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1 Introduction

The idea of a composite Higgs dates back to the eighties and a good way
to look at it is as an interpolation between the Standard Model Higgs and
Technicolor theories. In this class of theories the Higgs arises as a pseudo
Goldstone boson from a broken global symmetry in a strongly interacting
sector. The Higgs is naturally lighter than the strong scale of the theory
because of its Goldstone nature. The main advantages with respect to the
Standard Model are the fact that it solves the hierarchy problem and it
provides a dynamical prescription for EWSB. Compared to Technicolor the
separation of scales between the electroweak and strong sector allows one
to pass EWPTs and other collider constraints more easily. These points
together with some phenomenological implications will be addressed in this
lecture. These notes are mainly based on the TASI lecture notes [1] and
recent lectures given at Trieste [3] and CERN [2] by Contino. The interested
reader can find more details there.
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2 EWSB and Unitarity

In order to discuss the Higgs and possible extensions we need to understand
its role in the Standard Model and we need to address the problems which
arise without the Higgs. For this reason let the Higgs be absent and consider
the massless Standard Model Lagrangian

L0 = −1

4
W a
µνW

aµν − 1

4
BµνB

µν − 1

4
GaµνG

aµν +

3∑
j=1

Ψ̄(j)i /DΨ(j). (1)

Of course experiments also dictate masses for the fermions and the elec-
troweak gauge bosons. We introduce them in a slightly alternative way
including the Goldstone bosons that correspond to the longitudinal polar-
izations of the massive gauge bosons

Lmass =
v2

4
Tr
[
(DµΣ)† (DµΣ)

]
− v√

2

∑
i,j

(
ū

(i)
L d̄

(i)
L

)
Σ

(
λuij u

(j)
R

λdij d
(j)
R

)
+ h.c. (2)

The chiral field Σ contains the Goldstone bosons in a non-linear way as

Σ(x) = exp [iσaχa(x)/v] , DµΣ = ∂µΣ− igσ
a

2
W a
µΣ + ig′Σ

σ3

2
Bµ . (3)

In this chiral form the electroweak symmetry SU(2)L × U(1)Y is manifest
since Σ transforms as

Σ(x)→ UL(x) Σ(x)U †Y (x). (4)

We see that the symmetry is nonlinearly realized on the Goldstone bosons
χa, indicating that the symmetry is hidden or spontaneously broken by
the mass terms. In the non-trivial vacuum, that is 〈Σ〉 = 1, the familiar
masses for the gauge bosons and fermions are reproduced. A nice feature
we can also immediately see is the invariance under global SU(2)L×SU(2)R
transformations

Σ(x)→ UL Σ(x)U †R, (5)

for vanishing g′ and λuij = λdij . This symmetry is broken to the diagonal by
〈Σ〉 = 1 resulting in the custodial symmetry SU(2)c giving a ρ parameter
equal to one at tree level.

2.1 Unitarity

This theory has a problem with perturbative unitarity, since it predicts
amplitudes that grow with energy. Then at some (high) energy perturbation
theory breaks down and the theory is not valid anymore. These amplitudes
which grow with energy occur in the scattering of the longitudinal modes of
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the massive gauge bosons. Let us sketch the argument using the equivalence
theorem which states that the amplitude for a longitudinal gauge boson is
equal to the amplitude for its respective Goldstone boson at sufficiently high
energies:

=

W
µ
L χ

×
(

1+O

(
m2
W

E2

))
.

Then at leading order in E/mW we find for the scattering of two longitudinal
W ’s

A(χ+χ− → χ+χ−) =
1

v2
(s+ t) . (6)

The growth with energy originates from the derivative interaction among
four Goldstone bosons. The unitarity bound prescribes that the elastic
amplitudes al of each l-th partial wave must satisfy Im(al) = |al|2 + |ainl |2.
For elastic scattering al is constraint to lie on the unitary circle Re2(al) +
(Im(al) − 1/2)2 = 1/4. Then for tree level scattering the amplitude is real
and an imaginary part only arises for the 1-loop level. Perturbativity breaks
down when both parts are of the same order, which gives us breakdown
when Re(al) > π/2 or 1/2. Projecting on partial wave amplitudes, using
the Legendre polynomials (P0(x) = 1, P1(x) = x, P2(x) = 3x2/2 − 1/2,
etc.), we find

al =
1

32π

∫ +1

−1
d cos θ A(s, θ)Pl(cos θ). (7)

The s-wave amplitude then reads

a0(W+
LW

−
L →W+

LW
−
L ) ' 1

32π

s

v2
, (8)

which leads to the bound Λ ' √s ≤ 4πv.

