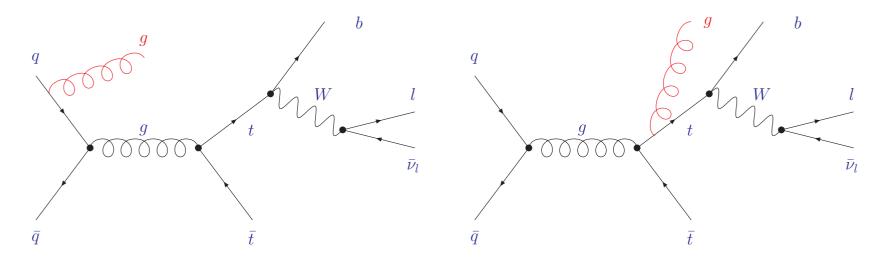
Top-quark pair production

• Hadronic reaction $pp/p\bar{p}$:


- Parton cross section σ̂_{ij→tī} known to NLO in QCD Nason, Dawson, Ellis '88; Beenakker, Smith, van Neerven '89; Mangano,Nason, Ridolfi '92; Bernreuther, Brandenburg, Si, Uwer '04; Mitov, Czakon '08; ...
 - NLO accurate to O(15%) at LHC (NNLO around the corner)
- Relevant kinematics:
 - high-energy limit $s \gg m^2$ with BFKL logarithms $\ln s/m^2$
 - partonic threshold $s \simeq 4m^2$ with Sudakov logarithms $\ln \beta$

(velocity of heavy quark $\beta = \sqrt{1 - 4m^2/s}$)

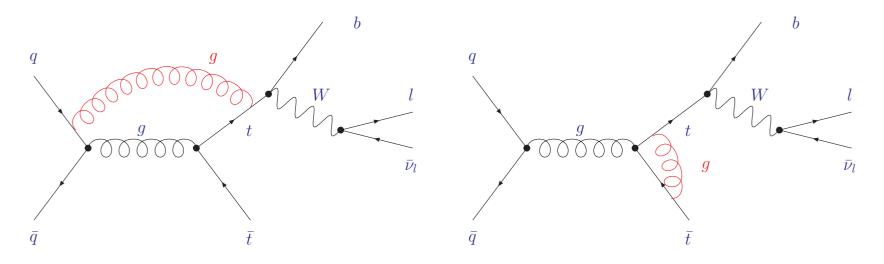
Sven-Olaf Moch


Hard scattering process

• Born process ($q\bar{q}$ -channel) with leptonic decay $t \rightarrow b l \bar{\nu}_l$

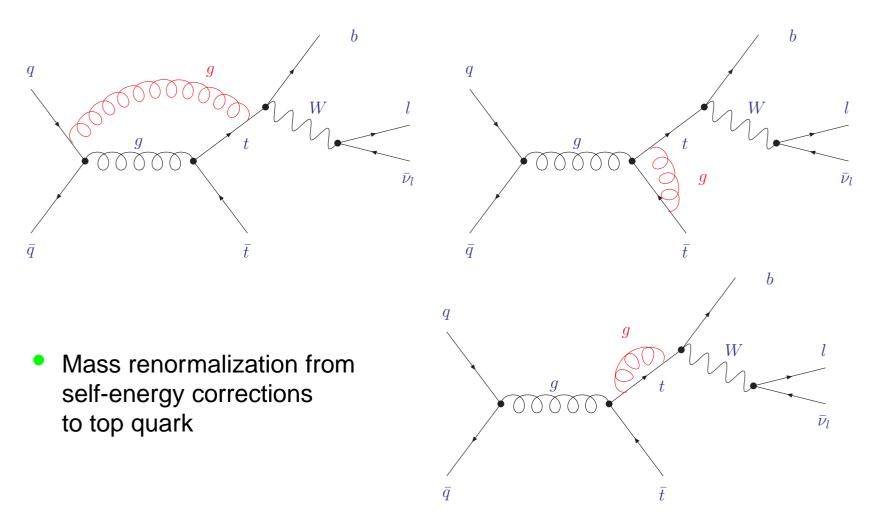
Radiative corrections

- Real corrections (examples): gluon emission
 - phase space integration \rightarrow infrared divergences (soft/collinear singularities)

