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This talk closely follows sections 49, 57-59 of [1] and section 26 of [2]. Section 3 follows
[3].

1 Motivation

As we know from the Noether theorem, global continuous symmetries of a theory give
rise to conserved currents. Therefore, if we study a Poincaré invariant field theory with
global supersymmetry, we should be able to identify currents that correspond to these
symmetries. These are called the energy-momentum tensor and the supercurrent of the
theory, respectively. From the SUSY algebra, we know that{

Qα, Q̄β̇

}
= 2 (σµ)αβ̇ Pµ. (1)
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The Noether theorem furthermore tells us that the charges that generate a symmetry
can be obtained by integrating the time-component of the corresponding current over a
fixed time-slice, such that

Qα =

∫
V

d3xS0α, Pµ =

∫
V

d3xT0µ. (2)

Plugging these expressions into Eq.(1) we find that{
S0α, Q̄β̇

}
= 2 (σµ)αβ̇ T0µ. (3)

Eq.(3) shows that in supersymmetric theories the energy-momentum tensor and the
supercurrent are not independent of each other, but rather seem to belong to one SUSY-
multiplet. In this talk, we therefore want to study the relations supersymmetry imposes
among symmetry currents and make precise the idea sketched above. In section 2 we
study the problem for simple Wess-Zumino models, which will also allow us to set up
notations and conventions. In section 3 we discuss recent results concerning the existence
of supercurrent multiplets, before we study currents in SQCD in section 4. Given the
topics of the preceding talks, we will be especially interested in how anomalies arise and
how they arrange themselves in a multiplet.

2 Wess-Zumino models

2.1 Reminder: SUSY field theory

In this talk, we will work in N = 1 superspace, which is the extension of Minkowski
space by 4 Grassmann coordinates

{xµ} →
{
xµ, θα, θ̄α̇

}
, (4)

where α, α̇ = 1, 2. On superspace, a SUSY transformation can be parametrised by1

δθα = εα, δθ̄α̇ = ε̄α̇, δxαα̇ = (σµ)αα̇ δxµ = −2iθαε̄α̇ − 2iθ̄α̇εα. (5)

Two subspaces that are left invariant by such transformations are the chiral subspaces{
xµL = xµ − iθα (σµ)αα̇ θ̄

α̇, θα
}
,
{
xµR = xµ + iθα (σµ)αα̇ θ̄

α̇, θ̄α̇
}
. (6)

Representations of the SUSY algebra are then formed by superfields f
(
xµ, θ, θ̄

)
, fields

which depend on all superspace coordinates. Due to the Grassmann nature of the θ,
θ̄-variables, superfields can be expanded as

f
(
xµ, θ, θ̄

)
= f1 (xµ) + · · ·+ θ2θ̄2fn (xµ) , (7)

1We will frequently switch between vectors and bi-spinors using the Pauli matrices: vαα̇ = (σµ)αα̇ vµ ↔
vµ = 1

2vαα̇ (σ̄µ)
α̇α
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where the fi (x
µ) are regular fields, which only depend on the space-time coordinates.

The action of the supercharges and superderivatives on superfields can then be repre-
sented by differential operators as

Qα = −i ∂
∂θα

+ θ̄α̇∂αα̇, Q̄α̇ = i
∂

∂θ̄α̇
− θα∂αα̇, (8)

as well as

Dα =
∂

∂θα
− iθ̄α̇∂αα̇, D̄α̇ = − ∂

∂θ̄α̇
+ iθα∂αα̇. (9)

To find the transformation behaviour of a given superfield, we just have to plug Eq.(5)
in

Φ + δΦ = Φ
(
x+ δx, θ + δθ, θ̄ + δθ̄

)
(10)

and compare the corresponding components. A generic feature is that the highest com-
ponent of a superfield transforms as a full derivative, which we will use later to build
SUSY-invariant actions.
A general superfield will form a reducible representation of the SUSY algebra. Therefore,
we need to impose constraints on the superfields which are consistent with SUSY to find
irreducible representations. Two constraints we will use later on are the reality condition
V † = V , which leads to the vector superfield, and the chirality constraint D̄α̇Φ = 0. The
latter constraint is equivalent to saying that Φ = Φ (xL, θ) and can be expanded as

Φ (xL, θ) = φ (xL) +
√

2θαψα (xL) + θ2F (xL) . (11)

This represents the minimal supermultiplet. Analogously, we can define antichiral su-
perfields by the constraint DαΦ̄ = 0. The chirality constraint is consistent with SUSY
due to

