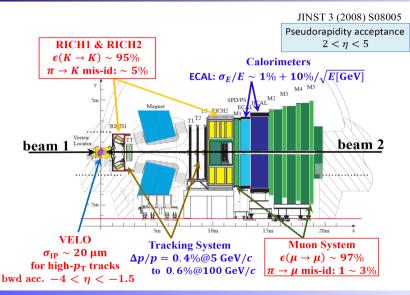


Studies of production in the forward region with LHCb

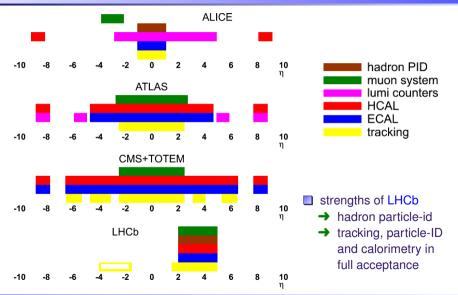
Michael Schmelling – MPI for Nuclear Physics

- on behalf of the LHCb collaboration -


Outline

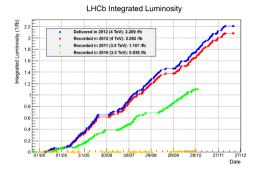
- The LHCb experiment
- Energy flow and multiplicities
- Identified particles
- Nuclear effects
- Summary and outlook

HEE 1. THE LHCD EXPERIMENT



Production in the forward region - The LHCb experiment

Http:// Angular.coverage.of the LHC experiments



Production in the forward region - The LHCb experiment

Hicp Data taking history

year	int.luminosity	E[TeV]
2009	6.8 μb^{-1}	0.9
2010	$0.3 {\rm nb}^{-1}$	0.9
2010	37 pb^{-1}	7
2011	$0.1 {\rm pb}^{-1}$	2.76
2011	1 fb^{-1}	7
2012	2fb^{-1}	8
2013	$1.3 {\rm nb}^{-1}$	5 (pA)
2013	$0.6 {\rm nb}^{-1}$	5 (Ap)
2013	3 nb^{-1}	2.76

- **DAQ efficiency** \approx 95%
- Instantaneous luminosity up to $L = 4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$
 - ➔ twice design value at double the nominal bunch spacing
 - ➔ luminosity leveling for LHCb by beam steering
- \blacksquare a total of about 2 × 10¹⁴ pp-collisions scrutinized

global event properties of pp collisions

- → EPJC72(2012)1947 Measurement of charged particle multiplicities at $\sqrt{s} = 7$ TeV
- → EPJC73(2013)2124 Measurement of the forward energy flow at $\sqrt{s} = 7$ TeV
- light quarks and strangeness in pp collisions
 - PLB693(2010)69Prompt K_S^0 production in pp collisions at $\sqrt{s} = 0.9 \text{ TeV}$ PLB703(2011)267Measurement of the inclusive ϕ cross-section at $\sqrt{s} = 7 \text{ TeV}$ JHEP08(2011)034Measurement of V^0 production ratios at $\sqrt{s} = 0.9$ and 7 TeV \rightarrow EPJC72(2012)2168Prompt hadron production ratios at $\sqrt{s} = 0.9$ and 7 TeV
- proton-lead collisions at $\sqrt{s_{\rm NN}} = 5 \,{\rm TeV}$
 - → arXiv:1308.6729 Study of J/ψ production and cold nuclear matter effects

 $\boldsymbol{\diamondsuit}$ open charm and charmonium in pp collisions

NPB871(2013)1 EPJC71(2011)1645 EPJC72(2012)2100 JHEP02(2013)041 JHEP06(2013)064 JPG40(2013)045001 Prompt charm production in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ J/ψ production in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ $\psi(2S)$ meson production in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ J/ψ production in pp collisions at $\sqrt{s} = 2.76 \text{ TeV}$ Production of J/ψ and Υ mesons in at $\sqrt{s} = 8 \text{ TeV}$ Exclusive J/ψ and $\psi(2S)$ production at 7 TeV

HC 2. ENERGY FLOW AND MULTIPLICITIES

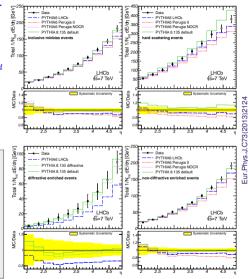
 \rightarrow Energy Flow: energy emitted per event into a given η -interval

