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As part of the fulfilment of the goals of the ERC Advanced Grant project Quantum Chromodynamics at 
Work we issue a call for

Graduate Students, Ph.D. students and Postdocs

The ERC grant will finance a number of PhD positions and postdoc positions as part of a programme of 
Theoretical Physics Research aimed at deepening our understanding of the quark and gluon structure of 
subatomic particles and providing new ideas that can help experiments to uncover the secrets underlying 
the Standard Model of Particle Physics.
The programme aims at providing new ideas on how to make full use of all features that are available in 
present-day and future accelerator facilities in nuclear and particle physics, such as high energy, polarization 
and very precise detection techniques. The proposal is built on successful earlier work of the Amsterdam 
group working in this field at VU University and Nikhef, making a full analysis of momentum-spin correlations 
in protons and neutrons, the basic building blocks of the visible matter in the universe. These correlations are 
encoded in terms of (polarized) parton (quark or gluon) probabilities, collectively known as transverse 
momentum dependent distribution and fragmentation functions. Experimental results have confirmed their 
applicability and the necessity of including novel correlations in Quantum Chromodynamics (QCD), the 
quantum field theory of the strong interactions. Such correlations emerge when one breaks with the restric-
tions of the collinear approximation in which a proton is just the provider of partons (quarks or gluons) that 
collide head-on.

Graduate students will work, as part of their Masters programme, on promising novel ideas
in field theories under the daily guidance of a postdoc or PhD student, really getting to the basics in studying 
the viability of such ideas. In the next five years, VU University will every year make one University Research 
Fellowship available, consisting of a stipend for the student working with the ERC recipient, and assisting him 
in outreach and teaching activities within the Amsterdam area. Students interested in the 2013-2014 fellow-
ship are asked to react immediately.

Two positions for Ph.D. students will become available, one in Summer or Fall 2013 and one in Spring or 
Summer 2014. More details on these Ph.D. projects will be made available in regular advertisements that can 
be found via http://www.vu.nl. The prospective Ph.D. students should have experience in field theoretical 
aspects of QCD and will be employed within the Faculty of Sciences of VU University, participating in the 
National Institute for Subatomic Physics (Nikhef) with the Nikhef Institute as work location. At the end of the 
four-year appointment a thesis must be completed. The position also includes some teaching duties. 
Relevant research schools are the Dutch Research School on Theoretical Physics and on Subatomic Physics.

Several postdoc positions (two or three years) will become available in the coming years. For postdocs we 
are considering candidates with a Ph.D. in theoretical physics and (international) experience in the field of 
QCD. The postdocs will be employed within the Faculty of Sciences of VU University, participating in the 
National Institute for Subatomic Physics (Nikhef) with the Nikhef Institute as work location.

On all these positions, more information can be obtained from Prof. P.J. Mulders, Department of Theoreti-
cal Physics, Faculty of Sciences, VU, De Boelelaan 1081, NL-1081 HV Amsterdam, the Netherlands (e-mail: 
mulders@few.vu.nl). 



ABSTRACT 

Intrinsic transverse momentum at high energies 
Piet Mulders (Nikhef/VU University Amsterdam) 
 
Transverse Momentum Dependent (TMD) distribution functions also take into 
account the intrinsic transverse momentum (pT) of the partons. The pT-
integrated analogues can be linked directly to quark and gluon matrix 
elements using Operator Product Expansion in QCD, involving operators of 
definite twist. TMDs also involve operators of higher twist, which are not 
suppressed by powers of the hard scale, however. In this talk I will address 
the relevance of both quark and gluon TMDs and address theoretical issues 
related to gauge links that ensure color gauge invariance, universality of the 
functions and TMD-factorization.  
 
[some of the recent work is in collaboration with Maarten Buffing and Asmita 
Mukherjee] 
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Content 

!   PDFs and PFFs as matrix elements 
!   q(x), G(x), Δq(x), Δg(x), δq(x), …………., q(x,pT), ……… ??? 
!   Use theoretical framework: QCD 

!   Extension of OPE resummed into PDFs to TMDs (definite rank) 
!   Distribution and fragmentation functions (time reversal) 

!   The reward 
!   Novel hadronic info on spin and orbital structure 
!   Possible use of proton as tool (playing with partons) 
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PDFs and PFFs 

 Basic use of PDFs and PFFs (also for TMDs) is in a factorized 
description of high energy scattering processes 


σ =|H ( p1, p2 ,...) |

2

σ (P1,P2 ,...) = ...dp1∫∫∫ ...Φa ( p1,P1;µ)⊗Φb( p2 ,P2;µ)

⊗ σ̂ ab,c... ( p1, p2 ,...;µ)⊗Δc (k1,K1;µ)....

calculable 

defined (!) 
    & 
portable 



Soft part: hadron correlators 

!   At high energies interference terms suppressed and the soft parts 
combine into forward matrix elements of parton fields describing 
distribution (and fragmentation) parts 

!   Also needed are multi-parton correlators   
     (time-ordering?) 
 

 

!   Multi-parton correlators ΦD, ΦF, etc. with Dα(η), Fnα(η), …  
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Φij ( p;P) =Φij ( p | p) =
d 4ξ
(2π )4∫ ei p.ξ P ψ j (0)ψi (ξ ) P

ΦA;ij
α ( p− p1, p1 | p) =

d 4ξ d 4η
(2π )8∫ ei ( p−p1).ξ+ip1.η P ψ j (0)A

α (η)ψi (ξ ) P

  Φ(p)    

ΦA(p-p1,p) 



!   In high-energy processes other momenta are available providing a hard 
scale P.P’ ~ s = Q2 >> M2 (light-like vector P.n = 1, e.g. n = P’/P.P’)  

!   Expand integration variables 

!   Use                               to identify x (and get corrections) 
!   Additional (soft - hard) scale accessible through non-collinearities, e.g. in 

DIS γ*+p is not aligned with produced hadron or momenta inside a jet 
identifies transverse scale, linked to convolution of pT’s involved. 

!   You can’t measure them all (integrate over ‘virtuality’ σ), etc.   

Give a meaning to (integration) variables 
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Tx pp P nµµ µσ= + +

2 2. ~p P xM Mσ = −

. ~ 1x p p n+= =

~ Q ~ M  ~ M2/Q 

Φ( p) =Φ(x, pT ,σ ) ⇒ Φ(x, pT ) ⇒ Φ(x) ⇒ Φ

σ̂ ~ δ(x − xB )+αs...