Ultimately the loss of perturbative unitarity can be traced back to the non-
renormalizability of the chiral Lagrangian in equation (2). This again is
related to the fact that the chiral Lagrangian is an effective field theory
which breaks down at some energy scale. For chiral theories in general we
have that the break down scale is Λ = 4πv, as we saw in the lecture on sigma
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models. Now we have two possibilities: either cure the problem by introduc-
ing new degrees of freedom which restore perturbative unitarity or let the
theory become strongly coupled at some higher energy. Both scenarios indi-
cate the emergence and therefore need of new physics and we conclude that
there has to be some symmetry breaking dynamics as an UV-completion of
the chiral Lagrangian.

2.2 Higgs Model

Now we use some knowledge from the sixties and the seventies and add a
scalar h which is a singlet under SU(2)L×SU(2)R with arbitrary couplings
to gauge bosons and fermions. So instead of the chiral mass Lagrangian we
now have [4] (to quadratic order in the scalar h)

LH =
1

2
(∂µh)2 + V (h) +

v2

4
Tr
[
(DµΣ)† (DµΣ)

](
1 + 2a

h

v
+ b

h2

v2
+ . . .

)

− v√
2

∑
i,j

(
ū

(i)
L d̄

(i)
L

)
Σ

(
1 + c

h

v
+ · · ·

)(
λuij u

(j)
R

λdij d
(j)
R

)
+ h.c.

(9)

where a, b and c are arbitrary couplings and V (h) is the potential for the
scalar field. Now let’s look at the possible amplitudes which could be growing
with energy and look at the effect of the added scalar field h.

χχ→ χχ scattering

A(χ+χ− → χ+χ−) =
1

v2

[
s− a2 s2

s−m2
h

+ (s↔ t)

]
=
s+ t

v2

(
1− a2

)
+O

(
m2
h

E2

)
.

χχ→ hh scattering

A(χ+χ− → hh) =
s

v2

(
b− a2

)
+O

(
m2
h

E2

)
.
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χχ→ ψψ̄ scattering

A(χ+χ− → ψψ̄) =
mψ
√
s

v2
(1− ac) +O

(
m2
h

E2

)
.

From the χχ → χχ scattering result we see that now the theory is per-
turbative until a higher scale

Λa =
4πv√
1− a2

, (10)

and similarly for the other amplitudes. The different amplitudes are fully
unitarized for a2 = 1, b = a2 and ac = 1, implying that a = b = c = 1
unitarizes the whole Lagrangian. It is exactly this parameter space point
(assuming vanishing higher order terms) which coincides with the Standard
Model Higgs and for this point the Lagrangian (9) can be rewritten in terms
of the familiar Higgs doublet

H(x) =
1√
2
eiσ

aχa(x)/v

(
0

v + h(x)

)
. (11)

Notice that the renormalizability of the Standard Model Lagrangian provides
us with a unitary description for all energies. In general, however, theories
can predict different values for a, b and c as for example we will see for the
composite Higgs. In the end experiments, hopefully the LHC, will determine
the couplings of the Higgs and thereby its nature and that of EWSB.

2.3 Technicolor

Although the Higgs model might be the most straightforward method to
solve the unitarity problem, there is already another example in nature
which does the same, namely QCD. At low energies QCD breaks a global
SU(2)L × SU(2)R chiral symmetry to the vectorial SU(2)V via the known
condensates, like the pions. This has already been discussed in the first
lecture in this workshop series, but we will indicate the main features to get
an idea how it works, after all the composite Higgs shares some similarities
with QCD/Technicolor. Technicolor basically is an upscaled version of QCD
with a possibly different gauge group, which at least also has the same global
chiral symmetry. Hence let us have a look at QCD in terms of unitarity and
EWSB. The chiral Lagrangian for the pions is given by

Lπ =
f2
π

4
Tr
[
(∂µΣ)† (∂µΣ)

]
, Σ(x) = exp(iσaπa(x)/fπ) , (12)
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where fπ = 92 MeV is the pion decay constant. This Lagrangian however
also suffers from the same unitarity problems as before, however we know
that there is no light scalar Higgs-like resonance unitarizing the theory. In-
stead the tower of resonances in QCD, which is exchanged in pion-pion
scattering at high energies enforces unitarity.