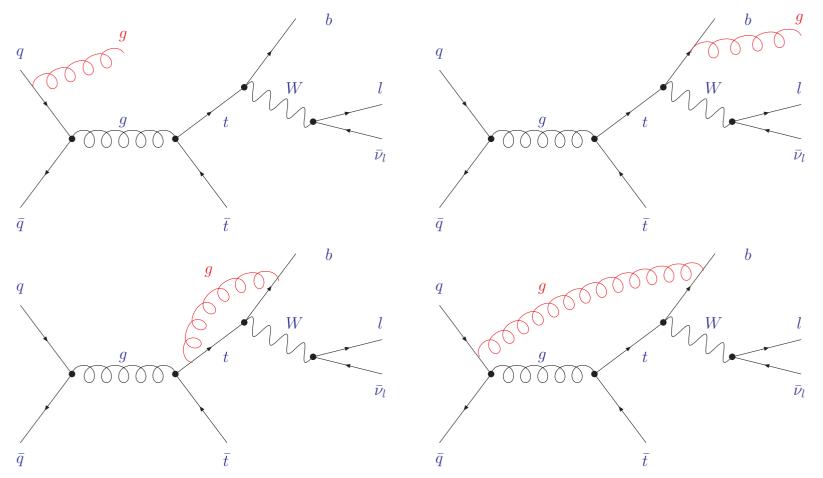


- Parton shower MC
 - emission probability modeled by Sudakov exponential with cut-off Q_0
 - leading logarithmic accuracy

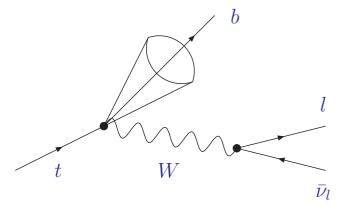
$$\Delta\left(Q^2, Q_0^2\right) = \exp\left(-C_F \frac{\alpha_s}{2\pi} \ln\left(\frac{Q^2}{Q_0^2}\right)\right)$$


Radiative corrections

- Virtual corrections (examples): gluon exchange
 - box diagram (left) and vertex corrections (right)
 - infrared divergences cancel against real emission contributions


Radiative corrections

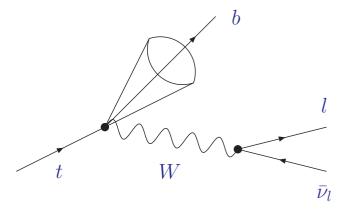
- Virtual corrections (examples): gluon exchange
 - box diagram (left) and vertex corrections (right)
 - infrared divergences cancel against real emission contributions


Heavy-to-light corrections

- Interference between top quark and its decay products (b quark)
 - real emission and virtual diagrams
 - complete NLO corrections for top production and decay Melnikov, Schulze '09; Bernreuther, Si '10 (contained in MCFM Campbell, Ellis '12)

Current methods

- Current methods based on reconstructed physics objects
 - jets, identified charged leptons, missing transverse energy
 - $m_t^2 = (p_{W-\text{boson}} + p_{b-\text{jet}})^2$

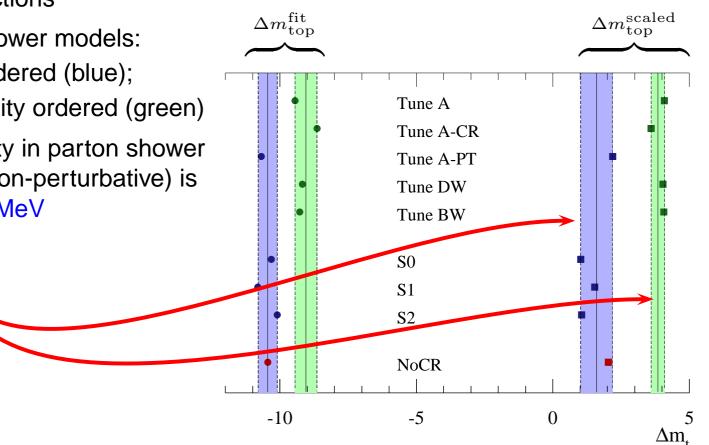


Template method

- Distributions of kinematically reconstructed top mass values compared to templates for nominal top mass values
 - distributions rely on parton shower predictions
 - no NLO corrections applied
- Future improvements:
 - use of NLO QCD predictions matched to parton shower (MC@NLO, Powheg, ...)
 - systematic study of distributions sensitive to m_t
 - template overlap method for infrared safe jet observables
 Almeida, Lee, Perez, Sterman, Sung '10

Current methods

- Current methods based on reconstructed physics objects
 - jets, identified charged leptons, missing transverse energy
 - $m_t^2 = (p_{W-\text{boson}} + p_{b-\text{jet}})^2$



Matrix element method

- Event-by-event likelihood for kinematic configurations arising from events of a given top mass.
 - tree level matrix elements only
 - combinatorics of assignment of jets to top quarks
- Future improvements:
 - advance matrix element method include QCD radiation Alwall, Freitas, Mattelaer '10
 - computation of NLO weighted events Campbell, Giele, Williams '12