! unintegrated 
 
!   TMD (light-front) 

!   collinear (light-cone) 

!   local Φ = P ψ(0)ψ(ξ ) P
ξ=0

(Un)integrated correlators 

 
!   σ = p- integration renders time-ordering automatic, allowing 

factorization of forward anti-parton–target scattering amplitude 
!   Involves operators of twists starting at a lowest value (which is 

usually called the ‘twist’ of a TMD) 

 
!   Involves operators of a definite twist. Evolution via splitting 

functions (moments are anomalous dimensions) 

!   Local operators with calculable anomalous dimension  7 

Φ(x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)ψ(ξ ) P

ξ .n=0

Φ(x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)ψ(ξ ) P

ξ .n=ξT =0 or ξ 2=0

Φ(x, pT ,σ ) =
d 4ξ
(2π )4∫ ei p.ξ P ψ(0)ψ(ξ ) P



New information in TMD’s: f(x,pT)  

!   Quarks in polarized nucleon: 

 
 

 
 
!   … but also 
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Φq (x, pT ) ∝ xf1
q (x, pT

2 ) /P  + SLxg1L
q (x, pT

2 ) /Pγ5

                        +xh1T
q (x, pT

2 ) /ST /Pγ5    +   ...

compare 
unpolarized 
quarks, q(x) T-polarized quarks in 

T-polarized N (δq) 

S = SL
P
M

+Mn
!

"
#

$

%
&+ ST SL

2 + ST
2 = −1

chiral quarks in L-
polarized N (Δq) 

Φq (x, pT ) ∝ ... + 
( pT ⋅ ST )
M

xg1T
q (x, pT

2 ) /Pγ5    +   ...

chiral quarks   
in T-polarized N 

spin ßà spin 

u( p,s)u ( p,s) = 1
2 ( /p+m)(1+γ5/s)



!   … and T-odd functions 
 
 

!   Note that there are also parts that lack simple partonic interpretation 
 
 

New information in TMD’s: f(x,pT)  
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u( p,s)u ( p,s) = 1
2 ( /p+m)(1+γ5/s)

Φq (x, pT ) ∝ ... + ih1
⊥q (x, pT

2 ) /
pT
M

/P + i ( pT × ST )
M

xf1T
⊥q (x, pT

2 ) /P  + ...

compare 

unpolarized quarks in 
T-polarized N (Sivers) 

T-polarized quarks 
in unpolarized N 
(Boer-Mulders) 

parton mass? But these are suppressed and 
linked to quark-gluon correlators via EQM 

Φ(x, pT ) ∝ ... + M xeq (x, pT
2 )  + ...

spin ßà orbit 

Higher-twist 



Color gauge invariance 

!   Gauge invariance in a non-local situation requires a gauge link U(0,ξ) 

!   Introduces path dependence for Φ(x,pT) 
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0

(0, ) exp ig ds AU
ξ

µ
µξ −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫P

ψ(0)ψ(ξ ) = 1
n!
ξ µ1 ...

n
∑ ξ µNψ(0)∂µ1 ...∂µNψ(0)

ψ(0)U (0,ξ )ψ(ξ ) = 1
n!
ξ µ1 ...

n
∑ ξ µNψ(0)Dµ1

...DµN
ψ(0)

0	


ξ.P 

ξΤ	



ξ	


Φ[U ](x, pT ) ⇒ Φ(x)
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u  Gauge links for TMD correlators process-dependent with simplest cases 

Which gauge links? 

2
[ ] . [ ]

[0, ]3 . 0

( . )( , (0) ( ); )
(2 ) j

q C i p CT
ij T i n

d P dx p n e P U Pξ
ξ ξ

ψ ψ ξ
ξ ξ
π =

Φ = ∫
. [ ]

[0, ] . 0

( . )( ; )
(2 )

(0) ( )ij
T

q i p n
nj i

d Px n e P U Pξ
ξ ξ ξ

ψ ψ ξ
ξ
π = =

Φ = ∫

Φ[-] Φ[+] 

Time reversal 

TMD 

collinear 

… An … 
… An … 

AV Belitsky, X Ji and F Yuan, NP B 656 (2003) 165 
D Boer, PJM and F Pijlman, NP B 667 (2003) 201 

   SIDIS  DY 



Which gauge links? 

!   With more (initial state) hadrons 
color gets entangled, e.g. in pp 

 
!   Outgoing color contributes future 

pointing gauge link to Φ(p2) and 
future pointing part of a loop in 
the gauge link for Φ(p1) 

 
!   Can be color-detangled if only pT 

of one correlator is relevant 
(using polarization, …) but must 
include Wilson loops in final U 
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1 1( ) (0 )ψ ξ ψ

1[ ,0 ]−∞

2[ , ]ξ −∞ 2[ ,0 ]−∞

1[ , ]ξ −∞

1 2[ , ][ , ]ξ ξ+∞ +∞

2 2( ) (0 )ψ ξ ψ

1 2[0 , ][0 , ]+∞ +∞

T.C. Rogers, PJM, PR D81 (2010) 094006 MGA Buffing, PJM, JHEP 07 (2011) 065 

!   May require multi-hadron contributions (T.C. Rogers, 2013) 
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Which gauge links? 

Φg
αβ[C ,C '] (x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P U[ξ ,0]

[C ] Fnα (0)U[0,ξ ]
[C '] Fnβ (ξ ) P

ξ .n=0

u  The TMD gluon correlators contain two links, which can have different 
paths. Note that standard field displacement involves C = C’  

u  Basic (simplest) gauge links for gluon TMD correlators: 

[ ] [ ]
[ , ] [ , ]( ) ( )C CF U F Uαβ αβ
η ξ ξ ηξ ξ→

Φg
[+,+] Φg

[-,-] 

Φg
[+,-] Φg

[-,+] 

C Bomhof, PJM, F Pijlman; EPJ C 47 (2006) 147 
F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301  

   gg è H 

 in gg  è QQ  



Summarizing: color gauge invariant correlators 

!   So it looks that at best we have well-defined matrix elements for TMDs 
but including multiple possiblities for gauge links and each process or 
even each diagram its own gauge link (depending on flow of color) 

!   Leading quark TMDs: 
 

 

!   Leading gluon TMDs: 
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momentum qT of the produced lepton pair,

σ(x1, x2, qT ) =

∫
d2p1T d2p2T δ2(p1T + p2T − qT )

× Φ[−]
1 (x1, p1T )Φ

[−†]
2 (x2, p2T )σ̂(x1, x2, Q), (10)

which involves a convolution of TMDs. What is more important, it is the color flow
in the process, in this case neutralized in initial state, that determines the path in
the gauge link in the TMDs, in this case past-pointing ones. In contrast in semi-
inclusive deep inelastic scattering one finds that the relevant TMD is Φ[+] with a
future-pointing gauge link. In a general process one can find more complex gauge
links including besides Wilson line elements also Wilson loops. In particular when
the transverse momentum of more than one hadron is involved, such as e.g. in the
DY case above, it may be impossible to have just a single TMD for a given hadron
because color gets entangled 5,6.