(SU(NTC))

SU(2)L × SU(2)R

SU(2)V

TC

SU(2)L × U(1)Y

QCD

SU(2)L × SU(2)R

SU(2)V

π πTC

(SU(3)c)

Figure 1: Cartoon of a new Technicolor sector and QCD with part of their
global symmetries gauged by the weak interactions.

Now let us turn on the weak interactions and look at the effects. We have a
global symmetry breaking of SU(2)L×SU(2)R×U(1)B → SU(2)V ×U(1)B
of which only the SU(2)L × U(1)Y part is gauged. In this way an explicit
breaking of the global symmetry is introduced and the QCD vacuum breaks
the electroweak invariance and the pions are eaten to give mass to the W
and the Z. To see this explicitly we gauge the chiral Lagrangian

Lπ =
f2
π

4
Tr
[
(DµΣ)† (DµΣ)

]
. (13)

Then expanding around the vacuum 〈Σ〉 = 1 we find for the gauge boson
masses

Lmass =
g2f2

π

4
W+
µ W

µ− +
g2 + g′2

8
f2
πZµZ

µ. (14)

Which gives too low masses for the gauge bosons, however one could imagine
another upscaled version of QCD with Fπ ' v. This is Technicolor, where
one has an SU(NTC) gauge group with a global SU(2)L × SU(2)R invari-
ance broken down to SU(2)V at low energies due to confinement, see figure 1.

So we have seen two ways to resolve the unitarity problem and generate
a viable mechanism for EWSB, one weakly coupled and one strongly cou-
pled. However, both of them are not very satisfying. The Higgs model
has a hierarchy problem and it is generally believed that a more symmet-
ric theory like SUSY is there to address this. Although Technicolor has no
Higgs and therefore no hierarchy problem, it is roughly excluded by exper-
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imental searches. First of all a light bosonic resonance is found, moreover
Technicolor predicts too high contributions to FCNC’s and the S parameter.

3 Composite Higgs

An interesting interpolation between the Higgs model and Technicolor is the
composite Higgs paradigm, where the Higgs is a bound state from a strongly
interacting sector [5]. In particular the Higgs will emerge as a pseudo Gold-
stone boson of an enlarged global symmetry of this strong sector, this will
assure that it is naturally lighter than the other resonances of the strong
sector. First we will discuss the general principles which are necessary for a
successful construction of the Higgs as a pseudo Goldstone boson and then
we will present the minimal custodially invariant example.

The composite Higgs paradigm is based on two requirements

• The Higgs is a composite pseudo Goldstone boson of some global sym-
metry breaking G → H1 at a scale f in a strongly coupled theory.

• The electroweak gauging of G does not trigger a Higgs mechanism at
tree level, instead at loop level a Higgs potential is generated leading
to EWSB.

EWSB
Sector

H0

G H1

H

Figure 2: Cartoon of a strongly interact-
ing EWSB sector with global symmetry
G broken down to H1 at low energy. The
subgroup H0 ⊂ G is gauged by external
vector bosons.

H

G

H0 H1

1

Figure 3: The pattern of sym-
metry breaking.

A look at the symmetry structure reveals the general features:

• G → H1 global symmetry breaking

• H0 ⊂ G gauged subgroup

• H = H1∩H0 unbroken gauge group

• GBs: n = dim(G)− dim(H1)

• Eaten GBs: n0 = dim(H0)−dim(H)

• n−n0 are pseudo Goldstone bosons
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To realize the Higgs as a pseudo Goldstone boson two more conditions need
to be realized:

• The SM group GSM must be embedded in the unbroken group H1.

• G/H1 contains at least one doublet of SU(2)L.

For simplicity the external gauge group can be identified with the Standard
Model one, that is H0 = GSM = SU(2)L × U(1)Y . This implies that at tree
level GSM ⊂ H1. However, at one loop level an EWSB potential is generated
which implies that GSM → U(1)em which we can understand as a misalign-
ment of the true vacuum from the gauged subgroup.

The alternative way to view it, is via a two step breaking G f→ H1
v→ H2,

where only the U(1)em part of H2 is gauged. As a short summary the
following features are to be stressed:

• The Higgs boson is a Goldstone boson from the global symmetry break-
ing G/H1 in a strong sector.

