

Resources, schedule & conclusions

Review of the ALPS-II TDR by the DESY PRC

7 November 2012

Axel Lindner, DESY

Outline

- Collaboration and personnel
- Investments
- > Operation costs
- > Cost summary
- > Schedule
- > Other WISP experiments
- > Conclusions

Collaboration and personnel

ALPS-II is a joint effort of

> DESY:

Babette Döbrich, Jan Dreyling-Eschweiler, Samvel Ghazaryan, Reza Hodajerdi, Friederike Januschek, Ernst-Axel Knabbe, Axel Lindner, Dieter Notz, Andreas Ringwald, Jan Eike von Seggern, Richard Stromhagen, Dieter Trines

- Hamburg university: Dieter Horns
- > AEI Hannover: Robin Bähre, Benno Willke

with strong support from

LZH Hannover / neoLASE: Maik Frede, Bastian Schulz

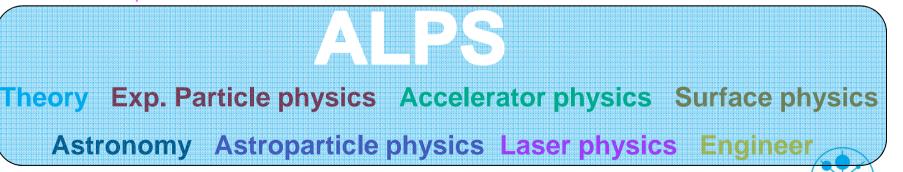
Collaboration and personnel

ALPS-II is a joint effort of

> DESY:

Babette Döbrich, Jan Dreyling-Eschweiler, Samvel Ghazaryan, Reza Hodajerdi, Friederike Januschek, Ernst-Axel Knabbe, Axel Lindner, Dieter Notz, Andreas Ringwald, Jan Eike von Seggern, Richard Stromhagen, Dieter Trines

Hamburg university:


Dieter Horns

> AEI Hannover: Robin Bähre, Benno Willke

with strong support from

> LZH Hannover / neoLASE:

Maik Frede, Bastian Schulz

Collaboration and personnel

Institution	Physicist FTE	Postdoc FTE	Ph.D. student	Eng. FTE	Note
Albert-Einstein-Institute:					
R. Bähre			1.0		
B. Willke	0.2				
DESY:					
B. Döbrich		1.0			
J. Dreyling-Eschweiler			1.0		
S. Ghazaryan	0.2				
R. Hodajerdi			1.0		
F. Januschek		1.0			
EA. Knabbe	1.0				
A. Lindner	0.3				
D. Notz	0.1				
A. Ringwald	0.2				
R. Stromhagen				0.3	
D. Trines	0.5				
J. E. v. Seggern			1.0		
N. N.		0.5			laser /
					optics
University of Hamburg:					
D. Horns	0.2				
Sum	2.7	2.5	4.0	0.3	

Table 5.1: The ALPS collaboration as of August 2012.

Collaboration and personnel: summary

Present:

- > One part time postdoc for laser/optics missing in Hamburg!
- > Technical support will (likely) increase by 0.5 FTE from 2013 onwards.
- > With these issues solved seems to be sufficient for the ALPS-II R&D:
 - 3.5 FTE senior scientists (including engineer),
 - 2.5 FTE postdocs,
 - 4 PhD students.
- Personnel not sufficient for cost-effective data taking (three shifts per day) with ALPS-IIc (cooled down magnet string).

Near Future:

> At least two new PhD students have to be hired in late 2013.

