Signals from phase transitions in the early universe

Mark Hindmarsh^{1,2}

¹Department of Physics & Astronomy University of Sussex

²Helsinki Institute of Physics Helsinki University

U Hamburg/DESY 9. tammikuuta 2013

us

Outline

Introduction: phase transitions in the early universe

Thermodynamics in the early universe

QCD phase transition

Phase transitions in weakly coupled gauge theories

Inflation and defect formation

Model-building for cosmology

Summary

US

< ロ > < 同 > < 回 > < 回 > < 回 >

Modern cosmology is inflationary cosmology

- Simplest model of the very early Universe: Inflation⁽¹⁾
- Energy density of Universe dominated by homogeneous scalar field $\bar{\phi}(t)$
- Explosive decay of the scalar field into particles is the "Hot Big Bang".
- ► General relativity + quantum fluctuations⁽²⁾ in scalar field.
- $\blacktriangleright \rightarrow$ large, flat universe, uniform density, with small fluctuations
- ► Thermal equilibrium for most particle species, most of the time.
- Observable relics require departure from equilibrium

⁽²⁾Mukhanov & Chibisov (1981); Guth & Pi (1982); Hawking(1982); Hawking & Moss (1983); Bardeen, Steinhardt, Turner, (1983)

Introduction: phase transitions in the early universe

Thermodynamics in the early universe QCD phase transition Phase transitions in weakly coupled gauge theories Inflation and defect formation Model-building for cosmology Summary

Departures from equilbrium

- "Freeze-out" (loss of chemical equilibrium) dark matter, neutrinos
- "Decoupling" (loss of kinetic equilibrium) photons/CMB
- Phase transitions:
 - 1st order: metastable states
 - 2nd order: critical slowing down
 - Cross-over: negligible departure from equilibrium

US

< ロ > < 同 > < 回 > < 回 > < 回 >

Phase transitions & cosmology

Phase transitions happened in real time in early Universe:

Thermal Changing T(t)

Vacuum Changing field $\sigma(t)$

US

QCD phase transition

Thermal, cross-over. (First order: strangelets, axion balls, magnetic fields)

Electroweak phase transition

- Thermal, 1st order?: electroweak baryogenesis⁽³⁾
- Vacuum, continuous: cold electroweak baryogenesis⁽⁴⁾
- Grand Unified Theory & other high-scale phase transitions
 - Thermal: topological defects⁽⁵⁾
 - Vacuum: hybrid inflation, topological defects, ... ⁽⁶⁾

Thermodynamic relations for cosmology

Particle reaction rates large compared with expansion rate $H \propto 1/t$

$$n\langle \sigma v
angle \ll H$$

 $\begin{cases} \sigma & \text{Scattering cross-section} \\ n & \text{Number density of scatterers} \\ v & \text{Relative speed} \\ \langle \ldots \rangle & \text{Thermal average} \end{cases}$

Early Universe very close to thermal equilibrium: expansion isentropic.

 $S = sa^3 = const.$ Entropy density s.

Thermodynamic relations:

$$\mathbf{s} = \frac{d\mathbf{p}}{dT}, \quad \mathbf{s}T = \rho + \mathbf{p} \qquad \left(\rightarrow \rho = T^2 \frac{d}{dT} \left(\frac{p}{T} \right) \right)$$

NB Need to calculate only pressure (easiest in QFT) **NB** Eqm fails for neutrinos at $T \simeq 1$ MeV, WIMPs at $T \simeq 1 - 10$ GeV.

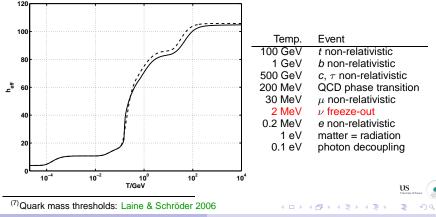
イロン イロン イヨン

Relativistic and non-relativistic ideal gases

Quantity	Relativistic B	× (F)	Non-relativistic ($T \ll m$)
Number density	$n_r=grac{\zeta(3)}{\pi^2}T^3$	$\left(\frac{3}{4}\right)$	$n_m = g\left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} \exp(-m/T)$
Energy density	$ ho_r=m{g}rac{\pi^2}{30}m{T}^4$	$\left(\frac{7}{8}\right)$	$\rho_m = mn_m(T)$
Pressure	$p_r=grac{\pi^2}{90}T^4$	$\left(\frac{7}{8}\right)$	$p_m = n_m(T)T \ll \rho_m$
Entropy density	$s_r = g \tfrac{2\pi^2}{45} T^3$	$\left(\frac{7}{8}\right)$	$s_m = mn_m(T)/T \ll s_r(T)$