The correlators including a gauge link can be parametrized in terms of TMD
PDFs 7,8 depending on x and p2

T
,

Φ[U ](x, pT ;n) =

{
f [U ]
1 (x, p2

T
)− f⊥[U ]

1T (x, p2
T
)
εpTST

T

M
+ g[U ]

1s (x, pT )γ5

+ h[U ]
1T (x, p2

T
) γ5 /ST

+ h⊥[U ]
1s (x, pT )

γ5 /p
T

M
+ ih⊥[U ]

1 (x, p2
T
)
/p

T

M

}
/P

2
, (11)

with the spin vector parametrized as Sµ = SLPµ + Sµ
T +M2 SLnµ and shorthand

notations for g[U ]
1s and h⊥[U ]

1s ,

g[U ]
1s (x, pT ) = SLg

[U ]
1L (x, p2

T
)−

pT · ST

M
g[U ]
1T (x, p2

T
). (12)

For quarks, these include not only the functions that survive upon pT -integration,
f q
1 (x) = q(x), gq1(x) = ∆q(x) and hq

1(x) = δq(x), which are the well-known collinear
spin-spin densities (involving quark and nucleon spin) but also momentum-spin den-
sities such as the Sivers function f⊥q

1T (x, p2
T
) (unpolarized quarks in a transversely

polarized nucleon) and spin-spin-momentum densities such as g1T (x, p2T ) (longitu-
dinally polarized quarks in a transversely polarized nucleon).

The parametrization for gluons, following the naming convention in Ref. 9, is
given by

2xΓµν[U ](x,pT ) = −gµνT fg[U ]
1 (x,p2

T
) + gµνT

εpTST

T

M
f⊥g[U ]
1T (x,p2

T
)

+ iεµνT gg[U ]
1s (x,pT ) +

(
pµT p

ν
T

M2
− gµνT

p2
T

2M2

)
h⊥g[U ]
1 (x,p2

T
)

−
εpT {µ
T pν}T
2M2

h⊥g[U ]
1s (x,pT )−

εpT {µ
T Sν}

T +εST {µ
T pν}T

4M
hg[U ]
1T (x,p2

T
). (13)
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momentum qT of the produced lepton pair,

σ(x1, x2, qT ) =

∫
d2p1T d2p2T δ2(p1T + p2T − qT )

× Φ[−]
1 (x1, p1T )Φ

[−†]
2 (x2, p2T )σ̂(x1, x2, Q), (10)
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links including besides Wilson line elements also Wilson loops. In particular when
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because color gets entangled 5,6.

The correlators including a gauge link can be parametrized in terms of TMD
PDFs 7,8 depending on x and p2

T
,

Φ[U ](x, pT ;n) =

{
f [U ]
1 (x, p2

T
)− f⊥[U ]

1T (x, p2
T
)
εpTST

T

M
+ g[U ]

1s (x, pT )γ5

+ h[U ]
1T (x, p2

T
) γ5 /ST

+ h⊥[U ]
1s (x, pT )

γ5 /p
T

M
+ ih⊥[U ]

1 (x, p2
T
)
/p

T

M

}
/P

2
, (11)
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T +M2 SLnµ and shorthand
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1s and h⊥[U ]

1s ,

g[U ]
1s (x, pT ) = SLg

[U ]
1L (x, p2

T
)−

pT · ST

M
g[U ]
1T (x, p2

T
). (12)

For quarks, these include not only the functions that survive upon pT -integration,
f q
1 (x) = q(x), gq1(x) = ∆q(x) and hq

1(x) = δq(x), which are the well-known collinear
spin-spin densities (involving quark and nucleon spin) but also momentum-spin den-
sities such as the Sivers function f⊥q

1T (x, p2
T
) (unpolarized quarks in a transversely

polarized nucleon) and spin-spin-momentum densities such as g1T (x, p2T ) (longitu-
dinally polarized quarks in a transversely polarized nucleon).

The parametrization for gluons, following the naming convention in Ref. 9, is
given by

2xΓµν[U ](x,pT ) = −gµνT fg[U ]
1 (x,p2

T
) + gµνT

εpTST

T

M
f⊥g[U ]
1T (x,p2

T
)

+ iεµνT gg[U ]
1s (x,pT ) +

(
pµT p

ν
T

M2
− gµνT

p2
T

2M2

)
h⊥g[U ]
1 (x,p2

T
)

−
εpT {µ
T pν}T
2M2

h⊥g[U ]
1s (x,pT )−

εpT {µ
T Sν}

T +εST {µ
T pν}T

4M
hg[U ]
1T (x,p2

T
). (13)



Operator structure in collinear case (reminder) 

!   Collinear functions and x-moments 

!   Moments correspond to local matrix elements of operators that all have 
the same twist since dim(Dn) = 0 

!   Moments are particularly useful because their anomalous dimensions 
can be rigorously calculated and these can be Mellin transformed into 
the splitting functions that govern the QCD evolution. 
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Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] ψ(ξ ) P
ξ .n=ξT =0

xN−1Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)(∂n )N−1U[0,ξ ]

[n] ψ(ξ ) P
ξ .n=ξT =0

=
d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] (Dn )N−1ψ(ξ ) P
ξ .n=ξT =0

Φ(N ) = P ψ(0)(Dn )N−1ψ(0) P

x = p.n  



Operator structure in TMD case 

!   For TMD functions one can consider transverse moments 

 

 

 

!   Upon integration, these transverse moments involve collinear twist-3 (and 
higher) multi-parton correlators 
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pT
αΦ[±](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U[0,±∞]DT