Expansion of the collaboration

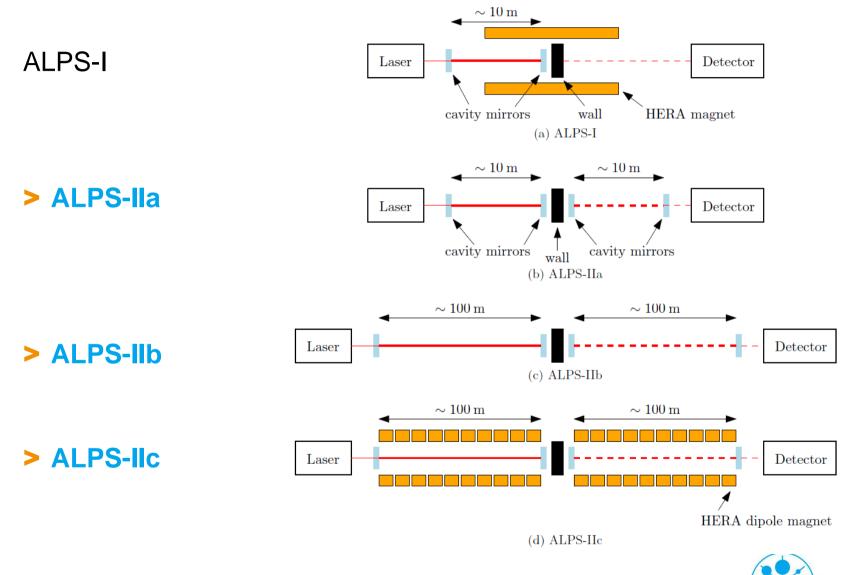
Research center Jülich (nuclear physics institute): applied for third party funds for a Ph.D. student at ALPS-II.

> CERN:

first discussions on joining ALPS optics activities for further developments at OSQAR.

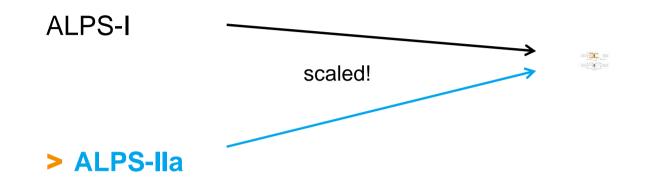
Discussions with NeoLase / LZH Hannover on joining the collaboration to support the laser.

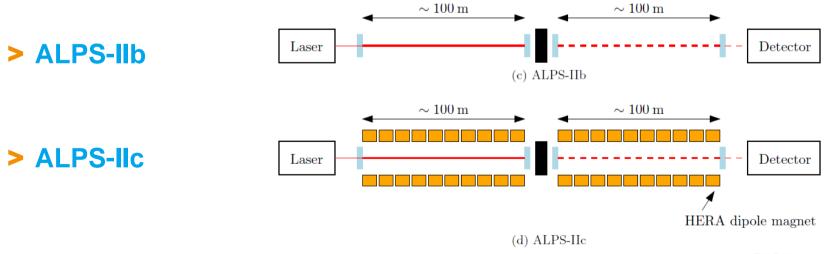
Crucial for further discussions: "Go ahead" for ALPS-II at DESY!



Outline

- > Collaboration and personnel
- Investments
- > Operation costs
- > Cost summary
- > Schedule
- > Other WISP experiments
- > Conclusions


Reminder: the stages of ALPS-II



Reminder: the stages of ALPS-II

Investments

Workpackage	ALPS-I re-used	ALPS-IIa	ALPS-IIb	ALPS-IIc	Total
Laser & optics to be spent	300 k€	155 k€ 54 k€	141 k€ 141 k€	10 k€ 10 k€	606 k€ 205 k€
Cleanr. & infra. to be spent		80 k€ 5 k€	160 k€ 160 k€	105 k€ 105 k€	345 k€ 270 k€
Detection systems to be spent	30 k€	243 k€ 26 k€			273 k€ 26 k€
Magnets modif. to be spent				302 k€ 292 k€	302 k€ 292 k€
Magnet setup to be spent			F	192 k€ 192 k€	192 k€ 192 k€
Vacuum system to be spent	10 k€	40 k€ 40 k€	120 k€ 120 k€	10 k€ 10 k€	180 k€ 170 k€
DAQ & elect. to be spent		7 k€ 7 k€			7 k€ 7 k€
Sum to be spent	340 k€	525 k€ 132 k€	421 k€ 421 k€	620 k€ 610 k€	1905 k€ 1162 k€

In total:

> 1.91 M€.

Already done:

> 0.74 M€

 (incl. 0.27 M€
 3rd party funds).

Table 5.2: Investments of the ALPS-II experiment. The second column lists itemswhich will be re-used from ALPS-I.