NB Isentropic expansion $s_r \propto a^{-3}$ means $T_r \propto 1/a$. **NB** m = 0 particles out of kinetic equilibrium maintain distribution: $E \propto 1/a$. Effective numbers of degrees of freedom for energy & entropy densities:

$$\rho = \frac{\pi^2}{30} g_{\text{eff}}(T) T^4, \quad s = \frac{2\pi^2}{45} h_{\text{eff}}(T) T^3,$$


Mark Hindmarsh Early universe phase transitions

us

< ロ > < 同 > < 回 > < 回 > < 回 >

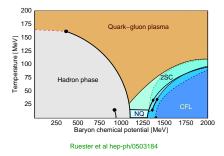
Effective number of relativistic species of the Standard Model

Olive 1981 (dashed), Hindmarsh and Philipsen 2005 (solid)⁽⁷⁾

Degrees of freedom 0.4 - 40 GeV: mostly coloured

		Mass	g		Mass	g	
	$\begin{array}{c} \gamma \\ \nu_{\rm e} \\ \nu_{\mu} \\ \nu_{\tau} \\ {\bf e} \\ \mu \\ \tau \\ W \\ Z \\ h \end{array}$	0 ≲ 1 eV ≲ 1 eV ≲ 1 eV 0.5 MeV 106 MeV 1.7 GeV 80 GeV 91 GeV 125 GeV	2 2 2 2 4 4 4 6 3 3	g u d s c b t	0 3 MeV 7MeV 76 MeV 1.2 GeV 4.2 GeV 174 GeV	16 12 12 12 12 12 12 12	
40 GeV:			⁷ / ₈ 18 + 2			$\frac{7}{8}60 + 16$	68.5/84.25
0.4 GeV:			$\frac{7}{8}$ 14 + 2			$\frac{7}{8}36 + 16$	47.5 /61.75

Cannot ignore QCD interactions.

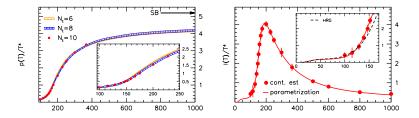

Mark Hindmarsh Early universe phase transitions

us

イロト イポト イヨト イヨト

QCD phase diagram

- $\eta_B = n_B/n_\gamma = (6.15 \pm 0.15) \times 10^{-10} (WMAP7 + H0 + BAO)^{(8)}$
- Cross-over at low chemical potential



Mark Hindmarsh

us

QCD equation of state

- Budapest-Marseille-Wuppertal lattice (physical quark masses)⁽⁹⁾
- Shown: pressure and trace anomaly $I(T) = \rho(T) 3\rho(T)$ (with fit)

 Can model with hadronic resonance gas (low T) and dimensional reduction (high T)

(9) Borsányi et al. (2010)

us

Dark matter

Evidence for dark matter:

- Rotation of spiral galaxies
- Velocities of galaxies in clusters
- X-ray flux from hot gas
- Gravitational lensing
- Cosmic Microwave Background

Conclusions:

- DM is slow, collisionless particles ("Cold")
- $\Omega_{\rm DM}\equiv
 ho_{\rm DM}/
 ho_{\rm tot}\simeq 0.3$

Bullet cluster:^a

- Dark matter from lensing
- X-rays show gas

^aMarkevitch et al 2005, Clowe et al 2006

WIMP relic density and QCD

Weakly Interacting Massive Particle:

Mass *m*, energy density ρ_X , annihilations $XX \rightarrow \ldots$ with total cross-section σ .