Non-perturbative corrections

- Simulation of top mass measurement Skands, Wicke '07
 - test of different Monte Carlo tunes for non-perturbative physics / colour reconnection
 - calibration offsets before/after scaling with jet energy scale corrections
- Parton shower models:
 - p_T -ordered (blue);
 - virtuality ordered (green)
- Uncertainty in parton shower ۲ models (non-perturbative) is $\mathcal{O}(\pm 500) \text{ MeV}$

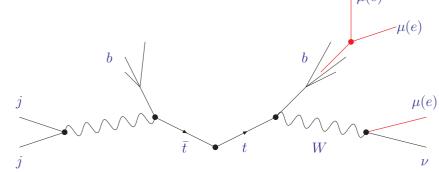
Tevatron combination

- Error budget in Tevatron determination
 - CDF & D0 coll. 1207.1069
 - lepton+jets channel with matrix element method
- Modeling signal encompasses all perturbative uncertainties
 - radiative corrections (initial/final)
 - higher order QCD corrections
 - .
- Uncertainties too optimistic $\Delta m_t \simeq 150 \dots 250 \text{ MeV}$
- Contradicts lattice bound $\Delta m_t \ge 200 \text{ MeV}$ (if interpreted as pole mass)

TABLE VIII: Individual components of uncertainty on CDF and D0 m_t measurements in the lepton+jets channel for Run II data [26, 27].

	Uncertainty [GeV]		
Systematic Source	CDF (5.6 fb ⁻¹) $m_t = 173.00$ Ge	¹) D0 (3.6 fb ⁻¹) eV $m_t = 174.94 \text{ GeV}$	
DETECTOR RESPONSE			
Jet energy scale			
Light-jet response (1)	0.41	n/a	
Light-jet response (2)	0.01	0.63	
Out-of-cone correction	0.27	n/a	
Model for b jets Semileptonic b decay	$0.23 \\ 0.16$	$\begin{array}{c} 0.07 \\ 0.04 \end{array}$	
b-jet hadronization	0.16	0.04	
Response to $b/q/q$ jets	0.13	0.26	
In-situ light-jet calibration	0.58	0.46	
Jet modeling	0.00	0.36	
Jet energy resolution	0.00	0.24	
Jet identification	0.00	0.26	
Lepton modeling	0.14	0.18	
MODELING SIGNAL	0.50	0.77	
Signal modeling Parton distribution functions	$0.56 \\ 0.14$	$\begin{array}{c} 0.77\\ 0.24 \end{array}$	
Quark annihilation fraction	0.14	n/a	
Initial and final-state radiation	0.15	0.26	
Higher-order QCD corrections	n/a	0.25	
Jet hadronization and underlying event	0.25	0.58	
Color reconnection	0.37	0.28	
Multiple interactions model	0.10	0.05	
MODELING BACKGROUND			
Background from theory	0.27	0.19	
Higher-order correction for heavy flavor	$\begin{array}{c} 0.03 \\ 0.07 \end{array}$	0.07 0.16	
Factorization scale for W+jets Normalization to predicted cross sections	0.07	0.16	
Distribution for background	0.23	0.03	
Background based on data	0.06	0.23	
Normalization to data	0.00	0.06	
Trigger modeling	0.00	0.06	
b-tagging modeling	0.00	0.10	
Signal fraction for calibration	n/a	0.10	
Impact of multijet background on the calibration	on n'a	0.14	
METHOD OF MASS EXTRACTION	0.10	0.10	
Calibration method	0.10	0.16	
STATISTICAL UNCERTAINTY	0.65	0.83	
UNCERTAINTY ON JET ENERGY SCALE	0.80	0.83	
OTHER SYSTEMATIC UNCERTAINTIES	0.67	0.94	
TOTAL UNCERTAINTY	1.23	1.50	

Alternative methods

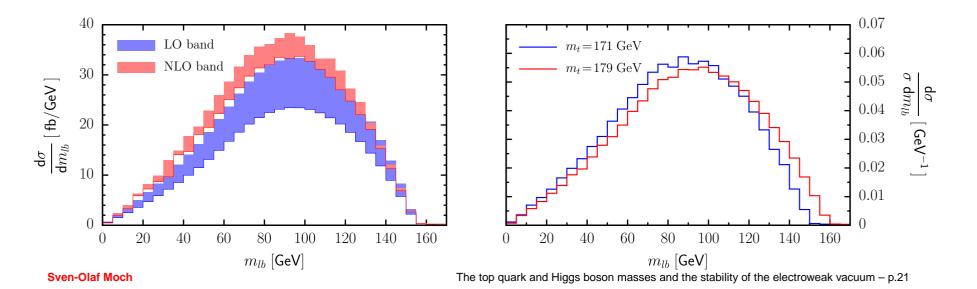

- Top mass from leptonic decay: m_{lb} distribution
- Top mass from total cross section