Investments: done

Workpackage	ALPS-I re-used	ALPS-IIa	ALPS-IIb	ALPS-IIc	Total
Laser & optics to be spent	300 k€	155 k€ 54 k€	141 k€ 141 k€	10 k€ 10 k€	606 k€ 205 k€
Cleanr. & infra. to be spent		80 k€ 5 k€	160 k€ 160 k€	105 k€ 105 k€	345 k€ 270 k€
Detection systems to be spent	30 k€	243 k€ 26 k€			273 k€ 26 k€
Magnets modif. to be spent				302 k€ 292 k€	302 k€ 292 k€
Magnet setup to be spent			ſ	192 k€ 192 k€	192 k€ 192 k€
Vacuum system to be spent	10 k€	40 k€ 40 k€	120 k€ 120 k€	10 k€ 10 k€	180 k€ 170 k€
DAQ & elect. to be spent		7k€ 7 k€			7k€ 7k€
Sum to be spent	340 k€	525 k€ 132 k€	421 k€ 421 k€	620 k€ 610 k€	1905 k€ <mark>1162</mark> k€

340 k€ re-used from ALPS-I.

(laser & optics)

Table 5.2: Investments of the ALPS-II experiment. The second column lists itemswhich will be re-used from ALPS-I.

Investments: done

Workpackage	ALPS-I re-used	ALPS-IIa	ALPS-IIb	ALPS-IIc	Total
Laser & optics to be spent	300 k€	155 k€ 54 k€	141 k€ 141 k€	10 k€ 10 k€	606 k€ 205 k€
Cleanr. & infra. to be spent		80 k€ 5 k€	160 k€ 160 k€	105 k€ 105 k€	345 k€ 270 k€
Detection systems to be spent	30 k€	243 k€ 26 k€			273 k€ 26 k€
Magnets modif. to be spent				302 k€ 292 k€	302 k€ 292 k€
Magnet setup to be spent				192 k€ 192 k€	192 k€ 192 k€
Vacuum system to be spent	10 k€	40 k€ 40 k€	120 k€ 120 k€	10 k€ 10 k€	180 k€ 170 k€
DAQ & elect. to be spent		7 k€ 7 k€			7 k€ 7 k€
Sum to be spent	340 k€	$\left \begin{array}{c} 525 \mathrm{k} \\ 132 \mathrm{k} \\ \end{array}\right $	421 k€ 421 k€	620 k€ 610 k€	1905 k€ 1162 k€

Table 5.2: Investments of the ALPS-II experiment. The second column lists itemswhich will be re-used from ALPS-I.

DESY

403 k€ already

> AEI (73 k€)

> DESY (85 k€)

> U. HH (245 k€)

invested by

Investments: min. DESY matters

Workpackage	ALPS-I re-used	ALPS-IIa	ALPS-IIb	ALPS-IIc	Total
Laser & optics to be spent	300 k€	155 k€ 54 k€	141 k€ 141 k€	10 k€ 10 k€	606 k€ 205 k€
Cleanr. & infra. to be spent		80 k€ 5 k€	160 k€ 160 k€	105 k€ 105 k€	345 k€ 270 k€
Detection systems to be spent	30 k€	243 k€ 26 k€			273 k€ 26 k€
Magnets modif. to be spent				302 k€ 292 k€	302 k€ 292 k€
Magnet setup to be spent				192 k€ 192 k€	192 k€ 192 k€
Vacuum system to be spent	10 k€	40 k€ 40 k€	120 k€ 120 k€	10 k€ 10 k€	180 k€ 170 k€
DAQ & elect. to be spent		7k€ 7 <mark>k</mark> €			7 k€ 7 k€
Sum to be spent	340 k€	525 k€ 132 k€	421 k€ 421 k€	620 k€ 610 k€	1905 k€ 1162 k€

Essential DESY matters to be spent:

- > Infrastr. (270 k€)
- > Magnets (484 k€)
- > Vacuum (170 k€)

In total: 924 k€.

Table 5.2: Investments of the ALPS-II experiment. The second column lists itemswhich will be re-used from ALPS-I.

Summary on to-date contributions

	AEI	DESY	HH Univ.
FTE (since \approx 2011)	1.2	7.6	0.2
Investments	73 k€	85 k€	245 k€

Remarks:

- > The Ph.D. students are jointly supervised with AEI or HH Univ.
- > Equipment worth 340 k€ is reused from ALPS-I.