αU[±∞,ξ ]ψ(ξ ) P ξ .n=0

Φ(x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U[0,ξ ]

[±] ψ(ξ ) P
ξ .n=0

pT
α1 pT

α2Φ[±](x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U[0,±∞]DT

α1DT
α2U[±∞,ξ ]ψ(ξ ) P ξ .n=0

MGA Buffing, A Mukherjee, PJM, PRD 86 (2012) 074030 , Arxiv: 1207.3221 [hep-ph] 



Operator structure in TMD case 

!   For first transverse moment one needs quark-gluon correlators 

 

 

!   In principle multi-parton, but we need 
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ΦD
α (x − x1,x1 | x) =

dξ .Pdη.P
(2π )2∫ ei ( p−p1).ξ+ip1.η P ψ(0)DT

α (η)ψ(ξ ) P
ξ .n=ξT =0

ΦF(p-p1,p) 

T-even (gauge-invariant derivative)  

ΦD
α (x) = dx1∫ ΦD

α (x − x1,x1 | x)

T-odd (soft-gluon or gluonic pole)  

ΦF
α (x − x1,x1 | x) =

dξ .Pdη.P
(2π )2∫ ei ( p−p1).ξ+ip1.η P ψ(0)Fnα (η)ψ(ξ ) P

ξ .n=ξT =0

Φ
∂
α (x) = ΦD

α (x)−ΦA
α (x)

ΦA
α (x) = PV dx1∫ 1

x1
ΦF
nα (x − x1,x1 | x)

ΦG
α (x) = πΦF

nα (x,0 | x)

Efremov, Teryaev; Qiu, Sterman; Brodsky, Hwang, Schmidt; Boer, Teryaev, M; Bomhof, Pijlman, M 



Operator structure in TMD case 

!   Transverse moments can be expressed in these particular collinear 
multi-parton twist-3 correlators (which are not suppressed!) 

  

!   CG
[U] calculable  

     gluonic pole  

     factors 
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Φ
∂
α[U ](x) = d 2 pT∫ pT

αΦ[U ](x, pT ;n) = Φ∂
α (x)+CG

[U ]ΦG
α (x)

Φ
∂∂
αβ[U ](x) = Φ

∂∂
αβ (x)+CGG ,c

[U ] ΦGG ,c
αβ (x)+CG

[U ] Φ
∂G
αβ (x)+ ΦG∂

αβ (x)( )
 Trc(GG ψψ)  Trc(GG) Trc(ψψ) 

T-even  T-even  T-odd  
T-even  T-odd  

5

U U [±] U [+] U [!] 1
Nc

Trc(U
[!])U [+]

Φ[U ] Φ[±] Φ[+!] Φ[(!)+]

C
[U ]
G ±1 3 1

C
[U ]
GG,1 1 9 1

C
[U ]
GG,2 0 0 4

TABLE I: The values of the gluonic pole prefactors for some gauge links needed in the pT -weighted cases.
Note that the value of C[U ]

G is the same for single and double transverse weighting.

link. In fact there is a universal transverse moment relating all link dependent ones

f⊥(1)[U ]
1T (x) = C [U ]

G f⊥(1)
1T (x). (15)

Although the only difference for the single weighted case is just the numerical prefactor that for simple processes is just
+1 or −1, we will show in the next section that for the double weighted case the situation becomes more complicated
and one actually gains a lot by this different notation. But even for single weighting there is a clear advantage using
Eq. 15, because it states that there is a universal function with calculable process (link) dependent numbers rather
than an infinite number of somehow related functions. For some gauge links, these numbers are shown in Table I.
Here U [!] is the Wilson loop U [−]†U [+].

C. Double transverse weighting

In order to evaluate the double transverse weighting we need to consider matrix elements like

Φαβ
FF (x− x1 − x2, x1, x2|x) =

∫
d ξ·P

2π

d η·P

2π

d η′·P

2π
eix2(η

′·P ) eix1(η·P ) ei(x−x1−x2)(ξ·P )

×〈P, S|ψ(0)U [n]
[0,η′]F

nα
T

(η′)U [n]
[η′,η]F

nβ
T

(η)U [n]
[η,ξ] ψ(ξ)|P, S〉

∣∣∣∣∣
LC

, (16)

among others, where LC indicates that all transverse components and n-components of the coordinates are zero.
Besides this matrix element one needs ΦDF , ΦFD and ΦDD as well as bilocal matrix elements, obtained by direct
or principal value integrations over these matrix elements (as in the case of single transverse momentum weighting)
or gluonic pole matrix elements, where x1 or x2 or both are zero. Explicitly, the matrix elements are discussed in
Appendix A.
The actual weighting of the gauge link dependent TMD correlator Φ[U ](x, pT ) gives

Φ{αβ} [U ]
∂∂ (x) ≡

∫
d2pT p{αT pβ}

T Φ[U ](x, p2
T
)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+
∑

c

π2C [U ]
GG,cΦ

{αβ}
GG,c(x)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+ π2C [U ]

GG,1 Φ
{αβ}
GG,1(x) + π2C [U ]

GG,2 Φ
{αβ}
GG,2(x). (17)

For the correlators containing two (or more) gluon fields like the one in Eq. 16, one must distinguish the different
color structures for the correlator, hence a summation over the color structures c. For double weighting, there are in
the double gluonic pole part two possible color structures related to the appearance of the color traced Wilson loop
1
Nc

Trc(U [!]). The differences between the two different correlators Φ{αβ}
GG,c(x) are made explicit in Appendix A. Just

as for the single weighted case in Eq. 9, the structures Φ̃... with one or more partial derivatives denote differences

between correlators with a covariant derivative minus a correlator with a principal value integration, e.g. Φ̃{αβ}
∂G (x) =

Φ{αβ}
DG (x)−Φ{αβ}

AG (x). For completeness, they are given in Appendix A. Since the weighting is done with the symmetric
combination, we have symmetrized in the indices, which should not influence the result. We also omitted the Dirac
indices on the fields. The precise form of all correlators in terms of matrix elements can be found in Appendix A.