{
D̄α̇, Qα

}
= 0. It should be noted that sums and products of superfields are

again superfields, as are space-time- and superderivatives of superfields.
To find supersymmetric Lagrangians we use integrals over Grassmann variables, which
are defined by the properties ∫

dθi = 0,

∫
dθiθj = δij. (12)

We normalise integrals over the chiral subspaces such that∫
d2θθ2 =

∫
d2θ̄θ̄2 = 1. (13)

Note that Eq.(12) implies
d (cθ) = c−1dθ. (14)

Furthermore, it follows from Eq.(12) that∫
d2θd2θ̄V (15)
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over an arbitrary superfield V projects out the highest component of V . As mentioned
before, this generically transforms as a total derivative. Therefore,

S =

∫
d4xd2θd2θ̄V =:

∫
d4xL (16)

is invariant under SUSY-transformations and can serve as an action for a SUSY field
theory. Note, however, that it is only the action that is invariant, not the Lagrangian
itself.

2.2 WZ Models

We now want to construct a simple field theory using a chiral and an antichiral superfield.
Using Eq.(11) and the corresponding expression for an antichiral superfield Φ̄, we see
that the highest component of Φ̄Φ gives rise to kinetic terms for the fields φ, ψ:∫

d4x
(
∂µφ̄∂

µφ+ iψ̄α̇∂
α̇αψα + F̄F

)
(17)

Non-derivative terms such as mass terms and interactions are then introduced by a
polynomial function of the superfields called superpotential W(Φ, Φ̄). We will focus on
the case where the superpotential W(Φ) only depends on Φ. In four dimensions, the
highest power of Φ that can appear in W if the theory is to be renormalisable is three.
We can then write the superpotential as

W(Φ) =
m

2
Φ2 − λ

3
Φ3, (18)

where the linear term was omitted, since it can always be removed by a shift in Φ. This
defines the Wess-Zumino model,

S =

∫
d4x

(∫
d2θd2θ̄Φ̄Φ +

∫
d2θW(θ) +

∫
d2θ̄W̄(Φ̄)

)
, (19)

whose Lagrangian in space-time reads

L = ∂µφ̄∂
µφ+ iψ̄α̇∂

α̇αψα + F̄F +

[
FW ′(φ)− 1

2
W ′′(φ)ψ2 + h.c.

]
. (20)

2.3 Currents in the Wess-Zumino models

What are the symmetries of Eq.(19)? By construction, the theory is Poincaré and SUSY
invariant. Therefore, we can find the corresponding conserved currents Tµν and Jµα.
Furthermore, we see that λ is dimensionless, so that the theory is scale invariant (and
therefore conformal) for m = 0. In that case, we should have T µµ = 0. Starting from the
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simplest case of vanishing superpotential, one finds the corresponding energy-momentum
tensor

Tµν = ∂µφ̄∂νφ+ ∂νφ̄∂µφ− gµν
(
∂χφ̄∂χφ− FF̄

)
+ fermions

+
1

3

(
gµν∂

2 − ∂µ∂ν
)
φφ̄. (21)

The second line of Eq.(21) seems to be unnecessary. It is conserved by itself and gives no
contribution to the charges P µ of the energy-momentum tensor. However, as mentioned
above, we need T µµ to be proportional to the equations of motion, which is only fulfilled
after including this term. Such a term is called an improvement. For the supercurrent,
we can again use the Noether procedure and obtain

Jαββ̇ =2
√

2
([(

∂αβ̇φ̄
)
ψβ − iεβαFψ̄β̇

]
−1

6

[
∂αβ̇

(
ψβφ̄

)
+ ∂ββ̇

(
ψαφ̄

)
− 3εβα∂

γ

β̇

(
ψγφ̄

)])
, (22)

where the second line again is an improvement term. Equipped with Eqs.(21) and (22)
we can then study the real superfield

Jαα̇ = −1

3

(
D̄α̇Φ̄

)
(DαΦ) +

2

3
iΦ̄
←→
∂α̇αΦ. (23)

Using the equations of motion, now for a general superpotential Eq.(18), one can show
that

DαJαα̇ = 2D̄α̇

(
W̄ − 1

3
Φ̄W̄ ′

)
=: D̄α̇X̄, (24)

which implies (using {Dα, D̄α̇} = 2i∂αα̇)

∂α̇αJαα̇ =
1

2i

(
D2X − D̄2X̄

)
. (25)

Expanding the right-hand side of Eq.(23) in terms of components, we find the lowest
components

Jαα̇ = Rαα̇ −
[
iθβ
(
Jβαα̇ −

2

3
εβαε

γδJδγα̇

)
+ h.c.