Outline

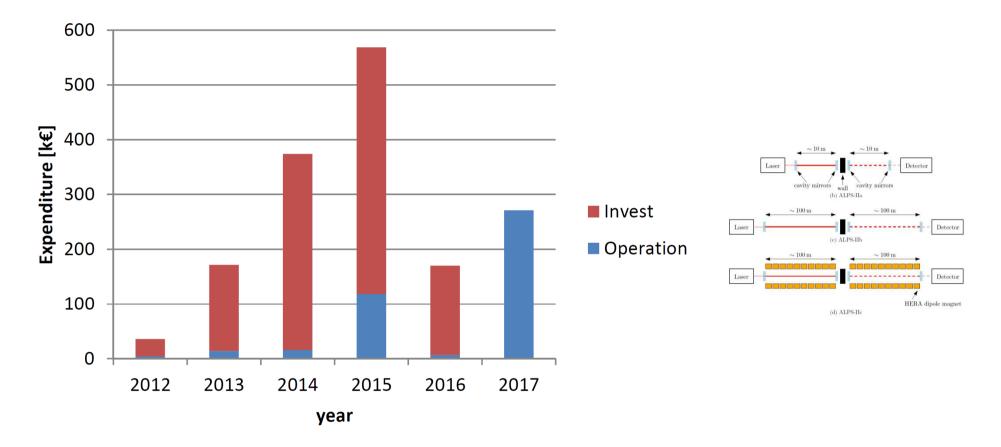
- > Collaboration and personnel
- > Investments
- > Operation costs
- Cost summary
- > Schedule
- > Other WISP experiments
- > Conclusions

Operation costs

Workpackage	ALPS-IIa	ALPS-IIb	ALPS-IIc	Note
Laser & optics maint. Vacuum maint. Cleanrooms (incl. consumables, TES)	2 k€ 2 k€ 10 k€	2 k€ 4 k€ 10 k€	2 k€ 6 k€ 10 k€	yearly costs yearly costs yearly costs
Operation time	1.6 years	1.8 years	1.2 years	
Magnet tests Magnets & cryog.			100 k€ 253 k€	2014/2015 in HERA North
Sum	22 k€	29 k€	375 k€	

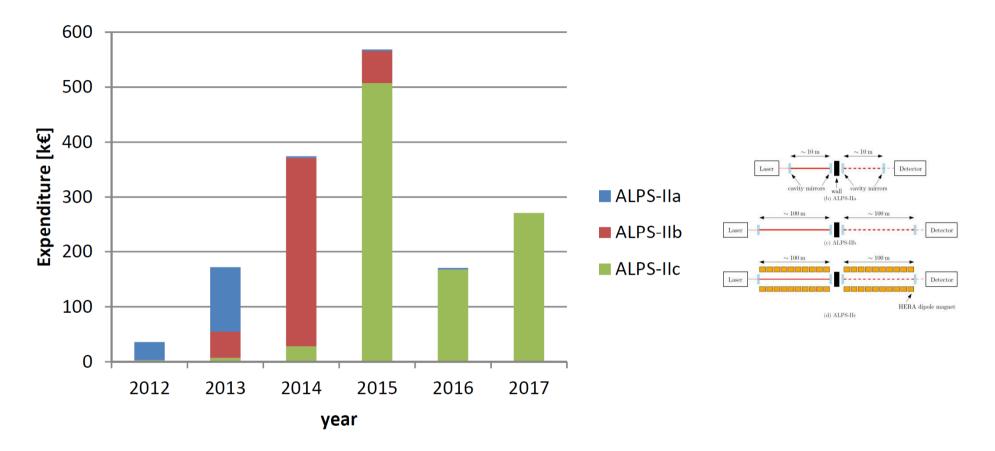
Table 5.3: Operation costs of the ALPS-II experiment for 2013 to 2017. It is assumed that the ALPS-IIa laboratory will be available for further optical and laser R&D after finalizing the ALPS-IIa stage with yearly 20% of the operation costs for full usage.

- In total 426 k€ (2013-2017), thereof
- > 353 k€ for cryogenics.