Distributions versus fragmentation 

!   Operators: !   Operators: 
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Φ[U ]( p | p) ~ P |ψ(0)U[0,ξ ]ψ(ξ ) | P Δ(k | k)
~ 0 |ψ(ξ ) | KhX KhX |ψ(0) | 0

X
∑

ΔG
α (x) = πΔF

nα ( 1Z ,0 | 1Z ) = 0

Δ
∂
α[U ](x) = Δ

∂
α (x)

ΦG
α (x) = πΦF

nα (x,0 | x) ≠ 0

Φ
∂
α[U ](x) = Φ

∂
α (x)+CG

[U ]ΦG
α (x)

T-even T-odd (gluonic pole) 

T-even operator combination, 
but still T-odd functions! 

out state 

Collins, Metz; Meissner, Metz; Gamberg, M, Mukherjee, PR D 83 (2011) 071503 



!   Collecting right moments gives expansion into full TMDs of definite rank  
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Φ[U ](x, pT ) = Φ(x, pT
2 )+ pTi Φ∂

i (x, pT
2 )+ pTij Φ∂∂

ij (x, pT
2 )+ ...

  + CG ,c
[U ] pTiΦG ,c

i (x, pT
2 )+CG ,c

[U ]pTij Φ{∂G}
ij (x, pT

2 )+ ...#
$

%
&

c
∑

  + CGG ,c
[U ] pTijΦGG ,c

ij (x, pT
2 )+ ...#

$
%
&

c
∑

Classifying Quark TMDs 



Classifying Quark TMDs 

factor TMD RANK 

0 1 2 3 

1 
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Φ
∂∂
(x, pT

2 )Φ
∂
(x, pT

2 )Φ(x, pT
2 ) Φ

∂∂∂
(x, pT

2 )
Φ{G∂},c (x, pT

2 )ΦG ,c (x, pT
2 ) Φ{G∂∂},c (x, pT

2 )
Φ{GG∂},c (x, pT

2 )ΦGG ,c (x, pT
2 )

ΦGGG ,c (x, pT
2 )

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph] 



Classifying Quark TMDs 
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factor QUARK TMD RANK UNPOLARIZED HADRON 

0 1 2 3 

1 

h1
⊥

f1
CG
[U ]

CGG ,c
[U ]

Φ(x, pT
2 ) = f1 (x, pT

2 )( ) P2 ΦG
α (x, pT

2 ) = ih1
⊥(x, pT

2 )
γT
α

M

#

$
%%

&

'
((
P
2

T-odd T-even  [B-M function] 

  

 

!   Only a finite number needed: rank up to 2(Shadron+sparton) 
!   Example: quarks in an unpolarized target needs only 2 functions 

 



Classifying Quark TMDs 

factor QUARK TMD PDFs RANK SPIN ½ HADRON 

0 1 2 3 

1 
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h1T
⊥(A)

h1
⊥ , f1T

⊥

f1, g1, h1 g1T , h1L
⊥

h1T
⊥(B1) , h1T

⊥(B2)

CG
[U ]

CGG ,c
[U ]

A :  ψ∂∂ψ =Trc ∂∂ψψ"# $%

B1: Trc GGψψ"# $%

B2 : Trc GG"# $%Trc ψψ"# $%

Three pretzelocities: 



Classifying Quark TMDs 

factor QUARK TMD PDFs RANK SPIN ½ HADRON 

0 1 2 3 

1 
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h1T
⊥(A)

h1
⊥ , f1T

⊥

f1, g1, h1 g1T , h1L
⊥

h1T
⊥(B1) , h1T

⊥(B2)

CG
[U ]

CGG ,c
[U ]

factor QUARK TMD PFFs RANK SPIN ½ HADRON 

0 1 2 3 

1 H1T
⊥D1, G1, H1 D1T

⊥ ,G1T ,H1
⊥ ,H1L

⊥



Classifying Quark TMDs 

factor QUARK TMD RANK VECTOR POLARIZED SPIN ½ HADRON 

0 1 2 3 

1 

25 

h1T
⊥(A)

f1T
⊥

g1, h1 g1T , h1L
⊥

h1T
⊥(B1) , h1T

⊥(B2)

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

factor QUARK TMD RANK TENSOR POLARIZED SPIN 1 HADRON 

0 1 2 3 

1 

h1LT
⊥ , g1TT

f1LL , h1LT

CG
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

f1LT f1TT
(A)

f1TT
(Bc)

h1TT
⊥(A)

h1TT
⊥(Bc)

h1LL
⊥ , g1LT , h1TT

X X 



Classifying Gluon TMDs 

factor GLUON TMD RANK SPIN ½ HADRON 

0 1 2 3 

1 

26 

f1T
⊥(Ac) , h1T

(Ac)

f1, g1 g1T

h1
⊥(Bc)

CG ,c
[U ]

CGG ,c
[U ]

factor GLUON TMD RANK UNPOLARIZED HADRON 

0 1 2 3 

1 f1

CGG ,c
[U ]

h1
⊥(A)

h1L
⊥(A,c) h1T

⊥(Ac)

h1T
⊥(Bc)

h1
⊥(Bc)

h1
⊥(A)

CGGG ,c
[U ]

MGA Buffing, A Mukherjee, PJM, Arxiv: 1306.6513 [hep-ph] 



Bessel transforms 

!   Terms in pT expansion of TMDs involve 

 
!   Use azimuthal integration to get actual pT

2-dependent TMD PDFs 

!   Relevant for lattice calculations and experimental analysis 
!   In general this produces (m/2) moments of the functions 
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10

PDFs FOR TENSOR POLARIZED SPIN 1 HADRONS

f1LL,!!!"
""h1LT h⊥

1LL, g1LT , h1TT f
(Bc)
1TT h

⊥(Bc)
1TT

f1LT h⊥
1LT , g1TT

f
(A)
1TT h

⊥(A)
1TT

TABLE VII: The operator assignments of TMD PDFs for a tensor polarized spin 1 target require operator
structures up to rank 3. There are several different functions f1TT (x, p

2
T ) and h⊥

1TT (x, p
2
T ).

PFFs FOR TENSOR POLARIZED SPIN 1 HADRONS
D1LL, H1LT

D1LT , H
⊥
1LL, G1LT , H1TT

D1TT , H
⊥
1LT , G1TT

H⊥
1TT

TABLE VIII: The operator structure of TMD PFFs for a tensor polarized spin 1 target requires operator
structures up to rank 3.

parametrization of the higher rank correlators contain the T-even and T-odd TMD fragmentation functions. The
fragmentation functions describing fragmentation into a tensor polarized hadron are given in Table VIII.