]
+ ..., (26)

as well as the θθ̄-component (for convenience written in vectorial notation)

Jµ|θθ̄ =
[
θ̄α̇ (σ̄ν)α̇α θα

](
2Tµν −

2

3
gµνT

χ
χ −

1

2
ενµρσ∂

ρRσ

)
. (27)

As hinted at in the motivation, we indeed see that the energy-momentum tensor Eq.(21)
and the supercurrent Eq.(22) appear in one multiplet. It should be noted that X̄ in
Eq.(24) vanishes for vanishing or purely cubic superpotential, i.e. for massless theories.
Let us now look at the lowest component of the supercurrent multiplet, which is given
by

Rµ = −1

3
ψ̄α̇ (σ̄µ)α̇α ψα +

2

3
iφ̄
←→
∂ µφ. (28)
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This looks like a U(1) current for the transformation φ→ e
2
3
iαφ, ψ → e−

1
3
iαψ, which is

an R-symmetry transformation. Remember that R-symmetry corresponds to symmetry
under automorphisms of the supercharges, which for N = 1 SUSY just corresponds to
a U(1)-rotation,

[R,Qα] = −Qα,
[
R, Q̄α̇

]
= Q̄α̇, (29)

which can be implemented on superspace as a transformation of the Grassmann direc-
tions θ → eiαθ, θ̄ → e−iαθ̄. Therefore, R-symmetry is, like translations and SUSY, a
geometric symmetry and the three symmetries are naturally grouped together in Eq.(23).
The R-charge we assign to a superfield Φ(x, θ, θ̄)→ eiαrΦ

(
x, eiαθ, e−iαθ̄

)
corresponds to

the R-charge of its lowest component. The R-charge of all higher components is then
fixed. For a general superpotential∫

d2θW(Φ)→
∫ (

e−2iαd2θ
)
eiαrWW

(
eiαrΦ

)
(30)

this means that the theory can only be invariant under R-symmetry if W has R-charge
2. For the above case Eq.(28), we have Φ → e

2
3
iαΦ, which leads to an invariant La-

grangian for a purely cubic superpotential. If the Lagrangian is R-symmetric the lowest
component of D2X − D̄2X̄ = 0 and the R-current is conserved, but generically this is
not the case.
As a last comment, note that the higher components of the supercurrent multiplet are
trivially conserved.

3 Supercurrent multiplets

In the last section, we saw that the geometric currents of Wess-Zumino models arrange
themselves in a supermultiplet, the Ferrara-Zumino multiplet [4]. Since WZ-models
constitute a special class of SUSY field theories, it is a natural question whether this
multiplet structure is a generic feature of SUSY theories. This turns out to be true, as
is shown in [3] and we review the central results here.
SUSY field theories can be divided in two classes: those with an exact R-symmetry and
those without. For the latter, it is (almost) always possible to find a multiplet Jαα̇,
called FZ-multiplet, with the properties

D̄α̇Jαα̇ = DαX, with D̄α̇X = 0. (31)

The multiplet we studied in section 2 is an example of such a multiplet. The choice of
Jαα̇, however, is not unique, since the defining properties Eq.(31) are conserved under
the shifts

J ′αα̇ = Jαα̇ +
[
Dα, D̄α̇

] (
Ξ + Ξ̄

)
, (32)

X ′ = X +
1

2
D̄2Ξ̄, (33)
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for any chiral Ξ. Under these shifts, the currents in the multiplet change by improvement
terms. In [3] it is shown that if there is a solution to the equation

X = −1

2
D̄2Ξ̄, (34)

so that X is ‘pure gauge’, the theory is superconformal and the bottom component of Jαα̇
is the conserved R-symmetry current. In fact, it is true that the theory is superconformal
if and only if the theory has a supercurrent multiplet which is conserved, DαJαα̇ = 0.
The FZ-multiplet exists for most SUSY theories, but can be ill-defined for more general
Kähler potentials or when FI-terms are present.
For theories with a continuous R-symmetry, another multiplet exists and is given by a
real superfield Rαα̇. It is defined by the properties

D̄α̇Rαα̇ = χα, with

D̄α̇χα = 0 and D̄α̇χ̄
α̇ −Dαχα = 0. (35)

It is easy to show that Eqs.(35) immediately imply that the bottom component of Rαα̇ is
conserved. Again, the choice of Rαα̇ is not unique and we have a shift symmetry under

R′αα̇ = Rαα̇ +
[
Dα, D̄α̇

]
J, (36)