Energy Flow:
$$\frac{1}{N_{int}} \frac{dE}{d\eta} = \frac{1}{\Delta \eta} \left(\frac{1}{N_{int}} \sum_{i=1}^{N_{part,\eta}} E_{i,\eta} \right)$$

- part of underlying event
- → sensitive to multi-parton interactions & parton radiation
- → comparison to PYTHIA and cosmic-ray event generators

analysis for different event classes:

- I inclusive minimum bias: ≥ 1 track in $1.9 < \eta < 4.9$ and $p > 2 \, {
 m GeV}/c$
- \blacksquare hard scattering: \geq 1 track in 1.9 $< \eta <$ 4.9 and $p_T >$ 3 GeV/c
- **diffractive enriched:** no tracks in $-3.5 < \eta < -1.5$ (rapidity gap)
- **D** non-diffractive enriched: ≥ 1 tracks in $-3.5 < \eta < -1.5$ (no gap)

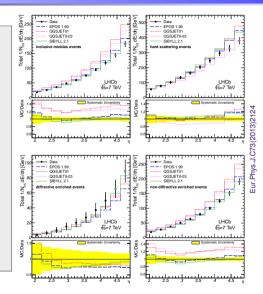


→ total EF = (charged+neutral)EF

- Energy Flow increases with momentum transfer
 EF_{diff} < EF_{incl} < EF_{ndiff} < EF_{hard}
- \blacksquare highest sensitivity at large η
- uncertainties:
 - dominated by systematics
 - \rightarrow smallest at large η

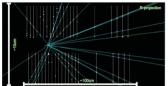
PYTHIA6: Energy Flow is

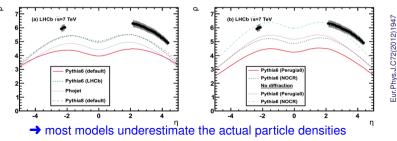
- > overestimated at small η
- > underestimated at large η PYTHIA 8.135 default:
 - except for hard scattering the Energy Flow is well described for all samples


Production in the forward region - Energy flow and multiplicities

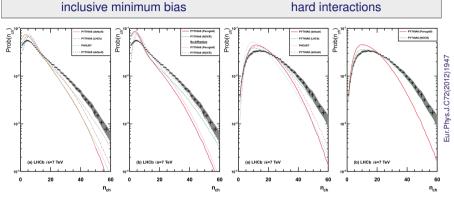
Hield Energy Flow: data vs cosmic ray models

→ models not tuned to LHC(b)


- EPOS & SYBILL: good description of EF for inclusive and non-diffractive events
- QGSJET models: overestimated EF for inclusive and non-diffractive events; good description of hard scattering
- ➤ best description by SYBILL
- all models underestimate the EF of diffractive events


Hitch Charged particle multiplicities

- → VELO based measurement
 - no magnetic field
 - only measurement of direction
 - → tracks as a function of η
 - events with ≥ 1 tracks in forward acceptance
 - ➔ inclusive minimum bias interactions
 - → hard interactions with \geq 1 track with p_T > 1 GeV/c

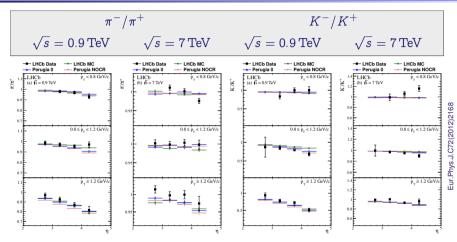


\clubsuit charged particle density per events vs η

Production in the forward region - Energy flow and multiplicities

- ➔ none of the models studied is fully able to describe the distributions
- ➔ models underestimate multiplicity in the forward region
- ➔ agreement better for hard interactions

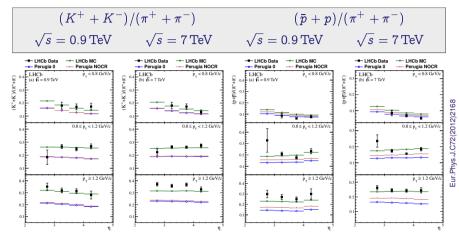
MER 3. IDENTIFIED PARTICLES


- \rightarrow particle production ratios as a function of y and p_T
 - antiparticle/particle ratios and ratios of different particle species

$$\frac{\pi^-}{\pi^+} , \ \frac{K^-}{K^+} , \ \frac{\bar{p}}{p} \qquad \text{and} \qquad \frac{p+\bar{p}}{\pi^++\pi^-} , \ \frac{K^++K^-}{\pi^++\pi^-} , \ \frac{p+\bar{p}}{K^++K^-}$$