Top mass from leptonic decay

Top mass from exclusive hadronic states

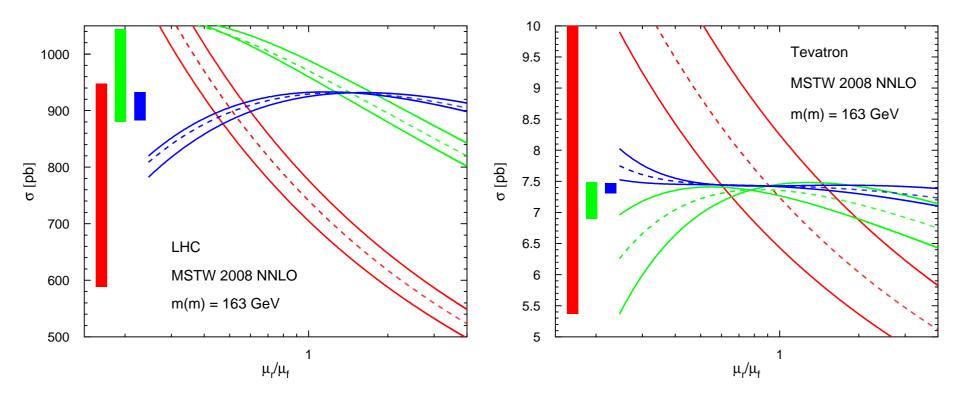
 $pp \rightarrow (t \rightarrow W^+ + b \rightarrow W^+ + J/\psi) + (\bar{t} \rightarrow W^- + \bar{b})$

• identification of μ -pair in J/ψ decay; leptonic or hadronic decay of WKharchilava '00 Chierici, Dierlamm '06

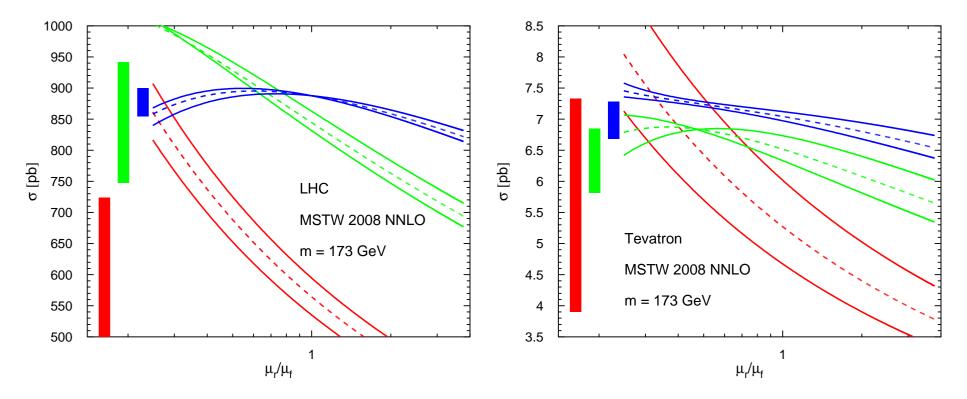


Top mass from leptonic decay

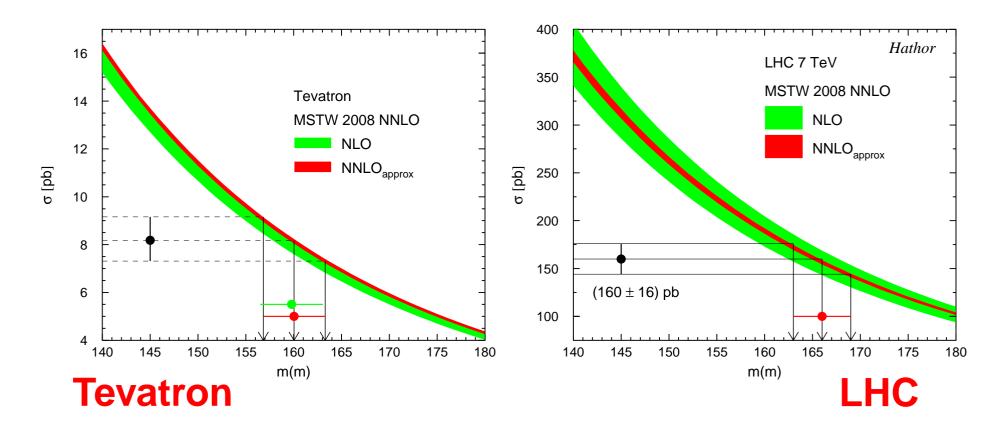
• Top mass from exclusive hadronic states


 $pp \rightarrow (t \rightarrow W^+ + b \rightarrow W^+ + J/\psi) + (\bar{t} \rightarrow W^- + \bar{b})$