Outline

- > Collaboration and personnel
- > Investments
- > Operation costs
- Cost summary
- > Schedule
- > Other WISP experiments
- > Conclusions

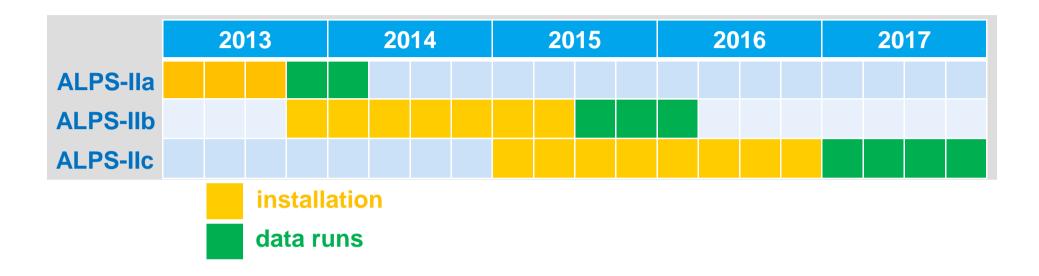

Cost summary: ALPS-lla to llc

- > In total: 1.59 M€ to be spent.
 - 1.16 M€ investments,
 - 0.43 M€ operation costs.

Cost summary: ALPS-lla to llc

In total: 1.59 M€ to be spent.

- 1.16 M€ investments,
- 0.43 M€ operation costs.



Outline

- > Collaboration and personnel
- > Investments
- > Operation costs
- > Cost summary
- Schedule
- > Other WISP experiments
- > Conclusions

Schedule (rough)

Please keep in mind:

The sensitivity of ALPS-II to the WISP coupling strength increases with time^{1/4} only (time^{1/8} if background limited). Hence the experiment is quickly done once the systematics are under control.

Schedule (detailed)

ID	Task Name	04	201			2012	30	2013	201		2015	2016	2017 3 Q4 Q1 Q2 Q	3 04 01
0	Schedule ALPS II	Q.	-										4441 42 4	
1	Milestones			v —			-							
2	verification deformation method			0	6.05									
3	test pressure prop				•	05.01								
4	demonstration down conversion					۵ 🔶	20. <mark>0</mark>	06						
5	ADR cryostat available					•	26.	.07						
6	completion of TDR						♦ 3	1.08						
7	completed magnet test							08.10						
8	CCD detector ready							08.10						
9	first operation PC in air							11.10						
10	PRC meeting						- 🍾	08.11						
11	recommendation of PRC						2	17.01						
12	approval of directorate							\$ 28.0)3					
13	physics run ALPS-IIa with CCD PC 5000							♦ 12.	04					
14	start Installation ALPS-IIb								17.10					
15	physics run ALPS-IIa with CCD RC 40000								06.13	1				
16	TES ready for ALPS-IIa								10.					
17	end ALPS-IIa								•	04.03				
18	DAQ system available								-	09.05				
19	definition of string length									2	3.10			
20	magnets ready for measurements									٠	21.11			
21	start installation ALPS-IIc									•	02.01			
22	order series quench protection										08.04			
23	completion disassembly e-ring left										18	.06		
24	completion disassembly e-ring right										<u>م</u> (05.08		
25	completion disassembly p-ring left										•	10.08		
26	completion disassembly p-ring right										•	02.10		
27	physics run ALPS-IIb										4	07.10		
28	ready for work on cryogenics											22.10		
29	supports out											23.10		

Schedule (detailed)

ID .	Task Name			011	2012		2013	2014	201		2016	2017	201
30	boxes moved	Q4	1 Q	1 Q2 Q3 C	4 Q1 Q2	2 Q3 C	4 Q1 Q2 Q3	Q4 Q1 Q2 C	13 Q4 Q1	Q2 Q3 C	4 Q1 Q2 Q3 ▲ 17.12	Q4 Q1 Q2 Q3	3 Q4 Q1 0
31	magnets ready for installation										♦ 18.12		
32	end of ALPS-IIb										♦ 03.03		
33	supports in										♦ 01.04		
34	boxes ready										♦ 29.0	4	
35	magnets installed										\$ 0	8.07	
36	strings completed										٠	01.09	
37	final pressure test										٠	15.09	
38	laser huts installed											05.10	
39	ready for ALPS-IIc											10.01	
40	cryogenics and labor tied to XFEL								J.				
41	ALPS-IIa general tasks		1	V		-							
59	ALPS-IIb general tasks												
68	Laser and optics												
85	Detection system				\$								
99	Magnets and cryogenics		-			_							
100	Prototype dipoles		-										
116	Magnets for ALPS-IIc					•				 _			
128	Quench protection +power supply			Ψ									
133	Vacuum system										-		
137	Installation								—			- •	
138	Disassembly								-				
139	Kicker bypass WL												
142	Electron machine								V				
155	Proton machine									WW			
164	Infrastructure								-				
168	Cryogenics work								-		-		