- Density parameter of WIMP: $\Omega_X = \rho_X / \rho_c$
- Define $h = H_0/(100 \text{ km s}^{-1} \text{ Mpc}^{-1}) = 0.704 \pm 0.025$ (WMAP7)

•
$$\Omega_X h^2 \simeq \frac{10^{-10} \text{ GeV}^{-2}}{\sigma} \frac{x_f}{g_*^{\frac{1}{2}}(T)} = 0.1120 \pm 0.0056 \text{ (WMAP7)}$$

Where:

►
$$\mathbf{x}_f = m/T_f$$
, T_f - temperature at freeze-out. $\mathbf{x}_f \sim 25$
► $g_*^{1/2}(T) = \frac{h_{\text{eff}}}{g_{\text{eff}}^{1/2}} \left(1 + \frac{T}{3} \frac{d \ln h_{\text{eff}}}{dT}\right)$.

- WIMP density depends on eqn. of state at $T \simeq 4(m/100 \text{GeV})$ GeV ⁽¹⁰⁾
- ▶ Planck: $\Delta(\Omega_X h^2) \simeq 0.001^{(11)}$ QCD effects few %, significant

⁽¹⁰⁾Hindmarsh, Philipsen 2005 ⁽¹¹⁾Balbi et al 2003

Other cosmology where QCD is important

- Production of sterile neutrinos⁽¹²⁾.
 - Sterile neutrinos density depends on $g_{\rm eff}(T)$ at $T \sim T_{\rm QCD}$
- Production of gravitinos⁽¹³⁾
 - Gravitinos produced by bremmstrahlung during scattering
 - Most scattering is by strongly coupled states

⁽¹²⁾Dodelson, Widrow 1994; Asaka, Laine, Shaposhnikov 2006; Laine & Shröder 2012
 ⁽¹³⁾Weinberg 1982, Nanopoulos, Olive Srednicki 1983; Ellis, Kim, Nanopoulos 1984; Bolz, Brandenburg, Buchmuller 2002; Rychkov, Strumia 2007

us

Free energy of an ideal gas

- Free energy density $f = \rho Ts$ (also f = -p)
- To find equilibrium state we minimise free energy
- Dimensions: $f = T^4 \phi(m/T)$ with $\phi(0) = -g\pi^2/90$.

Pressure due to particles of mass *m* in equilibrium (zero chemical potential) $\eta = \pm 1$ (FD/BE)):

$$p = \int \overline{d}^3 k \frac{1}{e^{E/T} + \eta} \frac{k^2}{3E}, \qquad E = (k^2 + m^2)^{\frac{1}{2}}$$

Free energy density ($f = -kT \ln Z/V$):

$$f = -\eta T \int \overline{d}^3 k \ln(1 + \eta e^{-E/T})$$

Note f = -p by partial integration.

us

(a)

Free energy: exact formulae in high T expansion

Bosons:

$$f_{B} = -\frac{\pi^{2}}{90}T^{4} + \frac{m^{2}T^{2}}{24} - \frac{(m^{2})^{\frac{3}{2}}T}{12\pi} - \frac{m^{4}}{64\pi^{2}}\ln\left(\frac{m^{2}}{a_{b}T^{2}}\right)$$
$$-\frac{m^{4}}{16\pi^{\frac{5}{2}}}\sum_{\ell}(-1)^{\ell}\frac{\zeta(2\ell+1)}{(\ell+1)!}\left(\frac{m^{2}}{4\pi^{2}T^{2}}\right)^{\ell}$$

Fermions:

$$f_{F} = -\frac{\pi^{2}}{90} \frac{7}{8} T^{4} + \frac{m^{2} T^{2}}{48} + \frac{m^{4}}{64\pi^{2}} \ln\left(\frac{m^{2}}{a_{f} T^{2}}\right) \\ + \frac{m^{4}}{16\pi^{\frac{5}{2}}} \sum_{\ell} (-1)^{\ell} \frac{\zeta(2\ell+1)}{(\ell+1)!} (1 - 2^{-2\ell-1}) \Gamma(\ell + \frac{1}{2}) \left(\frac{m^{2}}{4\pi^{2} T^{2}}\right)^{\ell}$$

 $a_b = 16\pi^2 \ln(rac{3}{2} - 2\gamma_E), \, a_f = a_b/16, \, \gamma_E = 0.5772 \dots$ (Euler's constant)