- Study of m_{lb} distribution at NLO in QCD Biswas, Melnikov, Schulze '10
 - NLO QCD corrections to production and decay very important for value of m_t (effects of order $\Delta m_t = O(\text{few}) \text{ GeV}$
- Invariant mass distribution of lepton and b-jet (LHC14)
 - scale dependence at LO and NLO (left)
 - normalized m_{lb} distributions, $m_t = 171 \text{ GeV}$ and 179 GeV (right)


Total cross section with \overline{MS} mass

- \overline{MS} mass definition $m(\mu_R)$ realizes running mass (scale dependence)
 - short distance mass probes at scale of hard scattering
 - conversion between pole mass and \overline{MS} mass definition in perturbation theory: $m_t = m(\mu_R) \left(1 + a_s(\mu_R)d^{(1)} + a_s(\mu_R)^2d^{(2)}\right)$
- Scale dependence greatly reduced


Total cross section with \overline{MS} mass

- \overline{MS} mass definition $m(\mu_R)$ realizes running mass (scale dependence)
 - short distance mass probes at scale of hard scattering
 - conversion between pole mass and \overline{MS} mass definition in perturbation theory: $m_t = m(\mu_R) \left(1 + a_s(\mu_R)d^{(1)} + a_s(\mu_R)^2d^{(2)}\right)$
- Pole mass scheme for comparison

Top mass from total cross section

- Total top quark cross section as function of \overline{MS} mass Langenfeld, S.M., Uwer '09
 - good apparent convergence of perturbative expansion
 - small theoretical uncertainity form scale variation

Tevatron

- Determine top quark mass from Tevatron cross section data
 - $\sigma_{t\bar{t}} = 7.56^{+0.63}_{-0.56}$ pb D0 coll. arXiv:1105.5384
 - $\sigma_{t\bar{t}} = 7.50 {}^{+0.48}_{-0.48}$ pb CDF coll. CDF-note-9913
- Fit of m_t for individual PDFs
 - parton luminosity at Tevatron driven by $q\bar{q}$
 - $\overline{\text{MS}}$ -scheme for $m_t^{\overline{\text{MS}}}(m_t)$, then scheme transformation to pole mass m_t^{pole} at NNLO

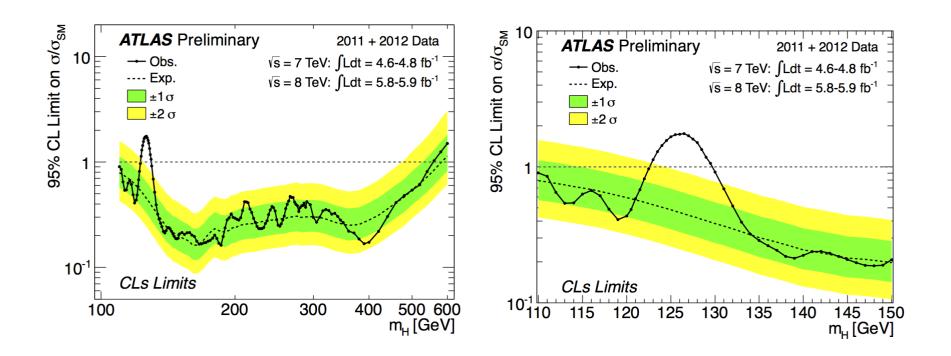
	ABM11	JR09	MSTW08	NN21
$m_t^{\overline{\mathrm{MS}}}(m_t)$	$162.0^{+2.3}_{-2.3}{}^{+0.7}_{-0.6}$	$163.5^{+2.2}_{-2.2}{}^{+0.6}_{-0.2}$	$163.2^{+2.2}_{-2.2}{}^{+0.7}_{-0.8}$	$164.4^{+2.2}_{-2.2}{}^{+0.8}_{-0.2}$
$m_t^{ m pole}$	$171.7 {}^{+2.4}_{-2.4} {}^{+0.7}_{-0.6}$	$173.3^{+2.3}_{-2.3}{}^{+0.7}_{-0.2}$	$173.4^{+2.3}_{-2.3}{}^{+0.8}_{-0.8}$	$174.9^{+2.3}_{-2.3}{}^{+0.8}_{-0.3}$
$(m_t^{ m pole})$	(169.9 $^{+2.4}_{-2.4}$ $^{+1.2}_{-1.6}$)	$(171.4^{+2.3}_{-2.3}{}^{+1.2}_{-1.1})$	$(171.3^{+2.3}_{-2.3}{}^{+1.4}_{-1.8})$	$(172.7^{+2.3}_{-2.3}{}^{+1.4}_{-1.2})$

• Good consistency within errors for $m_t^{\text{pole}} = 171.7 \dots 174.9$ at NNLO