- many systematic uncertainties cancel
- Iots of information about the hadronization process, for example:
 - → baryon number transport from \bar{p}/p
 - baryon suppression from baryon/meson ratios
 - ➔ strangeness suppression from kaon/pion ratios
- experimental aspects:
 - > results based on 0.3 nb⁻¹ at $\sqrt{s} = 0.9$ TeV and 1.8 nb⁻¹ at $\sqrt{s} = 7$ TeV
 - \succ PID efficiencies from $K^0_S \to \pi^+\pi^-$, $\Lambda \to p\pi^-$, $\bar{\Lambda} \to \bar{p}\pi^+$ and $\phi \to K^+K^-$
 - > dominant uncertainties from PID due to limited size of calibration sample

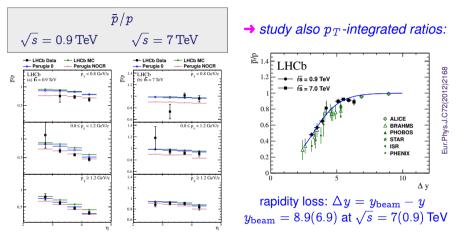
Httparticle/particle ratios



- charge ratio drops towards larger rapidities (proton beam)
- → effect more pronounced at higher p_T
- ➔ general behaviour reproduced by PYTHIA tunes

Production in the forward region - Identified particles

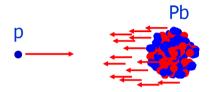
Htch Ratios between particle species



- strangeness suppression very similar to baryon suppression
- \rightarrow less suppression at larger p_T
- ➔ data best described by LHCb-tune of PYTHIA

Production in the forward region - Identified particles

Hteb Baryon number transport



- scaling behaviour as a function of rapidity loss
- → fit to LHCb&ALICE data based in Regge-model of baryon transport

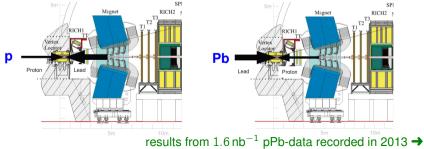
HER 4. NUCLEAR EFFECTS

→ measure J/ψ production in pA and compare to pp

pA collisions are an ideal laboratory to probe cold nuclear effects

- needed for the interpretation of quark-gluon-plasma signatures in heavy-ion collisions
- \blacksquare use J/ψ mesons to probe the hadronic environment
- lacksquare differentiate between prompt J/ψ and J/ψ from b
 - ➔ possible handle to disentangle shadowing and energy loss

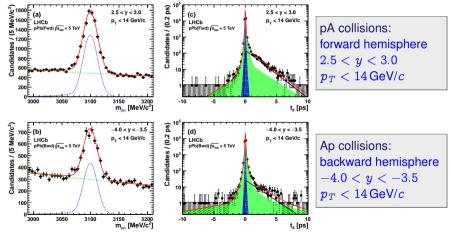
High Observables sensitive to nuclear effects


cross-section ratios:

nuclear modification factor:

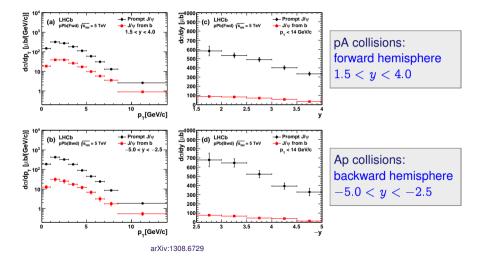
forward-backward asymmetry:

$$egin{aligned} R_{pA}(y) &= rac{1}{A} \cdot rac{d\sigma_{pA}/dy}{d\sigma_{pp}/dy} \ R_{FB}(y) &= rac{R_{pA}(+|y|)}{R_{pA}(-|y|)} \end{aligned}$$


- positive rapidity in direction of the proton
- \blacksquare pp cross-section cancels in R_{FB}
- exploit asymmetric layout of LHCb to measure forward and backward

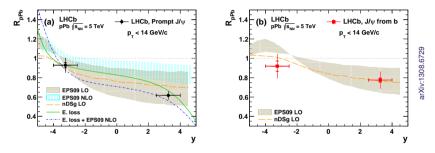
Htele Separating prompt and delayed components

ig* simultaneous fit of mass and pseudo-proper-time $t_z = (z_{J/\psi} - z_{PV}) \cdot M_{J/\psi}/p_z$



arXiv:1308.6729

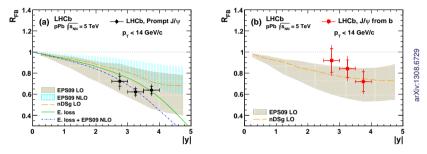
Htel: Single differential cross-sections