• The gauging of the global symmetry GSM ⊂ G introduces an explicit
breaking of G and makes the Higgs a pseudo Goldstone boson.

• Then loops of SM fermions and gauge bosons generate a Higgs po-
tential which gives the Higgs a small mass and can break electroweak
symmetry.

• The EWSB breaking scale v is dynamically generated and can be much
smaller than the strong breaking scale f .

• Strong resonance masses around mρ ∼ gρf and Higgs mass around
mh ∼ gSMv, where we generally have gSM ∼< 1 ∼< gρ ∼< 4π.

• The ratio ξ = (v/f)2 acts as a suppression scale for precision observ-
ables: in the limit of ξ → 0 we obtain the Standard Model, whereas
in the limit of ξ → 1 we obtain a Technicolor like theory with a light
Higgs.

3.1 Minimal Custodial Model: SO(5)/SO(4)

Now we want to construct the minimal model which can accommodate
EWSB, the Higgs doublet and does respect the custodial symmetry. Hence
we need a coset which at least contains four real Goldstone bosons: the
simplest solution would then be SU(3)/SU(2) × U(1) giving the required
Goldstone bosons. However the constraint of custodial symmetry will not be
satisfied here, custodial symmetry is related to an approximate SU(2)L ×
SU(2)R which is broken to the diagonal by EWSB. So we need at least
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an unbroken custodial symmetry and the minimal choice then is SO(4) '
SU(2)L×SU(2)R. We then find the minimal symmetry breaking SO(5)/SO(4) =
S4, where the coset is a sphere in five dimensions containing the dim SO(5)−
dim SO(4) = 10− 6 = 4 Goldstones.

For a construction with a realistic embedding of the hypercharge we need an
extra U(1)X symmetry [6]. We now have SO(5) × U(1)X/SO(4) × U(1)X ,
the factor U(1) does not play any role in the symmetry breaking. Then we
gauge the SU(2)L×U(1)Y part of the unbroken SU(2)L×SU(2)R×U(1)X
which gives a hypercharge Y = T3R +X.

Now let us analyze the Goldstone bosons and their parametrization both
for the strong sector breaking and for EWSB. This detailed form contains
the information about the symmetry breaking and will give us information
about the couplings of the Goldstones once used in effective Lagrangians.
The Goldstone bosons living on the SO(5)/SO(4) coset can be parameter-
ized in the usual CCWZ formalism as

Φ(x) = exp
(
i
√

2πâ(x)T â/f
)


0
0
0
0
1

 , (15)

where T âij = − i√
2

(
δâi δ

5
j − δâj δ5

i

)
are the broken SO(5)/SO(4) generators.

The explicit expression for Φ(x) is then readily calculated and by defining
π =

√
(πâ)2 and π̂â = πâ/π we find

Φ(x) =

sin(π/f)


π̂1

π̂2

π̂3

π̂4


cos(π/f)

 . (16)

Then if the potential generated by Standard Model loop contributions trig-
gers EWSB symmetry breaking we can parametrize the SO(4)/SO(3) Gold-
stone bosons (those which are eaten by the W and the Z) in the usual way
Σ(x) = exp

(
iσiχi(x)/v

)
. If we then expand around the vacuum, which is

given by 〈π〉 = θ · f and thereby replace π(x)→ θ · f + h(x), we find

Φ(x) =

sin(θ + h(x)/f) Σ(x)


0
0
0
1


cos(θ + h(x)/f)

 . (17)
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This is how the fields are embedded in the two step symmetry breaking

SO(5)
f→ SO(4)

v→ SO(3), this form can then be used to derive the couplings
of the Goldstone bosons.

4 Higgs Couplings

A very interesting feature with regard to the LHC is the strength of the
couplings between the Higgs and the other Standard Model particles. Which
are tested and will be tested with more accuracy in the future. This will
be a distinguishing feature in the future for models and therefore we would
like to know how the Higgs couples. For the minimal model SO(5)/SO(4)
we will use an effective description for the the couplings at low energy with
respect to the strong sector. The Lagrangian and therefore the couplings are
then fully determined by symmetry arguments. And if we use the specific
form for the Goldstone bosons from the previous section we will be able to
give the coupling strength as a function of only one parameter which is a
measure for the separation of the to symmetry breaking scales f and v.