C. Bessel weights

We note that the TMDs f (m)(x, p2
T
) of a given rank do not contain operators of definite twist. This is only

true for transverse moments f (m)
... (x) after pT -integration. The TMD correlators of definite rank appearing in the

parametrization in Eq. 22 only are integrated over azimuthal directions. The rank just refers to the azimuthal
dependence of the correlators in the full correlator Φ[U ](x, pT ).
Using that for a given rank m, there are two independent combinations pi1...im

T
∝ |pT |m exp(±imϕp), it is equivalent

to consider

pTi1...im

Mm
Φ̃i1...im

... (x, p2
T
) or Φ̃(m/2)

... (x, p2
T
) e±imϕp , (38)

where Φ̃(m/2)
... (x, p2

T
) = (−p2

T
/2M2)m/2 Φ̃...(x, p2T ) assures the appropriate small pT -behavior. A suitable normalization

of the correlator has to assure that Φ̃(m)
... (x, p2

T
) reproduces the collinear transverse moments upon integration,

Φ̃(m)
... (x) =

∫ ∞

0
2π|pT | d|pT | Φ̃

(m)
... (x, p2

T
). (39)

Knowing the correlators in Eq. 38 to be Fourier transforms of nonlocal matrix elements in transverse space, it is
natural to write the appropriately weighted TMD PDF in their parametrization as a Bessel transform,

f̃ (m/2)
... (x, |pT |) =

∫ ∞

0
db

√
|pT |b Jm(|pT |b) f

(m/2)
... (x, b), (40)

such that f (m/2)
... (x, b) exp(imϕb) is the (two-dimensional) Fourier transform of f̃ (m/2)

... (x, |pT |) exp(imϕp). Bessel
weightings are extensively studied in Ref. [27].
Bessel weighting may also offer a convenient way to incorporate the soft factor which usually is given in b-space [28].

This factor has been omitted from Eq. 19. Our decomposition in Eq. 22, however, can always be written down, but
the Φ...(x, p2T ) will be modified by the inclusion of the soft factor.

IV. CONCLUSIONS

In Eq. 22 we have presented a parametrization for TMD quark correlators that distinguishes different azimuthal
dependences by writing an expansion in terms of irreducible tensors in the transverse momentum multiplied with
correlators depending on x and p2

T
. These correlators contain tensors describing the polarization of the target and

Boer, Gamberg, Musch, Prokudin, JHEP 1110 (2011), 021;   Arxiv: 1107.5294 [hep-ph] 

Φ
∂
α (1) (x, pT

2 ) = dϕ
2π
pT
α (ϕ ) Φ[+](x, pT )+Φ

[−](x, pT )$
%

&
'∫

ΦG
α (1) (x, pT

2 ) = dϕ
2π
pT
α (ϕ ) Φ[+](x, pT )−Φ

[−](x, pT )$
%

&
'∫

Φ
∂
α (m/2) (x, pT

2 ) ≡
−pT

2

2M

!

"
##

$

%
&&

m/2

Φ
∂
α (x, pT

2 )



Bessel transforms 

!   The universal TMDs of definite rank are natural objects that can be 
studied in impact parameter space 

!   Azimuthal averaging gives for rank m (m/2)-moments, that can be 
naturally studied using Bessel transforms 

! bT-space useful for phenomenology (Boglione) as well as evolution 
(Collins, Rogers) 
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PDFs FOR TENSOR POLARIZED SPIN 1 HADRONS

f1LL,!!!"
""h1LT h⊥

1LL, g1LT , h1TT f
(Bc)
1TT h

⊥(Bc)
1TT

f1LT h⊥
1LT , g1TT

f
(A)
1TT h

⊥(A)
1TT

TABLE VII: The operator assignments of TMD PDFs for a tensor polarized spin 1 target require operator
structures up to rank 3. There are several different functions f1TT (x, p

2
T ) and h⊥

1TT (x, p
2
T ).

PFFs FOR TENSOR POLARIZED SPIN 1 HADRONS
D1LL, H1LT

D1LT , H
⊥
1LL, G1LT , H1TT

D1TT , H
⊥
1LT , G1TT

H⊥
1TT

TABLE VIII: The operator structure of TMD PFFs for a tensor polarized spin 1 target requires operator
structures up to rank 3.

parametrization of the higher rank correlators contain the T-even and T-odd TMD fragmentation functions. The
fragmentation functions describing fragmentation into a tensor polarized hadron are given in Table VIII.

C. Bessel weights

We note that the TMDs f (m)(x, p2
T
) of a given rank do not contain operators of definite twist. This is only

true for transverse moments f (m)
... (x) after pT -integration. The TMD correlators of definite rank appearing in the

parametrization in Eq. 22 only are integrated over azimuthal directions. The rank just refers to the azimuthal
dependence of the correlators in the full correlator Φ[U ](x, pT ).
Using that for a given rank m, there are two independent combinations pi1...im

T
∝ |pT |m exp(±imϕp), it is equivalent

to consider

pTi1...im

Mm
Φ̃i1...im

... (x, p2
T
) or Φ̃(m/2)

... (x, p2
T
) eimϕp , (38)

where Φ̃(m/2)
... (x, p2

T
) = (−p2

T
/2M2)m/2 Φ̃...(x, p2T ) assures the appropriate small pT -behavior. A suitable normalization

of the correlator has to assure that Φ̃(m)
... (x, p2

T
) reproduces the collinear transverse moments upon integration,

Φ̃(m)
... (x) =

∫ ∞

0
2π|pT | d|pT | Φ̃

(m)
... (x, p2

T
). (39)

Knowing the correlators in Eq. 38 to be Fourier transforms of nonlocal matrix elements in transverse space, it is
natural to write the appropriately weighted TMD PDF in their parametrization as a Bessel transform,

f̃ (m/2)
... (x, |pT |) =

∫ ∞

0
db

√
|pT |b Jm(|pT |b) f

(m/2)
... (x, b), (40)

such that f (m/2)
... (x, b) exp(imϕb) is the (two-dimensional) Fourier transform of f̃ (m/2)

... (x, |pT |) exp(imϕp). Bessel
weightings are extensively studied in Ref. [27].
Bessel weighting may also offer a convenient way to incorporate the soft factor which usually is given in b-space [28].