LHC

- Check predictions at LHC with $\sqrt{s} = 7$ TeV
 - cross section computation with HATHOR (version 1.3)
 Aliev, Lacker, Langenfeld, S.M., Uwer, Wiedermann '10; S.M., Uwer, Vogt '12
- Atlas at $\sqrt{s} = 7$ TeV $\sigma_{t\bar{t}} = 177^{+11}_{-10}$ pb Atlas coll. ATLAS-CONF-2012-024
- CMS at $\sqrt{s} = 7$ TeV $\sigma_{t\bar{t}} = 165.8^{+13.3}_{-13.3}$ pb CMS coll. CMS-PAS-TOP-11-024

	ABM11	JR09	MSTW08	NN21
$m_t^{\overline{\mathrm{MS}}}(m_t)$	$159.0^{+2.1}_{-2.0}{}^{+0.7}_{-1.4}$	$165.3^{+2.3}_{-2.2}{}^{+0.6}_{-1.2}$	$166.0^{+2.3}_{-2.2}{}^{+0.7}_{-1.5}$	$166.7 {}^{+2.3}_{-2.2} {}^{+0.8}_{-1.3}$
$m_t^{ m pole}$	$168.6 {}^{+2.3}_{-2.2} {}^{+0.7}_{-1.5}$	$175.1 {}^{+2.4}_{-2.3} {}^{+0.6}_{-1.3}$	$176.4^{+2.4}_{-2.3}{}^{+0.8}_{-1.6}$	$177.4 {}^{+2.4}_{-2.3} {}^{+0.8}_{-1.4}$
$(m_t^{ m pole})$	(166.1 $^{+2.2}_{-2.1} {}^{+1.7}_{-2.3}$)	$(172.6^{+2.4}_{-2.3}{}^{+1.6}_{-2.1})$	$(173.5^{+2.4}_{-2.3}{}^{+1.8}_{-2.5})$	$(174.5^{+2.4}_{-2.3}{}^{+2.0}_{-2.3})$

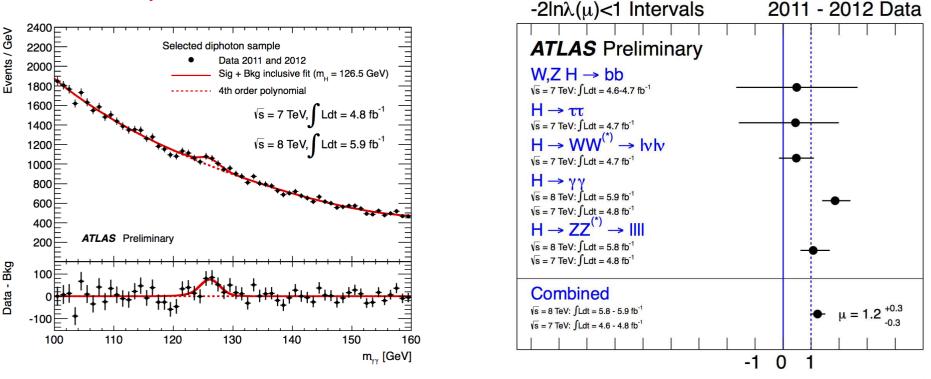

- Large spread $m_t^{\text{pole}} = 168.6 \dots 177.4$ at NNLO (marginally consistent)
 - larger gluon and $lpha_s$ imply larger $m_t^{
 m pole}$

Higgs boson mass

Experimental result Atlas arXiv:1207.7214; CMS coll. arXiv:1207.7235

$m_{\hbox{H}}\,\simeq\,126GeV$

Higgs discovery at LHC

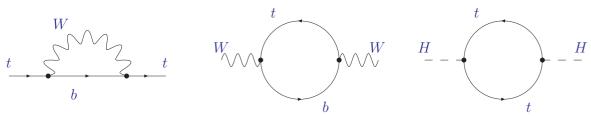


Atlas coll. July 2012

- Higgs mass in the range $m_H \simeq 126 \text{ GeV}$
 - Higgs search driven predominantly by $gg \rightarrow H$
 - signal significance and range of excluded Higgs masses sensitive to gluon PDFs (Tevatron assumptions in the past too optimistic)

LHC measurements

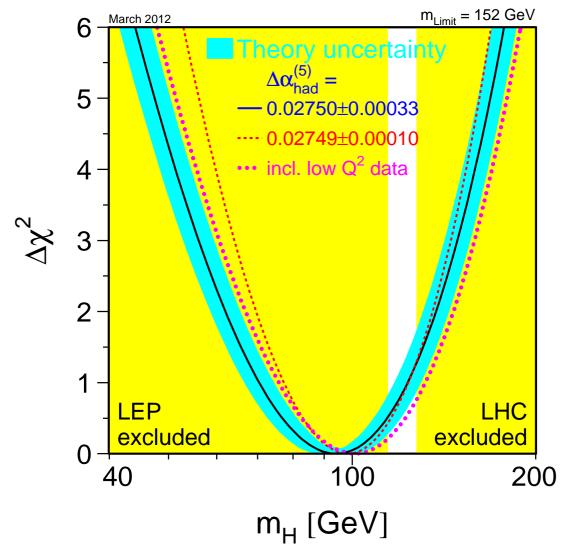
Measured $H \rightarrow \gamma \gamma$ decay mode (left)


