Jets, α_s and QCD measurements at HERA

Daniel Britzger on behalf of the H1 and ZEUS Collaborations

QCD@LHC 2013 - DESY September 3, 2013

HERA e[±]p collider

- $\sqrt{s} = 319 \text{ GeV}$
 - E_e = 27.6 GeV
 - E_p = 920 GeV
- Operational until 2007

HERA with the H1 and ZEUS detectors

Two multi-purpose experiments: H1 and ZEUS

• Luminosity: ~ 0.5 fb⁻¹ per experiment

- Excellent control over experimental uncertainties
 - Overconstraint system in DIS
 - Electron measurement: 0.5 1% scale uncertainty
 - Jet energy scale: 1%
 - Trigger and normalization uncertainties: 1-2 %
 - Luminosity: 1.8 2.5%

Inclusive deep-inelastic ep scattering (DIS)

ep scattering:
$$e^{\pm}p \rightarrow e^{\pm} + X$$

Center-of-mass energy

$$\sqrt{s} = \sqrt{(k+p)^2}$$

Virtuality of exchanged boson

$$Q^2 = -q^2 = -(k - k')^2$$

• Bjorken scaling variable

$$x_{\rm Bj} = \frac{Q^2}{2p \cdot q}$$

Inealsticity

$$y = \frac{p \cdot q}{p \cdot k}$$

Cross section calculation

- Collinear factorization
- Hard scattering calculable in QCD (pQCD)
 - Calculable up to NNLO for inclusive NC DIS
- PDFs have to be determined from experiment

Jet production in photoproduction yp

direct photoproduction

When $Q^2 \rightarrow 0$ GeV²: Two processes contribute

Direct photoproduction $x_{\gamma}^{obs} \rightarrow 1$: order of α_s Resolved photoproduction: $x_v^{obs} < \sim 0.8$

- Leading order of $O(\alpha_s^2)$
- Two hadrons are involved
 - -> sensitive to multi-parton interactions

Expect \geq 2 jets in the final state

Analysis performed in laboratory rest frame

resolved photoproduction

Partonic momentum fraction of the photon

$$x_{\gamma}^{\text{obs}} = \frac{E_T^{\text{jet1}} e^{-\eta^{\text{jet1}}} + E_T^{\text{jet2}} e^{-\eta^{\text{jet2}}}}{2yE_e}$$

Double-differential measurements in E_{T} and η

- $Q^2 < 1 \text{ GeV}^2$
- 142 < W_{vp} < 293 GeV
- Cross sections include every jet $E_T^{jet} > 17 \text{ GeV}, -1 < \eta_{jet} < 2.5$
- Energy scale: 1% -> 5-10 % uncertainty

Comparison to NLO predictions

The data are well described by NLO QCD

- Klasen et al.
- ZEUS-S/GRV-HO
- $\mu_r = \mu_f = E_T^{jet}$

Disagreement at η_{iet} >2 from 17< E_T^{jet} < 21 GeV

Comparison of jet algorithms

 k_T , anti- k_T and S/SCone

Similar size for k_T and anti- k_T

- anti- k_T 6% smaller cross section than k_T
- SIScone differs in shape

Photoproduction: two 'hadrons' for resolved processes

- Sensitivity to proton PDF
- Sensitivity to photon PDF
- -> Measurements have the potential to constrain photon and proton PDFs

Sensitivity to multi parton interactions (MPI)

- Use NLO \otimes NP
- NP simulated using Pythia
- MPI increase the predictions at low E_{τ} jet and large η_{iet}
- Data description is improved
- Best description of data for $p_{T,min}^{sec} = 1.5 \text{ GeV}$
- Effect of MPI is reduced for $E_{T}^{jet} > 21 \text{ GeV}$

Fit of NLO QCD to single differential cross sections $d\sigma / dE_{T}^{jet}$

Use only $21 < E_t^{jet} < 71 \text{ GeV}$

- $\alpha_{s}(M_{7})$ dependence is parameterized ZEUS-S proton PDF at various values of $\alpha_{s}(M_{7})$ **GRV-HO** photon PDF
- **Consistent results for all three jet algorithms**
 - 1.8% Experimental
 - 3.3% Theory
- Data confirms running of α_s over a wide range of E_T
 - Good agreement with two-loop QCD prediction