This factor has been omitted from Eq. 19. Our decomposition in Eq. 22, however, can always be written down, but
the Φ...(x, p2T ) will be modified by the inclusion of the soft factor.

IV. CONCLUSIONS

In Eq. 22 we have presented a parametrization for TMD quark correlators that distinguishes different azimuthal
dependences. For this we write down an expansion in terms of irreducible tensors in the transverse momentum
multiplied with correlators depending on x and p2

T
. These correlators contain tensors describing the polarization of

10

PDFs FOR TENSOR POLARIZED SPIN 1 HADRONS

f1LL,!!!"
""h1LT h⊥

1LL, g1LT , h1TT f
(Bc)
1TT h

⊥(Bc)
1TT

f1LT h⊥
1LT , g1TT

f
(A)
1TT h

⊥(A)
1TT

TABLE VII: The operator assignments of TMD PDFs for a tensor polarized spin 1 target require operator
structures up to rank 3. There are several different functions f1TT (x, p

2
T ) and h⊥

1TT (x, p
2
T ).

PFFs FOR TENSOR POLARIZED SPIN 1 HADRONS
D1LL, H1LT

D1LT , H
⊥
1LL, G1LT , H1TT

D1TT , H
⊥
1LT , G1TT

H⊥
1TT

TABLE VIII: The operator structure of TMD PFFs for a tensor polarized spin 1 target requires operator
structures up to rank 3.

parametrization of the higher rank correlators contain the T-even and T-odd TMD fragmentation functions. The
fragmentation functions describing fragmentation into a tensor polarized hadron are given in Table VIII.

C. Bessel weights

We note that the TMDs f (m)(x, p2
T
) of a given rank do not contain operators of definite twist. This is only

true for transverse moments f (m)
... (x) after pT -integration. The TMD correlators of definite rank appearing in the

parametrization in Eq. 22 only are integrated over azimuthal directions. The rank just refers to the azimuthal
dependence of the correlators in the full correlator Φ[U ](x, pT ).
Using that for a given rank m, there are two independent combinations pi1...im

T
∝ |pT |m exp(±imϕp), it is equivalent

to consider

pTi1...im

Mm
Φ̃i1...im

... (x, p2
T
) or Φ̃(m/2)

... (x, p2
T
) e±imϕp , (38)

where Φ̃(m/2)
... (x, p2

T
) = (−p2

T
/2M2)m/2 Φ̃...(x, p2T ) assures the appropriate small pT -behavior. A suitable normalization

of the correlator has to assure that Φ̃(m)
... (x, p2

T
) reproduces the collinear transverse moments upon integration,

Φ̃(m)
... (x) =

∫ ∞

0
2π|pT | d|pT | Φ̃

(m)
... (x, p2

T
). (39)

Knowing the correlators in Eq. 38 to be Fourier transforms of nonlocal matrix elements in transverse space, it is
natural to write the appropriately weighted TMD PDF in their parametrization as a Bessel transform,

f̃ (m/2)
... (x, |pT |) =

∫ ∞

0
db

√
|pT |b Jm(|pT |b) f

(m/2)
... (x, b), (40)

such that f (m/2)
... (x, b) exp(imϕb) is the (two-dimensional) Fourier transform of f̃ (m/2)

... (x, |pT |) exp(imϕp). Bessel
weightings are extensively studied in Ref. [27].
Bessel weighting may also offer a convenient way to incorporate the soft factor which usually is given in b-space [28].

This factor has been omitted from Eq. 19. Our decomposition in Eq. 22, however, can always be written down, but
the Φ...(x, p2T ) will be modified by the inclusion of the soft factor.

IV. CONCLUSIONS

In Eq. 22 we have presented a parametrization for TMD quark correlators that distinguishes different azimuthal
dependences by writing an expansion in terms of irreducible tensors in the transverse momentum multiplied with
correlators depending on x and p2

T
. These correlators contain tensors describing the polarization of the target and

Boer, Gamberg, Musch, Prokudin, JHEP 1110 (2011), 021;   Arxiv: 1107.5294 [hep-ph] 



Summary for Sivers hunters 

!   Which TMD? 

!   Transverse polarized target, leading in 1/Q, need azimuthal dependence 
!   T-odd, single spin asymmetry! 
!   Rank 1 

!   Different gauge links: different processes (DY, SIDIS) 

29 

ΦG
α (1) (x, pT

2 ) = dϕ
2π
pT
α (ϕ ) 1

2
Φ[+](x, pT )−Φ

[−](x, pT )#
$

%
&∫

f1T
⊥



Summary for Pretzelocity hunters 

!   Which TMD? 
 
!   Transverse polarized target, leading in 1/Q, need azimuthal dependence 
!   T-even, double spin asymmetry!  
!   Rank 2! 

!   Various gauge links: different processes (DY, SIDIS, multi-final states), 
… 

30 

ΦGG ,1
αβ (2) (x, pT

2 ) = dϕ
2π
pT
αβ (ϕ ) 1

8
Φ[+Box](x, pT )−Φ[+](x, pT )!
"

#
$∫

Φ
∂∂
αβ (2) (x, pT

2 ) = dϕ
2π
pT
αβ (ϕ ) Φ[±](x, pT )∫  − ΦGG ,1

αβ (2) (x, pT
2 )

ΦGG ,2
αβ (2) (x, pT

2 ) = dϕ
2π
pT
αβ (ϕ ) Φ[+(Box )](x, pT )∫  − Φ

∂∂
αβ (2) (x, pT

2 )−ΦGG ,1
αβ (2) (x, pT

2 )

h1T
⊥....



Where do we stand with TMDs (schematic) 

!   Collinear high-energy processes 

 

31 

σ (x1,x2 , z) =Φ
i (x1)Φ

j (x2 ) fCσ̂ ij→k ...
C (x1,x2 , z)Δ

k (z)

color factor 
like 1/Nc 

collinear 
PDF for 
parton i 

collinear 
PFF for 
parton k 

Partonic 
x-section 



Where do we stand with TMDs (schematic) 

!   Collinear high-energy processes 

!   Azimuthal dependences (involving a single hadron): 
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Φi[U ](x, pT ) =Φ
i (x, pT

2 )+ pT
α Φ

∂
iα (x, pT

2 )+CG
[U ]pT

αΦG
iα (x, pT

2 )+CGG
[U ]pT

αβΦGG
iαβ (x, pT

2 )+ ...