\diamond center-of-mass energy $\sqrt{s}=5\,{ m TeV}$, transverse momentum $0 < p_T < 14\,{ m GeV}/c$

Http://www.internet.com/weights/action/factors

\rightarrow common range of forward and backward acceptance: 2.5 < |y| < 4.0



results require interpolation of pp cross-section to √s = 5 TeV
 R_{pPb} ≠ 1: the nucleus is not a loose collection of independent nucleons
 B-mesons less affected than prompt J/ψ: smaller systems less affected
 energy loss and shadowing are about equally important
 J/ψ data agree with "energy loss + NLO shadowing"

HCB Results: forward-backward asymmetries

interpolated pp cross-section not required

- \Box differential measurement in |y|
- same conclusions as for R_{pPb}
 - → $R_{FB} \neq 1$: the nucleus is not a loose collection of independent nucleons
 - → B-mesons less affected than prompt J/ψ : smaller systems less affected
 - ➔ energy loss and shadowing are about equally important
 - → J/ψ data agree with "energy loss + NLO shadowing"

Http://www.and Outlook

- → LHCb also has a very wide QCD-related physics program...
 - studies of global event properties
 - ➔ forward energy flow and multiplicities not well described by PYTHA6
 - → cosmic ray models appear to do better
 - production ratios of identified particles
 - ➔ antiparticle/particle ratios generally well described
 - ➔ strangeness and baryon suppression too strong in many models
 - → scaling of baryon number transport with rapidity difference
 - study of proton-ion collisions probes cold nuclear effects
 - ➔ data show clear evidence for energy-loss and shadowing
 - $\rightarrow c\bar{c}$ and $b\bar{b}$ results may be able to disentangle the two contributions
 - many subjects not covered here
 - → cross-sections for identified particles, Drell-Yan production, CEP,

BACKUP

Production in the forward region - Backup

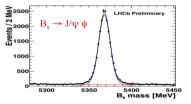
M. Schmelling, QCD@LHC2013 22

HC References to cosmic ray models

T. Pierog and K.Werner, EPOS model and ultra high energy cosmic rays, Nucl. Phys. Proc. Suppl. 196 (2009) 102, arXiv:0905.1198.

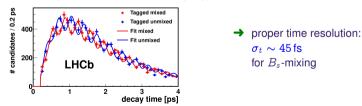
S. Ostapchenko,

Status of QGSJET, AIP Conf. Proc. 928 (2007) 118, arXiv:0706.3784.


E.-J. Ahn et al.,

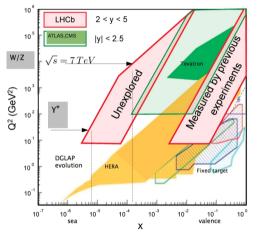
Cosmic ray interaction event generator SIBYLL 2.1, Phys. Rev. D80 (2009) 094003, arXiv:0906.4113.

Mes Physics performance



excellent particle-ID and mass resolution for complex decays

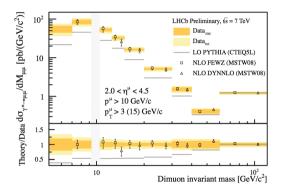
• *B*-mass resolution: $\sigma(m_B) = 8 \text{ MeV}/c^2$ for $B_s \rightarrow J/\psi X$ with J/ψ mass constraint


excellent particle-ID, vertex- and proper-time resolution

polarity switching of dipol magnet allows to control systematics

→ LHCb physics reach

kinematics


$$x_1x_2=rac{m^2}{s}$$
 and $rac{x_1}{x_2}=e^{2y}$

- \rightarrow small masses test small x
- forward rapidity means large asymmetries in x and thus sensitivity to even smaller values

LHCb allows to probe PDFs in a completely unexplored regime!

Http://www.anaresults

→ Drell-Yan di-muon cross-section vs invariant mass (LHCb-CONF-2012-013)

$$\succ q \bar{q} \rightarrow \gamma^* \rightarrow \mu^+ \mu^-$$

$$\succ 5 < M_{\mu\mu} < 120 \,{\rm GeV}/c^2$$

> isolated high-
$$p_T$$
 muons

leading order predictions systematically too low
 NLO predictions in good agreement with the data