χ′α = χα +
3

2
D̄2DαJ, (37)

where J is a real linear superfield. As in the FZ-case, the currents change by improvement
terms under the shift. It should be noted that the existence of the FZ- and the R-
multiplets is not exclusive. If a theory has a FZ-multiplet and a conserved R-current,
the two multiplets are the same and differ only by a shift transformation.
The main result of [3] is the construction of a supercurrent multiplet Sαα̇ that exists for
every SUSY theory. It is defined by the properties

D̄α̇Sαα̇ = DαX + χα, (38)

D̄α̇X = 0, (39)

D̄α̇χα = D̄α̇χ̄
α̇ −Dαχα = 0, (40)

and therefore interpolates between the FZ- and the R-multiplet. It reduces to the these
cases if the solutions of D̄2U = −2X or D̄2DαU = −2

3
χα for real U exist globally. It is

interesting to note that while the FZ- and the R-multiplet are known for more than 20
years, it was only two years ago that the most general multiplet was found.

4 SQCD

In the last part of the talk, we study the supercurrent multiplet for SUSY gauge theories,
focusing on SQCD. While our discussion of the WZ-models was purely classical, we will
be especially interested in quantum anomalies that show up in the currents.
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SQCD is a N = 1, SU(N) gauge theory. Matter fields are represented by a pair of a
chiral and an antichiral superfield Qi, Q̄i for each flavour. The chiral superfields are in
the fundamental representation of SU(N), therefore the colour index above runs from
i = 1, ..., N . The gauge fields live in a vector superfield V with field strength tensor

Wα =
1

8
D̄2e−V

(
Dαe

V
)
. (41)

The Lagrangian of SQCD then reads

L =

(
1

4g2

∫
d2θWαaW a

α + h.c.

)
+
∑
f

∫
d2θd2θ̄Q̄fe

VQf +

(∫
d2θW (Qf ) + h.c.

)
.

(42)

4.1 Gluodynamics

As a first step, let us only consider the gluonic part of Eq.(42), which explicitly reads

Lglue = − 1

4g2
Ga
µνG

µνa +
i

g2
λaαDαβ̇λ̄

aβ̇ +
θ

32π2
Ga
µνḠ

µνa. (43)

This theory is similar to one-flavour QCD with the difference that the fermion here is in
the adjoint and not in the fundamental representation. Since the gluinos are massless,
the Lagrangian is invariant under λ→ eiαλ. This is just R-symmetry for the R-charges
R(V ) = 0, R(W ) = 1. Therefore, we have a conserved R-current and, as we know from
section 3, the R-multiplet exists and is given by

Jαα̇ = − 4

g2
Tr
(
eVWαe

−V W̄α̇

)
, with D̄α̇Jαα̇ = 0. (44)

At quantum level, however, the R-symmetry is broken. This comes as no surprise, as
we have seen the breaking of chiral symmetry for massless fermions before (cf. Tigran’s
talk). The explicit form of the non-conservation of the R-current is given by

∂µR
µ =

N

16π2
Ga
µνḠ

µνa. (45)

By anticommuting this expression with the supercharges, one finds the general expression
for the supercurrent multiplet,

D̄α̇Jαα̇ = − N

8π2
Dα

(
TrW 2

)
6= 0, (46)

as was pointed out in [5]. Since the left-hand side of Eq.(46) contain the term T µµ , we
can read off a possible scale anomaly and, indeed, we find

T µµ = − 3N

16π2
Tr
(
Ga
µνG

µνa
)
. (47)
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This fits nicely in the picture of section 3: The R-current is no longer conserved and
therefore the theory is no longer superconformal, as we can clearly see from a violation
of scale invariance.
It is very interesting to see that not only the symmetry currents, but also the anomalies
arrange themselves in one superfield. However, this gives rise to a profound problem: the
R-current violation should be 1-loop exact by the SUSY version of the Adler-Bardeen
theorem [6], [7]. On the other hand, we know from the preceding talks that the scale
anomaly is proportional to the β-function, T µµ ∼ β(g). Therefore, either the β-function is
1-loop exact or R-symmetry and T µµ cannot reside in the same multiplet. The solution of
this problem, according to [8], is that the anomalies, understood as operator equations,
are indeed 1-loop exact in the Wilsonian picture. However, once matrix elements are
computed, infrared effects enter and lead to higher-order corrections in the β-function
(which is known exactly in gluodynamics)2. We will meet this problem again in the next
section.