4.1 Couplings to Gauge Bosons

The SO(5) invariant effective Lagrangian describing the couplings between
gauge bosons and scalars is equal to the chiral Lagrangian with covariant
derivatives as given by the CCWZ prescription [7]

L =
f2

2
(DµΦ)T (DµΦ) . (18)

We can plug in the previous result (17) and the result reads

L =
f2

2
[Dµ sin (θ + h(x)/f) Σ]T [Dµ sin (θ + h(x)/f) Σ]

+
f2

2
∂µ cos (θ + h(x)/f) ∂µ cos (θ + h(x)/f)

⊃f
2

2

[
(DµΣ)T (DµΣ)

]
sin2 (θ + h(x)/f)

+
f2

2
∂µ sin (θ + h(x)/f) ∂µ sin (θ + h(x)/f) + {sin→ cos}

⊃1

2
∂µh∂

µh+
f2

4
Tr
[
(DµΣ)† (DµΣ)

]
sin2 (θ + h(x)/f) (19)

In order to have successful EWSB we need to reproduce the electroweak
gauge boson masses, this will give us a relation between the misalignment
θ and the parameters v and f . For this purpose only look at the vacuum
term where where 〈Σ〉 = 1 and retain only the θ terms, for the W mass we
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find

m2
W =

g2f2

4
sin2 θ =⇒ sin2 θ =

v2

f2
= ξ. (20)

Now that we have related the misalignment parameter θ to the electroweak
vev we can expand (19) around the vacuum to find the couplings for the
Higgs to gauge bosons

L ⊃ f2

4
Tr
[
(DµΣ)† (DµΣ)

] [
sin2 θ +

h(x)

f
sin 2θ +

h(x)2

f2
cos 2θ + · · ·

]
=
v2

4
Tr
[
(DµΣ)† (DµΣ)

] [
1 + 2

h(x)

v

√
1− ξ +

h(x)2

v2
(1− 2ξ) + · · ·

]
.

(21)

From which we can extract the coefficients

a =
√

1− ξ, b = 1− 2ξ. (22)

4.2 Couplings to Fermions

For the derivation of the Higgs to fermion couplings a few assumptions
are necessary, naively we have three options to couple the fermions to the
composite sector (to which the Higgs belongs).

• Total compositeness: The Standard Model fermions are totally
composite and couple directly to the strong sector: this has been ruled
out by LEP.

• Bilinear coupling: The Standard Model fermions are elementary
and couple directly to the strong sector: this has problems with flavor
observables.

• Partial compositeness: The composite and Standard Model fermions
mix, providing couplings for the Standard Model fermions to the strong
sector [8].

This last option is still experimentally viable, and we assume that every
Standard Model fermion couples to composite fermionic operator with the
same quantum numbers. These couplings are linear and mix the elementary
and composite states for each quark generation qL, uR and dR. Looking
only at one elementary chiral field ψL and one composite heavy fermion χ
we have the Lagrangian

L = ψ̄L i 6∂ ψL + χ̄ (i 6∂ −m∗)χ+ ∆Lψ̄LχR + h.c. (23)

The left-handed component of the heavy fermion then mixes with the left-
handed elementary field and the mass eigenstates are given by(

ψL
χL

)
→
(

cosϕL − sinϕL
sinϕL cosϕL

)(
ψL
χL

)
, tanϕL =

∆L

m∗
. (24)
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And similar expressions can be derived for right-handed elementary particles
with a mixing angle ϕR. The mixing results in a heavy mass eigenstate

with mass
√
m2
∗ + ∆2

L and light mass eigenstate with negligible mass to

be identified with the SM fermion. However, the Standard Model fermion
receives a mass through EWSB which now resides in the strong sector and
is transmitted via the mixings. We find

ySM = Y∗ sinϕL sinϕR, (25)

hence the fermion mass is proportional to the mixings, which indicates that
light fermions are mainly elementary and heavy fermions mainly composite.