Schedule (detailed)

ID	Task Name		2011	2012	2013	2014	2015	2016	2017	2018
		Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4	Q1 Q2				
172	Assembly									
173	Cryogenics work									
180	Laser huts									
184	Strings									
196	Interlock									

Details: optics

schedule and milestones

- Q4 2012 demonstrate control concept at AEI 1m table top experiment
- Q4 2012 first ALPS-IIa cavity (info on length and alignment fluctuations
- Q2 2013 ALPS-IIa production cavity with PB=5.000
- Q4 2013 ALPS-IIa regeneration cavity with PB=40.000
- Q4 2015 ALPS-IIb cavities ready
- Q1 2017 ALPS-IIc cavities ready

- > Total investments: 606 k€.
- > To be spent: 205 k€.
 - 54 k€ in 2012 / 2013 for ALPS-IIa.
 - If ALPS-IIa is a success: 141 k€ for ALPS-IIb.
 - I0 k€ for ALPS-IIc.

Details: detector

- > Total investments: 273 k€.
- > To be spent: 26 k€.
 - The same system will be used for all stages of ALPS-II.

Details: magnets

Magnets	2013	2014	2015	2016
Successful test of straightened ALPS-I dipole				
R&D optical aperture measurement				
Revision of straightening method				
Fabrication and test of new parts				
Straightening of dipoles				
Bench measurements				
Development prototype quenchprotection				
Test quench protection at test bench				
Fabrication quench protection				
Disassembly of straight section				
Assembly of magnet strings				

- > Total investments: 302 k€.
- > To be spent: 292 k€.
 - 38 k€ in 2013 / 2014 for straightening.
 - 254 k€ in 2015, thereof 226 k€ for the new quench protection.

Schedule & decisions

2013

- General: Physics runs: ALPS-IIa
- Optics: Proof of concept for 10 m optical setup (40000 power build up in RC)
- Detector: Data taking first with CCD, transport of TES to Hamburg, and integration of TES in the optical system
- Magnet: Review of the straightening procedure
- Infrastructure: Preparation for ALPS-IIb setup

• 2014

- Optics: Analyze and optimize ALPS-IIa setup, redesign control loops for application in ALPS-IIb
- Magnet: Straightening of the spare magnets
- Infrastructure: Begin ALPS-IIb setup in HERA tunnel

• 2015

- General: Commission and data taking ALPS-IIb
- Optics and Detector: Physics run ALPS-IIb
- Magnet: Disassembly of HERA section, cryogenic magnet tests
- 2016
 - General: Preparation for ALPS-IIc
 - Optics: Setup and commission of cavities in magnet bore
 - Magnet: Assembly of straightened magnets in HERA tunnel
- 2017

- General: ALPS-IIc data taking

"Go-ahead" required in:

> ALPS-IIa: (already active)

> ALPS-IIb: autumn of 2013

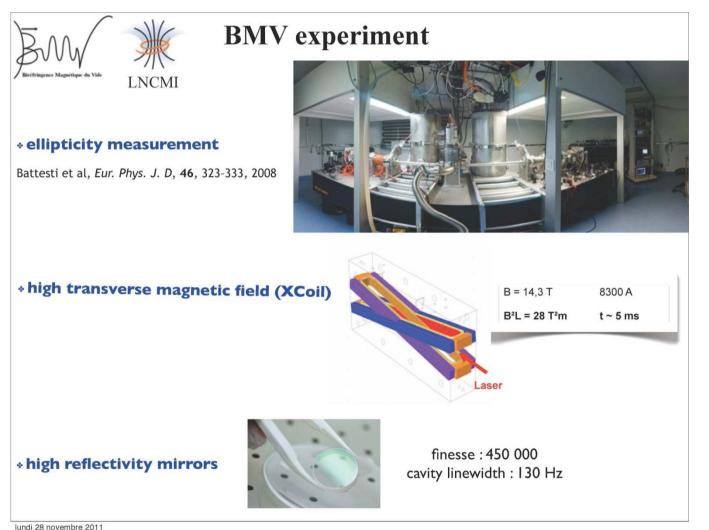
> ALPS-IIc: early 2014

Outline

- > Collaboration and personnel
- > Investments
- > Operation costs
- > Cost summary
- > Schedule
- > Other WISP experiments
- > Conclusions