US

ヘロン 人間 とくほとくほとう

Effective potential for scalar field with gauge fields and fermions

• scalars $(M_{S}(\bar{\phi}))$,

Let scalar field give masses to

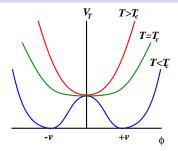
- vectors $(M_V(\bar{\phi}))$
- (Dirac) fermions $(M_{F}(\bar{\phi}))$

119

イロト イポト イヨト イヨト

$$V_{T}(\bar{\phi}) = V_{T}(0) + \frac{1}{2}\mu^{2}\bar{\phi}^{2} + \frac{1}{4!}\lambda\bar{\phi}^{4} \\ + \frac{T^{2}}{24} \left(\sum_{S} M_{S}^{2}(\bar{\phi}) + 3\sum_{V} M_{V}^{2}(\bar{\phi}) + 2\sum_{F} M_{F}^{2}(\bar{\phi}) \right) \\ - \frac{T}{12\pi} \left(\sum_{S} (M_{S}^{2}(\bar{\phi}))^{\frac{3}{2}} + 3\sum_{V} (M_{V}^{2}(\bar{\phi}))^{\frac{3}{2}} \right) + \cdots$$

Again, can neglect higher order terms where $M^2(\phi)/T^2 \ll 1$.


Symmetry restoration at high T

Suppose $\mu^2 < 0$ and $M(\bar{\phi})/T \ll 1$.

$$\Delta V_T = \frac{1}{2} \left(-|\mu|^2 + \frac{1}{24} \lambda T^2 \right) \bar{\phi}^2 + \frac{1}{4!} \lambda \bar{\phi}^4$$

Equilibrium at

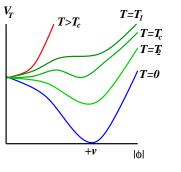
$$\bar{\phi}^2 = 6(|\mu^2| - \frac{1}{24}\lambda T^2)/\lambda$$

= $v^2(1 - T^2/T_c^2)$

us

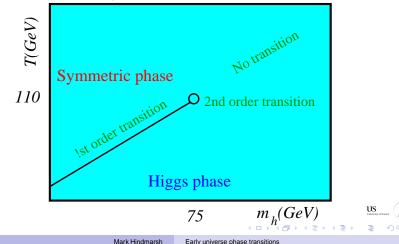
- Critical temperature $T_c^2 = 24|\mu^2|/\lambda$
- Above T_c , equilibrium state is $\bar{\phi} = 0$
- $\blacktriangleright \ \phi \to -\phi \text{ symmetry is restored}$
- Second-order phase transition⁽¹⁴⁾

discontinuity in specific heat, correlation length diverges $\xi = 1/m(T)$


⁽¹⁴⁾Kirzhnitz & Linde (1974), Dolan & Jackiw (1974)

First order phase transition

Effective potential with multiple fields: cubic term important


$$\Delta V_T \simeq \frac{\gamma}{2} (T^2 - T_2^2) |\bar{\phi}|^2 - \delta T |\bar{\phi}|^3 + \frac{1}{4!} \lambda |\bar{\phi}|^2$$

- Second minimum develops at T₁
- Critical temperature *T_c*: free energies are equal.
- ▶ System can supercool below *T_c*.
- First order transition discontinuity in free energy

Phase transition in the Standard Model

Standard Model phase diagram (Kajantie et al 1996):

1st order phase transitions in SM extensions

- MSSM with light stops⁽¹⁵⁾
 - Effective theory near transition is SM + light coloured scalar
 - Increases strength of cubic term: $\Delta V_{\tilde{t}}^{(3)} = -48 \frac{T}{12\pi} (m_{\tilde{t}}^2(\bar{\phi}))^{\frac{3}{2}}$
 - Non-perturbative contributions to $V_T(\phi)$ important⁽¹⁶⁾
 - ▶ Tightly constrained by $h \rightarrow \gamma \gamma$: need light neutralino⁽¹⁷⁾
- nMSSM ("nearly MSSM"):
 - Integrate out singlet⁽¹⁸⁾
 - $V_T(\phi) \simeq c_0 + c_1(T)\phi^2 + c_2\phi^4 + c_3\phi^6 + \cdots$
 - $c_2 < 0$ gives 1st order transition at tree level.