Jet production in neutral current DIS

Jet measurements performed in 'Breit frame'

Breit frame fullfils equation $2x_{\rm Bj}p + k = 0$

Jet production in leading-order pQCD

QCD compton

QCD compton

Boson - gluon fusion Boson - gluon fusion

Jet production is directly sensitive to α_s

Events show two-jet topology

Inclusive jet

Count every single jet with transverse momentum

Dijet and trijet observable

Average of two/three leading jets

$$\langle p_{\rm T} \rangle_2 = (p_{\rm T}^{\rm jet1} + p_{\rm T}^{\rm jet2})/2$$

Multijet at high Q² – Incl. jet, Dijet, Trijet (H1) H1prelim-12-031

Simulataneous measurement of normalized Multidimensional regularized unfolding inclusive jet, dijet and trijet cross sections

- Normalization w.r.t. inclusive NC DIS
- Cancellation of normalization uncertainties
- Partly cancellation of other exp. uncertainties

```
Neutral current phase space
       150 < Q<sup>2</sup> < 15000 GeV<sup>2</sup>
       0.2 < y < 0.7
Jet acceptance
       -1.0 < \eta_{lab} < 2.5
Inclusive Jet
       7 < p_{T}^{jet} < 50 \text{ GeV}
Dijet and Trijet
       5 < p_{T}^{jet} < 50 \text{ GeV}
       M_{12} > 16 \text{ GeV}
       7 < <p_> < 50 GeV
```

- Four double-differential measurements are unfolded simultaneously
 - NC DIS, inclusive jet, dijet and trijet
- Using TUnfold
- Statistical correlations considered
- Enlarged phase space
- Up to 6 observables are considered for migrations

Migration Matrix

Detector level

Multijet at high Q² – Incl. jet, Dijet, Trijet (H1) H1prelim-12-031

Jet energy scale 1%

-> 3 - 7% effect on cross sections

NLO predictions

nlojet++, fastNLO and QCDNUM CT10, α_s =0.118, $\mu_r^2 = (Q^2+p_T^2)/2$ Trijet (NLO) is of leading order O(α_s^2)

Data well described by theory

PDF uncertainty ~ 1%

Correlations between observables are known

-> Can be used together in fit

Multijet at high Q² – Incl. jet, Dijet, Trijet (H1) H1prelim-12-031

Statistical correlations available All data points can be used together in a fit

Normalization uncertainties have been canceled out

 α_{s} (M_z) from inclusive jet: 0.1197 ± 0.0008(exp) ± 0.0057 (theo) $\alpha_{s}(M_{7})$ from dijet: $0.1142 \pm 0.0008(exp) \pm 0.0052$ (theo) $0.1185 \pm 0.0018(exp) \pm 0.0047$ (theo) α_{s} (M₇) from trijet:

Hessian method for α_s determination

Constrain k-factor: require k < 1.3

Uncertainty

1% experimental

3.6% theory and PDF

Normalized Multijet (k < 1.3)

 χ^2 / ndf = 53.3 / 41 = 1.30

Correlation matrix

Jet

$\alpha_{s}(M_{7}) = 0.1163 \pm 0.0011(exp) \pm 0.0014 (PDF) \pm 0.0008 (had) \pm 0.0040 (theo)$

α_s(M_Z) from inclusive DIS & inclusive jet in DIS H1prelim-11-034, ZEUS-prel-11-001

Combined fit of PDF and $\alpha_s(M_Z)$ to inclusive DIS data and inclusive jet data

HERAPDF1.5f: incl. DIS only HERAPDF1.6: incl. DIS and jet data

Jet data is capable of reducing correlation between α_s and gluon

Scale uncertainty from variation of renormalization and factorization scale

 $\alpha_{s}(M_{Z})$ from combined fit with PDFs from incl. DIS and jet data in NLO

 α_{s} (M_Z) = 0.1202 ± 0.0019(exp/model/param/had.) ± $^{0.0045}_{0.0036}$ (scale)