A number of (mostly) small-scale experiments:

Experiment	Туре	Location	Status
ALPS-II		DESY in HH	proposed
CERN microwave cavity experiment	Laboratory experiments,	CERN	running
OSQAR	light-shining- through-a-wall	CERN	running
REAPR		UF / FNAL	proposed
BMV	Polarization	Toulouse	running
PVLAS	studies	Ferrara	started
CAST		CERN	running
IAXO	Helioscopes		proposed
TSHIPS		Hamburg	started
ADMX / ADMX-HF	Heleseenes	Seattle / Yale	preparation
WISPDMX	Haloscopes	DESY in HH	first thoughts



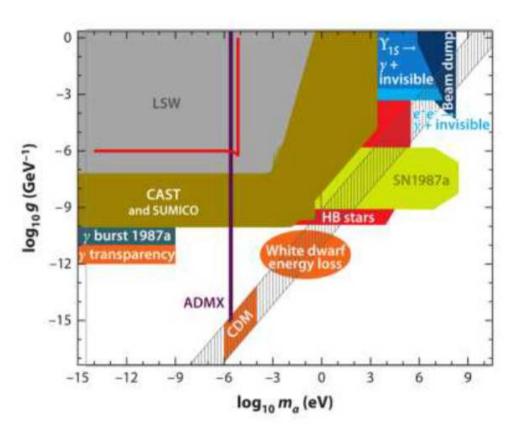
A number of (mostly) small-scale experiments:

Experiment	Туре	Location	Status
ALPS-II	Laboratory experiments, light-shining- through-a-wall	DESY in HH	proposed
CERN microwave cavity experiment		CERN	running
OSQAR		CERN	running
REAPR		UF / FNAL	proposed
BMV	Polarization studies	Toulouse	running
PVLAS		Ferrara	started
CAST	Helioscopes	CERN	running
IAXO			proposed
TSHIPS		Hamburg	started
ADMX / ADMX-HF	Haloscopes	Seattle / Yale	preparation
WISPDMX		DESY in HH	first thoughts

BMV (Toulouse):

BMV (Toulouse):

- Aims to measure the magnetic vacuum birefringence with the help of pulsed 30 T magnets (1000 pulses needed). Magnet prototypes are working already.
- With the BMV setup, the QED effect sensitivity corresponds roughly to an ALP-photon coupling of less than 10⁻⁸ GeV⁻¹ (improving ALPS-I by a factor of ~ 6, being still a factor of 500 worse than the ALPS-II goal).
- > The QED sensitivity could be reached in 2013/2014 (?).
- If BMV reaches the QED effect, this would provide an irreducible background in WISP searches with the BMV apparatus.


CERN microwave cavity experiment (M. Betz, F. Caspers):

CERN microwave cavity experiment (M. Betz, F. Caspers):

Preliminary result slightly worse than ALPS-I.

At present unclear how to increase the sensitivity significantly.

OSQAR (CERN):

OSQAR (CERN):

- > OSQAR uses two LHC dipole magnets (9 T, 14.3 m). The magnetic length is 28% of the ALPS-II target.
- OSQAR had a LSW data run with a 3 W laser in 2012 and reached an ALP sensitivity slightly worse than at ALPS-I.
- > Unfortunately the OSQAR laser failed recently.
- The collaboration aims for purchasing a new laser and setting up an optical cavity in 2013/2014 allowing to reach 1 kW of effective laser power (the ALPS-I achievement).
- This would allow to improve the ALPS-I sensitivity for the ALP-photon coupling by about a factor of 6 (being still a factor of 500 worse than the ALPS-II goal).

REAPR in the US:

Information by D. Tanner?