US

⁽¹⁵⁾Carena, Quiros, Wagner (1999), Laine Rummukainen (2001)

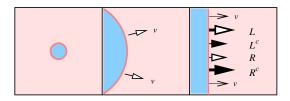
⁽¹⁶⁾Laine Rummukainen Nardini (2012)

⁽¹⁷⁾Carena et al (2012)

⁽¹⁸⁾Huber et al (2006)

Electroweak phase transition & baryogenesis

Sakharov conditions for baryogenesis:


- B violation: Electroweak theory has unstable topological defects sphalerons (S). Formation and decay of S results in change in B + L of LH fermions.
- C and CP violation: C violation automatic in SM. CP violation needs more than CKM at high T⁽¹⁹⁾
- non-equilibrium Supercooling at 1st order phase transition?

US

(Hot) electroweak baryogenesis

Mechanism:⁽²⁰⁾

- CP-violation in bubble wall field profile
- CP-asymmetry in reflection of fermions
- Chiral asymmetry \rightarrow (Sphalerons) \rightarrow baryon asymmetry

Signal: gravitational waves⁽²¹⁾

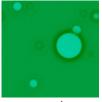
⁽²⁰⁾ Cohen, Kaplan, Nelson 1991

⁽²¹⁾Witten 1984, Kosowsky, Turner, Watkins 1986

Simulating a first order transition

- Relevant approximation for GWs: classical scalar field, classical relativistic fluid
- $T^{\mu\nu}_{\phi} = \partial^{\mu}\phi\partial^{\nu}\phi g^{\mu\nu} \left[\frac{1}{2} \partial_{\alpha}\phi\partial^{\alpha}\phi \right]$
- $T^{\mu
 u}_{
 m fluid} = [\epsilon +
 ho] U^{\mu} U^{
 u} + g^{\mu
 u}
 ho$
- Equations:⁽²²⁾

$$\blacktriangleright \quad -\ddot{\phi} + \nabla^2 \phi - \frac{\partial V}{\partial \phi} = \eta W (\dot{\phi} + V^i \partial_i \phi)$$


- $\dot{E} + \partial_i (EV^i) + P[\dot{W} + \partial_i (WV^i)] \frac{\partial V}{\partial \phi} W(\dot{\phi} + V^i \partial_i \phi) = \eta W^2 (\dot{\phi} + V^i \partial_i \phi)^2.$
- $\blacktriangleright \dot{Z}_i + \partial_j (Z_i V^j) + \partial_i P + \frac{\partial V}{\partial \phi} \partial_i \phi = -\eta W (\dot{\phi} + V^j \partial_j \phi) \partial_i \phi.$
- W relativistic γ-factor; Vⁱ fluid 3-velocity, E fluid energy density; Zⁱ fluid momentum density.
- $\eta(\phi)$ coupling

(22) Enqvist et al 1992; Kurki-Suonio, Laine 1996, Hindmarsh, Rummukainen, Weir (2013) = >

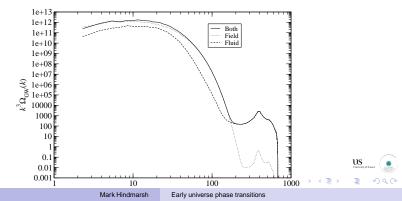
us

Bubbles

Fluid energy density

 $t = 400 T_c^{-1}$

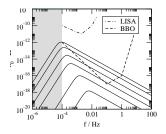
US


(Loading ...)

Gravitational waves

Find metric perturbations h_{ij} from tranverse-traceless part of EM tensor Π_{ij} :

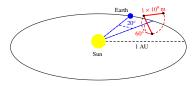
$$\ddot{h}_{ij} - \nabla^2 h_{ij} = 16\pi G \Pi_{ij}$$


Gravitational wave power spectrum: $\frac{d\rho_{GW}(k)}{d\ln k} = \frac{k^3}{32\pi G} \int d\Omega \dot{h}_{ij}(t, \mathbf{k}) \dot{h}_{ij}^*(t, \mathbf{k})$

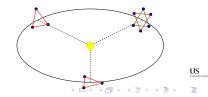
Current status: predictions and detection

Predictions

- Envelope approximation:^a
 - All energy on bubble wall
 - Walls annihilate on collision
- Many bubble collisions in EA:^b