Signal strength (µ)

- Signal strength of all analyzed decay modes normalized to SM expectation (right)
- Agreement with SM for $H \rightarrow ZZ$; excess of $H \rightarrow \gamma\gamma$ (new physics ?)

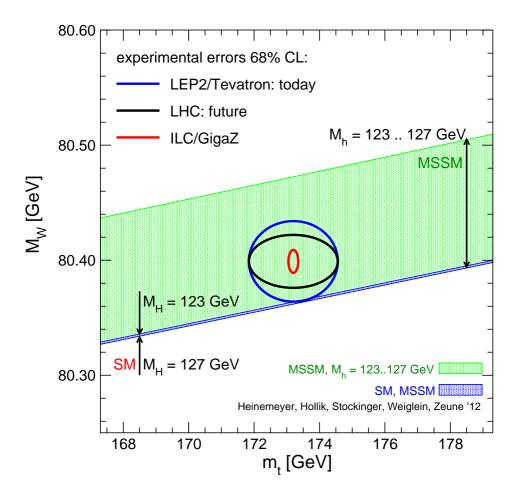
Higgs boson and the electroweak sector

Electroweak sector

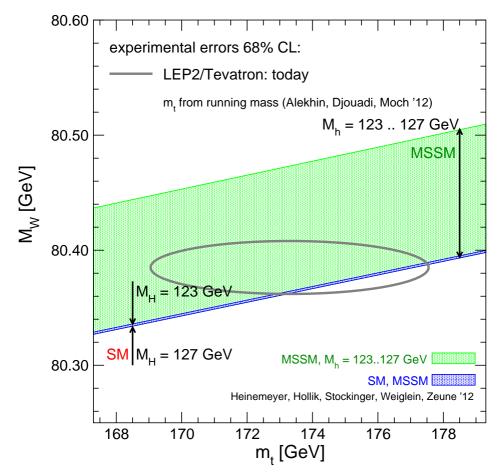

 Radiative corrections (one and two loops) provide relation between SM parameters (masses, couplings)

• Use m_t in precision analysis of electroweak observables (together with M_W) for constraints on m_H

Indirect Higgs searches


• Electroweak precision data constrains M_H

Precision tests of SM indicate lighter SM Higgs mass


Constraints on M_W and m_t

- Extension of electroweak precision fits to MSSM Heinemeyer, Hollik, Stöckinger, Weiglein, Zeune '12
- Relations for radiative corrections known through two loops

Constraints on M_W and m_t

- Extension of electroweak precision fits to MSSM Heinemeyer, Hollik, Stöckinger, Weiglein, Zeune '12
- Relations for radiative corrections known through two loops

• Pole mass determination in well-defined scheme $m_t = 173.3 \pm 2.8 \text{GeV}$ gives no preference to MSSM

Sven-Olaf Moch

Higgs potential

Renormalization group equation

- Quantum corrections to Higgs potential $V(\Phi) = \lambda \left| \Phi^{\dagger} \Phi \frac{v}{2} \right|^2$
- Radiative corrections to Higgs self-coupling λ
 - electro-weak couplings g and g' of SU(2) and U(1)
 - top-Yukawa coupling y_t

$$16\pi^2 \frac{d\lambda}{dQ} = 24\lambda^2 - \left(3g'^2 + 9g^2 - 12y_t^2\right)\lambda + \frac{3}{8}g'^4 + \frac{3}{4}g'^2g^2 + \frac{9}{8}g^4 - 6y_t^4 + \dots$$

Higgs potential

Triviality

- Large mass implies large λ
 - renormalization group equation dominated by first term

$$16\pi^2 \frac{d\lambda}{dQ} \simeq 24\lambda^2 \longrightarrow \lambda(Q) = \frac{m_H^2}{2v^2 - \frac{3}{2\pi^2}m_H^2 \ln(Q/v)}$$

- $\lambda(Q)$ increases with Q
- Landau pole implies cut-off Λ
 - scale of new physics smaller than Λ to restore stability
 - upper bound on m_H for fixed Λ

$$\Lambda \le v \exp\left(\frac{4\pi^2 v^2}{3m_H^2}\right)$$

- Triviality for $\Lambda \to \infty$
 - vanishing self-coupling $\lambda \to 0$ (no interaction)