Inclusive jets in PDF fits H1prelim-11-034, ZEUS-prel-11-001

Double-differential inclusive jet data from H1 and ZEUS are added to the PDF fit DIS jets have high sensitivity to gluon density through boson-gluon fusion: $\sigma \sim \alpha_s \times g$

PDF fit of inclusive data (without jets) gluon uncertainty blows up at small x

PDF fit of inclusive data and inclusive jet data

- Dramatically decreases the low-x gluon uncertainty
- Also model and parametrization uncert. reduced

Prompt photon plus jets in DIS: $ep \rightarrow e+\gamma+j+X$ Phys Lett B 715 (2012) 88-97

Photon radiation unaffected by parton hadronization

- -> Direct probe of underlying partonic process
- -> Allows to test QCD 'matrix elements'

Phase space

- DIS: $10 < Q^2 < 350 \text{ GeV}^2$, $E_e > 10 \text{ GeV}$, $\theta_e > 140^\circ$
- photon: $4 < E_T^{\gamma} < 15 \text{ GeV}$, $-0.7 < \eta_{\gamma} < 0.9$, $E_T^{\gamma} / E_T^{\gamma-jet} > 0.9$
- jet: E_T^{jet} > 2.5 GeV, -1.5< η_{jet} <1.8

Theory

- GKS: NLO (O($\alpha^3 \alpha_s$)) with BFG parton-photon frag. functions
- BLZ: k_T factorization approach

Photon and jet E_T : shape well described by GKS and BLZ GKS: Low-x and low Q^2 unerestimated

ZEUS

Prompt photons in photoproduction Q²<1 GeV² Direct and resolved processes Prompt radiation and fragmentation Measured with and without accompanying jet

Theory

- FGH: NLO with fragmentation functions (O($\alpha^3 \alpha_s^2$))
- Shape well described; tend to be lower
- **BLZ**: k_{T} factorization with unintegrated parton densities
- Most data well described
- problems at direct peak in γ +jet ($x_v^{meas} \rightarrow 1$)

Comparison of $\alpha_s(M_7)$ values

HERA jet cross sections

High experimental sensitivity to $\alpha_s(M_7)$

Complementary methods and processes

Consistent results

Theory uncerainty from missing higher order dominate

NNLO precision is needed

Uncertainties
H1+ZEUS NC, H1-prelim-11-034
H1 multijets at H1, EPJC 67, 1 (2
H1 norm. mult H1-prelim-12-031
ZEUS, Nucl. Phys
D0 incl. jets, a D0, PRD 80, 1111
D0 angular co D0, Phys. Lett. B
ATLAS incl. je B. Malaescu et al
CMS R3/2, NL CMS QCD-11-003
EW Fit, Z deca Gfitter Group, EP
World average J. Beringer et al.

s: exp. —— theo. -----

Very active physics analyses at HERA ongoing

Experiments provide measurements with final precision

- Jet energy scale ~1%; final calibration of data!
- Highly ambitious analyses techniques (e.g. 6-dimensional reg. unfolding)

Rich variety of QCD physics with high precision

- Jets in DIS and photoproduction
- Studying hard QCD interactions
- Sensitivity to multi parton interactions in yp

Including DIS jet data in PDF fits shows high sensitivity to gluon density and $\alpha_{s}(M_{7})$ in **PDF** fits

 $\alpha_{s}(M_{7})$ values from jets at HERA reach experimental precision of <1%

However: limited by theory with 3-4 % precision -> We need NNLO for jets (also in DIS)

Jet production in ep scattering

Jet measurements performed in 'Breit frame'

Jet production in leading-order pQCD

Jet production is directly sensitive to $\alpha_{\rm s}$

Probe running of alpha_s

Energy-scale dependence of α

• This measurement confirms the running of α_s over a wide range of E_T^{jet} • The running is in good agreement with the two-loop QCD prediction

Inclusive jet, Dijet and Trijet at low Q² Eur.Phys.J. C67 (2010) 1

Inclusive Jet, 2-Jet and 3-Jet Cross Sections