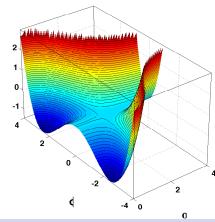
^aKamionkowski, Kosowski, Turner 1994 ^bHuber, Konstandin 2008


Mark Hindmarsh

Space-based laser interferometers

eLISA (proposed, launch 2022):

Big Bang Observer (proposed):



Early universe phase transitions

Hybrid inflation: vacuum phase transition

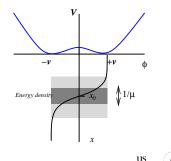
$$V(\phi,\sigma) = \frac{1}{2}\mu^2\phi^2 + \frac{1}{4!}\lambda\phi^4 + \frac{1}{4}\kappa\phi^2\sigma^2 + V(\sigma)$$

- σ another field e.g. inflaton
- $\blacktriangleright V(\sigma) = V_0 + \Delta V(\sigma)$
- Flat direction: Large $\langle \sigma(t) \rangle$, $\langle \phi \rangle = 0$
- Inflation with $H^2 \simeq \frac{1}{3m_p^2} V_0$
- Phase transition at $\langle \sigma \rangle = \sqrt{\frac{-2\mu^2}{\kappa}}$
- Transition terminates inflation
- Fast evolution to true vacuum: $\langle \sigma \rangle = 0, \ \langle \phi \rangle = \sqrt{-6\mu^2/\lambda}$

(Non-perturbative) field theory after inflation

- Preheating⁽²³⁾
 - ▶ transfer of energy from homogeneous modes $\sigma(t), \phi(t)$ to higher momentum
- Reheating: decays of inflaton sector into SM particles, thermalisation⁽²⁴⁾
- Formation of topological defects⁽²⁵⁾
- Phase ordering following O(N) global symmetry breaking⁽²⁶⁾

(23) Kofman, Linde, Starobinsky 1994, 1997
 (24) Can be very slow: e.g. Buchmüller, Domcke, Schmitz, Vertongen 2010 - 2012
 (25) Kibble 1976; Copeland et al 1994
 (26) Turok, Spergel 1992; Boyanovsky, de Vega 1999
 (26) Turok, Spergel 1992; Boyanovsky, de Vega 1999
 (27) Mark Hindmarsh
 Early universe phase transitions


Topological defects: domain walls

$$\mathcal{L} = \frac{1}{2}\partial\phi \cdot \partial\phi - V(\phi), \qquad V(\phi) = V_0 - \frac{1}{2}\mu^2\phi^2 + \frac{1}{4!}\lambda\phi^4$$

Field eqn. (Minkowski space)

$$\frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi - \mu^2 \phi + \frac{1}{3!} \lambda \phi^3 = 0$$

- Static solution $\phi = v \tanh(\mu z/\sqrt{2})$
- Energy density $T_{00} = v^4 \operatorname{sech}^4(\mu z/\sqrt{2})$:
- Kink (1+1D), string (2+1D) or Domain Wall
- "Topologically" stable: field fixed at $|z| \rightarrow \infty$

A model field theory

Abelian Higgs model: complex scalar field $\phi(x)$, vector field $A_{\mu}(x)$.

$$\mathcal{L}_{eff} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D\phi|^2 - V_{eff}(\phi),$$

$$V_{eff}(\phi) \simeq V_0 + m_{eff}^2 |\phi^2| + \frac{1}{4} \lambda |\phi|^4$$
where $m_{eff}^2(T) = \begin{cases} \frac{1}{12} (\lambda + 3e^2) T^2 - |\mu^2| & \text{Thermal} \\ \frac{1}{2} \kappa \sigma(t)^2 - |\mu^2| & \text{Vacuum} \end{cases}$
Potential energy function $V_T(\phi)$ changes shape at
$$\cdot \text{ critical temperature } T_c = \sqrt{\frac{12}{\lambda + 3e^2}} |\mu|$$

$$\circ r$$

$$\cdot \text{ critical field } \sigma_c = \sqrt{\frac{2}{\kappa}} |\mu|$$

Formation and evolution: Abelian Higgs in expanding universe

$${f S}=-\int d^4x\,\sqrt{-g}\left(g^{\mu
u}D_\mu\phi^*D_
u\phi+V(\phi)+rac{1}{4e^2}g^{\mu
ho}g^{
u\sigma}F_{\mu
u}F_{
ho\sigma}
ight),$$