Higgs potential

Vacuum stability

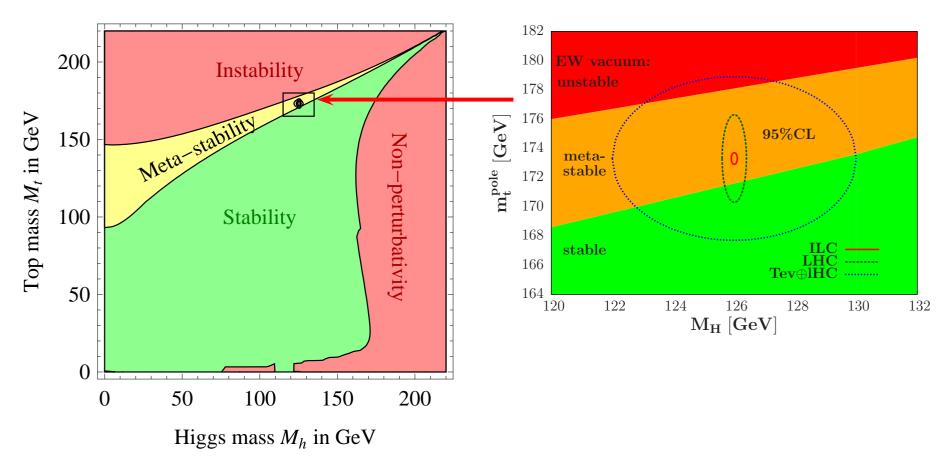
- Small mass
 - renormalization group equation dominated by y_t

$$16\pi^2 \frac{d\lambda}{dQ} \simeq -6y_t^4 \longrightarrow \lambda(Q) = \lambda_0 - \frac{\frac{3}{8\pi^2} y_0^4 \ln(Q/Q_0)}{1 - \frac{9}{16\pi^2} y_0^2 \ln(Q/Q_0)}$$

- $\lambda(Q)$ decreases with Q
- Higgs potential unbounded from below for $\lambda < 0$
- $\lambda = 0$ for $\lambda_0 \simeq \frac{3}{8\pi^2} y_0^4 \ln(Q/Q_0)$
- Vacuum stability

$$\Lambda \le v \exp\left(\frac{4\pi^2 m_H^2}{3y_t^4 v^2}\right)$$

- scale of new physics smaller than Λ to ensure vacuum stability
- lower bound on m_H for fixed Λ


Implications on electroweak vacuum

- Relation between Higgs mass m_H and top quark mass m_t
 - condition of absolute stability of electroweak vacuum $\lambda(\mu) \ge 0$
 - extrapolation of Standard Model up to Planck scale M_P
 - $\lambda(M_P) \ge 0$ implies lower bound on Higgs mass m_H

$$m_H \ge 129.2 + 1.8 \times \left(\frac{m_t^{\text{pole}} - 173.2 \text{ GeV}}{0.9 \text{ GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0 \text{ GeV}$$

- recent NNLO analyses Bezrukov, Kalmykov, Kniehl, Shaposhnikov '12;
 Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice et al. '12
- uncertainity in results due to α_s and m_t (pole mass scheme)
- Top quark mass from Tevatron in well-defined scheme
 - $m_t^{\overline{\text{MS}}}(m_t) = 163.3 \pm 2.7 \text{ GeV}$ implies in pole mass scheme $m_t^{\text{pole}} = 173.3 \pm 2.8 \text{ GeV}$
 - good consistency of mass value between different PDF sets

Fate of the universe

Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice et al. '12, Alekhin, Djouadi, S.M. '12, Masina '12

- Uncertainty in Higgs bound due to m_t from in \overline{MS} scheme
 - bound relaxes $m_H \ge 129.4 \pm 5.6 \text{ GeV}$
 - "fate of universe" still undecided

Summary

Top quark mass

• Running mass ($\overline{\mathrm{MS}}$ scheme) at NNLO in QCD

```
m_t(m_t)\,=\,163.3\,\pm\,2.7GeV
```

Higgs mass

• First result from LHC

 $m_{H}\,\simeq\,126GeV$

Fate of the universe

• Still undecided ...

Summary

Physics at the Terascale

- Discovery of (SM like scalar) Higgs boson opens new avenue for studies of Standard Model physic and beyond
- Precision determinations of non-perturbative parameters is essential
 - masses m_t , M_W , m_H , ...
 - coupling constants $\alpha_s(M_Z)$
 - parton content of proton (PDFs)
- Precision measurements require careful definition of observable
 - top-quark mass m_t in well defined scheme
- Radiative corrections at higher orders in QCD and EW are mandatory
 - continuous challenge for theory
 - search for new observables which meet experimental requirements
- Joint effort theory and experiment