σ (x1,x2 , z, qT ) =Φ
i[U (C )](x1,qT )Φ

j (x2 ) fC σ̂
[C ]
ij→k ... (x1,x2 , z)Δ

k (z)

σ (x1,x2 , z) =Φ
i (x1)Φ

j (x2 ) fCσ̂ ij→k ...
C (x1,x2 , z)Δ

k (z)

gluonic pole 
factor 

gauge-link 
dependent TMD 
PDF for parton i 

rank-1 ETQS 
TMDs         

(T-odd) 

rank-1 TMDs 
(T-even)  

rank-2 ETQS 
TMDs         

(T-even) 



Where do we stand with TMDs (schematic) 

!   Collinear high-energy processes: 

!   Azimuthal dependences (involving several hadrons): 
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σ (x1,x2 , z) =Φ
i (x1)Φ

j (x2 ) fCσ̂ ij→k ...
C (x1,x2 , z)Δ

k (z)

σ (x1,x2 , z,qT ) = fC
[U1U2 ] Φi[U1(C )](x2 , p2T )⊗Φ j[U2 (C )](x1, p1T )σ̂

[C ]
ij→k ... (x1,x2 , z)Δ

k (z,kT )

gauge-link process- 
dependent color factors 



Where do we stand with TMDs (schematic) 

!   Collinear high-energy processes: 

!   Convoluted azimuthal dependences: 
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Φi[U ](x, pT ) = Φ
i (x, pT

2 )+ pT
α Φ

∂
iα (x, pT

2 )+CG
[U ]pT

α ΦG
iα (x, pT

2 )+CGG
[U ]pT

αβΦGG
iαβ (x, pT

2 )+ ...

σ (x1,x2 , z) =Φ
i (x1)Φ

j (x2 ) fCσ̂ ij→k ...
C (x1,x2 , z)Δ

k (z)

gluonic pole 
factor 

gauge-link 
dependent TMD 
PDF for parton i 

rank-1 ETQS 
TMDs         

(T-odd) 

rank-1 TMDs 
(T-even)  

rank-2 ETQS 
TMDs         

(T-even) 

σ (x1,x2 , z,qT ) = fC
[U1U2 ] Φi[U1(C )](x2 , p2T )⊗Φ j[U2 (C )](x1, p1T )σ̂

[C ]
ij→k ... (x1,x2 , z)Δ

k (z,kT )



Where do we stand with TMDs (schematic) 

!   Collinear high-energy processes: 

!   Convoluted azimuthal dependences: 
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Φi[U ](x, pT ) = Φ
i (x, pT

2 )+ pT
α Φ

∂
iα (x, pT

2 )+CG
[U ]pT

α ΦG
iα (x, pT

2 )+CGG
[U ]pT

αβΦGG
iαβ (x, pT

2 )+ ...

σ (x1,x2 , z) =Φ
i (x1)Φ

j (x2 ) fCσ̂ ij→k ...
C (x1,x2 , z)Δ

k (z)

σ (x1,x2 , z,qT ) = fC
[U1U2 ] Φi[U1(C )](x2 , p2T )⊗Φ j[U2 (C )](x1, p1T )σ̂

[C ]
ij→k ... (x1,x2 , z)Δ

k (z,kT )

Δk[U ](x,kT ) = Δ
k (z,kT

2 )+ kT
α Δ

∂
kα (x,kT

2 )+ kT
αβ Δ

∂∂
kαβ (z,kT

2 )+ ...

universal TMD 
PFF for parton i 

 rank-1 TMDs   
(T-even and odd)  

 rank-2 TMDs   
(T-even and odd)  



Where do we stand with TMDs (schematic) 

!   Collinear high-energy processes: 

!   Convoluted azimuthal dependences: 

 

! Deconvoluted azimuthal dependence 

 
36 

Φi[U ](x, pT ) =Φ
i (x, pT

2 )+ pT
α Φ

∂
iα (x, pT

2 )+CG
[U ]pT

αΦG
iα (x, pT

2 )+CGG
[U ]pT

αβΦGG
iαβ (x, pT

2 )+ ...

σ (x1,x2 , z) =Φ
i (x1)Φ

j (x2 ) fCσ̂ ij→k ...
C (x1,x2 , z)Δ

k (z)

σ (x1,x2 , z,qT ) = fC
[U1U2 ] Φi[U1(C )](x2 , p2T )⊗Φ j[U2 (C )](x1, p1T )σ̂

[C ]
ij→k ... (x1,x2 , z)Δ

k (z,kT )

Δk[U ](x,kT ) = Δ
k (z,kT

2 )+ kT
α Δ

∂
kα (x,kT

2 )+ kT
αβ Δ

∂∂
kαβ (z,kT

2 )+ ...

σ (x1,x2 , z,qT ) = fC
[U1U2 ] Φi[U1(C )](x1,bT )⊗Φ j[U2 (C )](x2 ,bT )σ̂

[C ]
ij→k ... (x1,x2 , z)Δ

k (z,bT )

gauge-link process-dependent 
color factors 



Treatment of diffractive contributions? 

!   Simplest nonzero contribution is ΦGG
[loop](pT), thus rank 2.  

!   Contributions are process-dependent! 
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Φdiff
[loop](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P Tr U[0,ξ ,0]

[loop] −1"
#

$
% P ξ .n=0

                       = δ(x)
d 2ξT
(2π )2∫ ei pT .ξT P Tr U[0,ξ ,0]

[loop] −1"
#

$
% P ξ .n=0

See also: F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301  



Conclusions 

!   (Generalized) universality using definite rank functions: azimuthal 
dependence of transverse momentum multiplying functions f(x,pT

2).  
!   Rank 0 are the well-known collinear functions (three quark and two 

gluon spin distributions) 
!   Rank m is coupled to cos(mφ) and sin(mφ) azimuthal asymmetries. 

There are leading azimuthal asymmetries with m up to 2(Shadron+sparton). 
!   Be careful: multiple universal distribution functions in azimuthal 

asymmetries (depending on color structure), e.g. three pretzelocities. 
!   In principle distinguishable in different experiments (differences 

depending on color flow in tree-level diagrams):  
 gluon + gluon à colorless (distinguish CP+ from CP- Higgs)  
 gluon-gluon à quark-antiquark pair.  

!   Novel information on hadron structure (comparison with lattice calc.) 
!   This is tree level: factorization studies are the next step 
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