Complex scalar field $\phi(\mathbf{x}, t)$, vector field $A_{\mu}(\mathbf{x}, t)$ Covariant derivative $D_{\mu} = \partial_{\mu} - iA_{\mu}$. Potential $V(\phi) = \frac{1}{2}\lambda(|\phi|^2 - v^2)^2$. Metric $ds^2 = a^2(\tau)(-d\tau^2 + d\mathbf{x}^2)$ τ : conformal time, $\propto t, t^{\frac{1}{2}}$

Temporal gauge ($A_0 = 0$) field equations (index raised with Minkowski metric).

$$\ddot{\phi} + 2\frac{\dot{a}}{a}\dot{\phi} - D^2\phi + \lambda a^2(|\phi|^2 - v^2)\phi = 0,$$

$$\partial^{\mu}\left(\frac{1}{e^2}F_{\mu\nu}\right) - ia^2(\phi^*D_{\nu}\phi - D_{\nu}\phi^*\phi) = 0,$$

¢,

Abelian Higgs model simulations

- Numerical solution of partial differential equations by standard methods
- > Initial conditions: $\phi(\mathbf{x})$ Gaussian random field, correlation length small
- Expansion produces damping

us

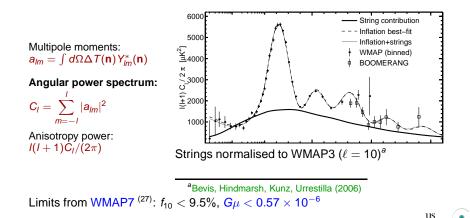
イロト イポト イヨト イヨト

Abelian Higgs model simulations: energy density isosurfaces

(Loading ...)

Abelian Higgs model simulations: Field isosurfaces, electric fields

(Loading ...)


Abelian Higgs model simulations: string length scale

Friedmann background (matter era)

119

1024³ data ε = 0.267t - 45.3 Total length of field zeros: L Network scale: $\xi = \sqrt{(V/L)}$ Scaling: $L/V \propto t^{-2}$ 22.0 Hence $\xi \propto t$ 50 100 150 200 250 Mass per unit length μ Energy density $\rho_{\rm s} = \mu L/V = \mu/\xi^2 \sim t^{-2}$ Critical (total) energy density $\rho_c \sim 1/Gt^2$ Density parameter $\Omega_s = \rho_s / \rho_c \sim G\mu$ - constant.

Cosmic string CMB using Abelian Higgs

(27) Bevis et al 2011

Other signals from cosmic defects

- Gravitational waves.⁽²⁸⁾ Generic features:⁽²⁹⁾
 - scale-invariant spectrum
 - amplitude $\Omega_{gw}(\omega) \sim 10^{-3} (v/M_P)^4$,
- Cosmic rays⁽³⁰⁾
 - GeV-scale γ-rays (EGRET, FERMI/LAT)
 - UHECRs (Auger)
 - Neutrinos (Ice Cube)
- Decaying defects are sources of
 - baryon number⁽³¹⁾
 - dark matter⁽³²⁾

⁽²⁸⁾Krauss 1992, Fenu et al 2009 ⁽²⁹⁾Figueroa, Hindmarsh, Urrestilla 2012. Cosmic string loops $\sim (\nu/M_P)^2$ (Vilenkin 1981) ⁽³⁰⁾Bhattacharjee, Sigl 1999 ⁽³¹⁾Bhattacharjee, Kibble, Turok 1984

⁽³²⁾Jeannerot, Zhang, Brandenberger 1999

Putting it all together: model-building for cosmology

- Particle physics: must include Standard Model (with 125 GeV Higgs!)
- Cosmology: inflation, reheating, baryogenesis, dark matter, dark energy

Ideology:

- Supersymmetry greatly reduces tuning both in inflaton and SM sectors
- ► Keep it simple: minimal F-term inflation, Minimal Supersymmetric SM
- Keep it predictive: renormalisable couplings only.