Now we turn back to the SO(5)/SO(4) example, where we now have the
freedom to specify how the composite operators transform under SO(5).
With the derivation of the couplings between the Higgs and the fermions in
mind we choose here the spinorial representation, but note that a different
representation will imply a different coupling. The mixing Lagrangian is
now given by

L = λq q̄LOq + λu ūROu + λd d̄ROd + h.c. (26)

The operators transform as spinors of SO(5), and because of the linear
coupling also the SM fermions do. A spinor of SO(5) decomposes as a 4 of
SO(4) which is a (2, 1) + (1, 2) of SU(2)R × SU(2)L, so we can embed the
SM fermions in the following way

Ψq =

[
qL
QL

]
, Ψu =

 quR(
uR
d′R

) , Ψd =

 qdR(
u′R
dR

) , (27)

Progressing along the same lines as the CCWZ formalism for the gauge
Lagrangian, we write down an effective Lagrangian with the most general
SO(5) invariant couplings to fermions

LΨ =
∑

r=q,u,d

Ψ̄r i /∂Ψr + iλf
∑
r=u,d

Ψ̄qΓ
iΦiΨr. (28)

In here Φ denotes the same Goldstone fields as in (17) and the Γi denote
the spinorial representation of SO(5)

Γâ =

[
0 σâ

σâ † 0

]
, Γ5 =

[
1 0
0 −1

]
, σâ = {~σ,−i1} , (29)

and hence

ΓiΦi =

(
cos (θ + h(x)/f)1 −i sin (θ + h(x)/f) Σ(x)

i sin (θ + h(x)/f) Σ(x) − cos (θ + h(x)/f)1

)
. (30)
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Plugging these expressions into the Lagrangian and only keeping the qL and
the uR we find

LΨ ⊃ q̄L i /∂ qL + ūR i /∂ uR + λf sin(θ + h/f)q̄LΣuR. (31)

Expanding the last term around the vacuum gives

LΨ ⊃ λfq̄LΣuR

(
sin θ +

h(x)

f
cos θ + · · ·

)
= λvq̄LΣuR

(
1 +

h(x)

v

√
1− ξ + · · ·

)
(32)

Where λ must be identified with the Yukawa coupling and we omitted gen-
eration indices. The parameter for the Higgs to fermion coupling is easily
identified as c =

√
1− ξ.

4.3 Comparison with Experiment

Figure 4: Experimental constraints on the a and c parameter from CMS
and ATLAS, with the composite Higgs predictions.

From the previous sections we obtained for the Higgs couplings that

a =
√

1− ξ, b = 1− 2ξ, c =
√

1− ξ where ξ =
v2

f2
. (33)

These give clear predictions between the different Higgs couplings, which
can be tested quite precisely in the future at the LHC. The best sensitivity
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is to the couplings a and c and both CMS and ATLAS have provided various
likelihood plots for these parameters given in figure 4 taken from [2].

5 Dynamical Potential

One of the key features of composite models is the dynamical generation
of the potential via loop diagrams and thereby a dynamical breaking of
the electroweak symmetry. For this reason we need to make sure that the
potential satisfies the following criteria:

• The minimum of the potential breaks both the global SO(4) invariance
as well as the electroweak gauge invariance.

• A light Higgs boson mass is required, therefore the induced breaking
should be relatively small.

• From a phenomenological point of view the relation between the Higgs
mass and fermionic partners is interesting.

Deriving the Higgs potential here is lengthy and beyond the scope of this
lecture, but we can quote a recent result [9] here. There are two main
contributions from Standard Model particles, those from gauge bosons and
from the top quark. For the gauge boson contributions they find

Vgauge(h) = α sin2 h

f
+ β sin4 h

f
+ · · · , (34)

where α > 0 and β are complicated expressions. Since α is positive this
potential can not induce EWSB, according to Witten’s argument on vector-
like gauge theories. However, also the top induces a potential, which is
actually dominant

Vtop(h) = α sin2 h

f
− β sin2 h

f
cos2 h

f
+ · · · . (35)

Now we can have EWSB as long as α < β and β ≥ 0, which can be realized.
So we have found a way to dynamically generate an EW symmetry breaking
potential for the Higgs arising as a pseudo Goldstone boson from a strongly
coupled sector.

Higgs Mass Since the Higgs mass derives directly from the potential one
can in principle derive it from symmetry principles, however this is quite
involved. A NDA estimate is much more feasible here and for the potential
one may find [4]

V (H) ∼
m4
ρ

g2
ρ

× ytgρ
16π2

× V̂ (H/f), (36)
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which leads to a quartic coupling λ ∼ (gρ/4π)34πyt. The resulting Higgs
boson mass equals

mh ∼
( gρ

4π

)3/2√
4πvmt ∼ 150 GeV. (37)

And we see that a relatively light Higgs is feasible within these theories.
More involved calculations [9] give results depending on the mass of the
heavy fermion partner, and a natural Higgs mass may be obtained if these
partners are relatively light, that is mQ < 1 TeV.
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