4.2 Once again with matter...

We now want to repeat the analysis of section 4.1 and study the changes that arise when
matter fields are included. However, we will still work with vanishing superpotential.
Therefore, we find a new U(1) symmetry Qf → eiαQf in each flavour subsector, in addi-
tion to the geometric symmetries. The matter fields then give additional contributions
to the supercurrent multiplet, which now reads

Jαα̇ =
4

g2
Tr
(
W̄α̇e

VWαe
−V )− 1

3

∑
f

Q̄f

(←−̄
∇ α̇e

V∇α − eV D̄α̇∇α +
←−̄
∇ α̇

←−
Dαe

V
)
Qf , (48)

and we find additional symmetry currents

Rfµ = −ψfσµψ̄f − φf i
←→
D µφ̄f . (49)

This turns out to be the θθ̄-component of the Konishi operator Jf = Q̄fe
VQf . To make

contact with the geometric supercurrent, we transform this into a bi-spinor via

Jfαα̇ = −1

2

[
Dα, D̄α̇

]
Jf . (50)

In contrast to the geometric supercurrent, all higher components of the Konishi current
are conserved trivially. Including matter fields also modifies the anomaly on the right-
hand side of Eq.(46). Explicitly,

X = − N

8π2
TrW 2 → −2

3

[
3N − Nf

2

16π2
TrW 2 +

1

8

∑
f

γfD̄
2
(
Q̄fe

VQf

)]
, (51)

2It should be mentioned that there is some criticism concerning this solution. References that provide
more information are [9] and [10].
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where

γf = − d(logZf )

d(logMUV)
(52)

are the anomalous dimensions of the flavour fields. The first term of Eq.(51) is easy
to understand: the violation of the R-current comes from fermion triangles. We now
get additional contributions from the matter fermions, which contribute with a relative
factor compared to the gauge fermions. The second term is a little bit more involved.
Classically, this term should vanish because of D̄2Jf = 0, but since we will find anomalies
in the Konishi operator, as well, we keep the term. Due to the anomalous dimensions,
this term includes all-loop order information. It can be understood when interpreting
the original Lagrangian Eq.(42) to be formulated in the UV. Letting the theory flow to
a renormalisation scale µ in the IR, [8] obtain the effective action

Leff =

(
1

2g2
0

−
3N − Nf

2

16π2
log

MUV

µ

)∫
d2θTrW 2 +

∑
f

1

8
Zf (µ)

∫
d2θD2Q̄fe

VQf + h.c.,

(53)
where Zf (µ) are the field renormalisation constants and MUV is the UV cutoff. The first
term in Eq.(53) shows explicitly what we mentioned at the end of the last section: Only
the first term of the β-function appears in the operator equation. The appearance of
terms like logMUV signals the breakdown of scale invariance, as is to be expected due to
UV divergences. Looking at the effective action, we see that the matter fields contribute
terms proportional to

d logZf

d logMUV
when changing the scale, which explains the structure of

the second term in Eq.(51).
As mentioned above, there are also anomalies in the flavour currents. Again, this is no
surprise - the broken symmetry is a chiral symmetry for massless fermions. The anomaly
reads

D̄2Jf =
1

4π2
TrW 2 (54)

and is exact to all-loop order. Since this is an exact result, we can plug Eq.(54) in
Eq.(51) to find

X = −2

3

[
1

16π2

{
3N − 1

2

∑
f

(1− γf )

}
TrW 2

]
, (55)

which leads to the non-conservation equation

∂αα̇Jαα̇ =
i

48π2
D2

[
3N − 1

2

∑
f

(1− γf )

]
TrW 2 + h.c. (56)

This, however, allows us to define a new current

J̃αα̇ = Jαα̇ −
3N − 1

2

∑
f (1− γf )(

3Nf

2

) ∑
f

Jfαα̇, (57)
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which is conserved ∂αα̇J̃αα̇ = 0. Furthermore, we can define Nf −1 anomaly-free flavour
currents by

J fg
αα̇ =

1

2
(Jfαα̇ − Jgαα̇) . (58)

Note that from Eq.(55) we find

DαJ̃αα̇ ∼ 3N − 1

2

∑
f

(1− γf ) , (59)

which means that, depending on γf , the theory can flow to the conformal limit in the
IR.

5 Conclusions

Let us summarise our discussion. We have seen that the currents of the geometric sym-
metries, i.e. R-symmetry, supersymmetry and translation symmetry, arrange themselves
in a supermultiplet. This is true for all SUSY field theories, whether it has a conserved
R-current or not. In the explicit example of SQCD we studied the effects of quantum
anomalies. We saw that the anomalies in the geometric currents are accompanied by
matter anomalies, allowing the definition of anomaly-free currents, which are a combi-
nation of the geometrical and flavour currents.
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