Model-building rules deriving from ideology:

- 1. The field content of minimal F-term inflation and the MSSM.
- 2. The symmetries of minimal F-term inflation and the MSSM.
- 3. Renormalisable couplings only.
- 4. An inflaton-sector U(1)' gauge symmetry coupled to the MSSM.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Minimal Renormalisable Inflationary Supersymmetric Standard Model

Model-building rules give a unique class of models⁽³³⁾

- Superpotential: $W = W_A + W_X + W_I$
- Consisting of:
 - Pure MSSM part: $W_A = H_2 QY_U U + H_1 QY_D D + H_1 LY_E E + H_2 LY_N N$
 - Unique coupling part: $W_X = \frac{1}{2}\lambda_2 NN\Phi \lambda_3 SH_1H_2$.
 - Pure F-term inflation part: $W_I = \lambda_1 \Phi \overline{\Phi} S M^2 S$
- μ -term from $\langle s \rangle$
- RH neutrino masses from $\langle \phi \rangle$
- All other renormalisable terms forbidden by symmetries

Mark Hindmarsh

- All B-violating operators forbidden by Y' and R
- Assume canonical Kähler potential

US

Related models

Same field content:

- $Y' = B L^{(34)}$. Neutrino masses from $\langle \phi \rangle$, but μ -term not specified.
- ▶ $U(1)' \to SU(2)_R^{(35)}$.
- ▶ F_D inflation⁽³⁶⁾. $\langle s \rangle$ gives both μ and (TeV-scale) N masses.

Even fewer fields:

- ▶ Higgs inflation⁽³⁷⁾ and *v*MSM⁽³⁸⁾
- Higgs-Dilaton theories⁽³⁹⁾

⁽³⁷⁾Bezrukov, Shaposhnkov 2008,9

us

⁽³⁴⁾Buchmüller, Domcke, Schmitz, Vertongen (2010-2012)

⁽³⁵⁾ Dvali, Lazarides, Shafi (1997)

⁽³⁶⁾Garbrecht, Pallis, Pilftsis (2006)

⁽³⁸⁾Asaka (Blanchet) Shaposhnikov (2005), Shaposhnikov, Tkachev 2006

⁽³⁹⁾Shaposhnikov, Zenhausern (2009); Garcia-Bellido et al (2011) → □ → → → → → → → → → → → →

MRISSM features

- MSSM (with neutrinos)
- F-term hybrid inflation (3 MSSM singlets + U(1)' symmetry)
- Dynamical explanation of µ-term and RH neutrino masses
- $\blacktriangleright\,$ Second period of Higgs-driven "thermal" inflation $T_{rh} \sim 10^9~GeV$
- Reduced amount of F-term inflation: $n_s \simeq 0.976$
- Neutralino DM (from gravitino decays or freeze-out)
- Leptogenesis from RH neutrino decays (if $M_{N_1} \lesssim 10^9 \text{ GeV}$)
- Baryogenesis (if electroweak phase transition is 1st order)

Mark Hindmarsh

• Cosmic strings, $G\mu_{cs} \simeq 10^{-7}$, consistent with CMB

Details elsewhere ... (40)

⁽⁴⁰⁾Hindmarsh, Jones 2012, 2013 (to appear)

Summary

- There were phase transitions in the early Universe
- QCD phase transition affects production of weakly-interacting particles
- Electroweak transition makes baryon number and gravitational waves in SM extensions
- Hybrid inflation can generate topological defects: CMB, gravitational waves
- Cosmic strings, if formed, have $G\mu < 0.55 \times 10^{-6}$
- MRISSM: a Minimal renormalisable inflationary supersymmetric Standard Model

us

< ロ > < 同 > < 回 > < 回 >

Future

- Gravitino production uncertain by factor up to 2
- Baryon number calculation still order-of-magnitude
- Gravitational wave production from 1st order phase transition (fluid!)
- Gravitational wave and particle production from strings still uncertain
- "Effective theories of everything"
- and ... DATA!
 - ► Higgs structure → EW phase transition
 - Beyond the SM ...
 - Dark matter \rightarrow universe at $T \sim 5 \,\text{GeV}$
 - Planck CMB \rightarrow universe at $E \sim 10^{15} \, \text{GeV}$
 - Large Scale Structure, gravitational waves ...
- ▶ Towards a complete history of the universe from 10⁻³⁶ seconds on

US

< ロ > < 同 > < 回 > < 回 >