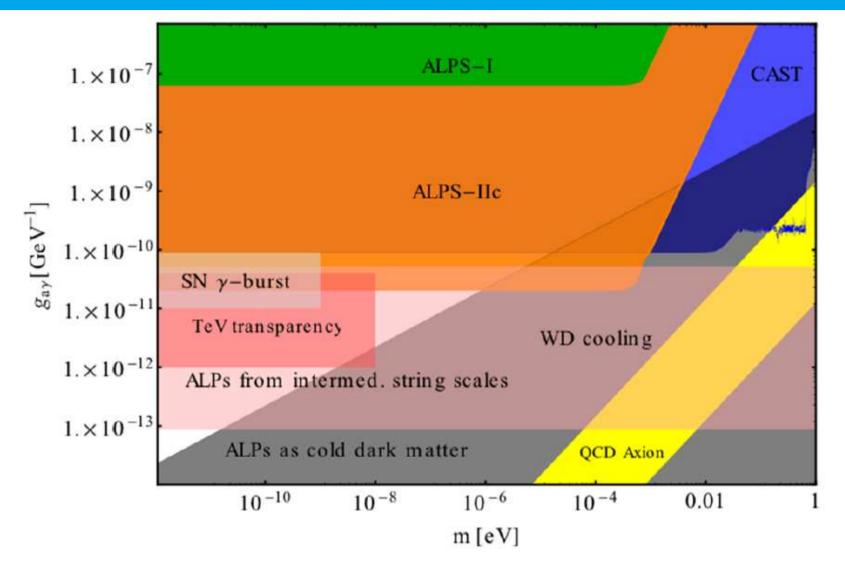
Outline

- > Collaboration and personnel
- > Investments
- > Operation costs
- > Cost summary
- > Schedule

> Conclusions

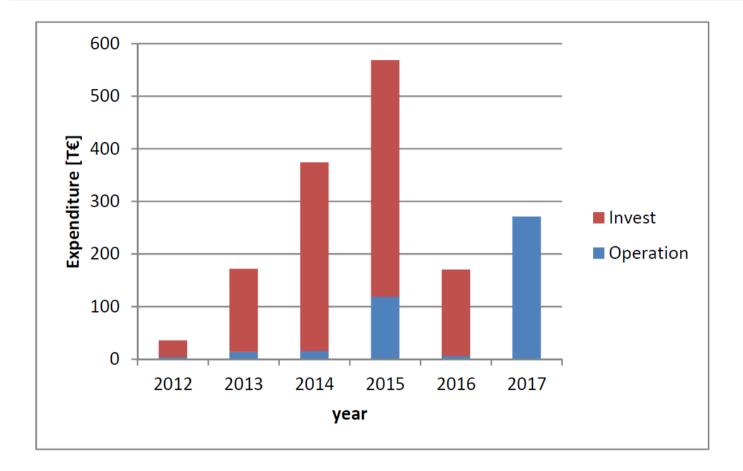
1: There is physics beyond the SM

which might hint at Weakly Interacting Slim Particles (WISPs).


- > Axion and axion-like particles (ALPs, pseudoscalar or scalar bosons)
- > Hidden photons (neutral vector bosons)
- Mini-charged particles
- Scalars (gravity)

Phenomenon	WISPy explanation	WIMPy explanation
White dwarf cooling 🛛 🛧	Axion, ALP	
TeV transparency	ALP	
CMBR neutrino number ★	HP	
Dark matter	Axion, ALP, HP	yes
Dark energy 🔶 🖈	Scalars (gravity)	

 \star to be confirmed!



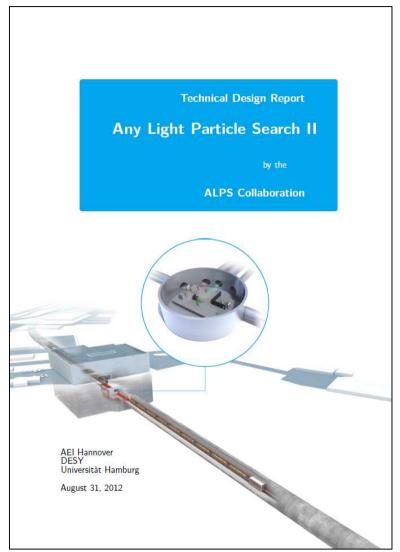
2: ALPS-II has a unique potential ...

3: ... at moderate costs ...

DESY

4: ... based on competent partners ...

5: ... and on the DESY infrastructure.


- Optics requirements allow for strings of up to 2-10 straightened HERA dipoles.
- The straight sections of the HERA tunnel allow for strings of up to 2.10 straightened HERA dipoles.
- There exist 24 spare HERA dipole magnets.

Conclusions

- There is physics beyond the standard model.
- ALPS-II has a unique discovery potential at moderate costs based on competent partners and on the DESY infrastructure.

That's why we propose to do it!

