Camille Bélanger-Champagne McGill University For the ATLAS and CMS collaborations

Measurements of α_s at ATLAS and CMS

September 3rd 2013, QCD@LHC, DESY, Hamburg

Motivation: Measuring α_s

- Strong coupling constant α_s is the only free parameter in QCD
 - With quark masses
- Can be determined using many experimental observables
 - Different processes allow running behaviour to be observed
- Compatible values demonstrate

C. B.-Champagne, QCD@LHC

- QCD, as a theory, is a good description of strong interactions
- One universal coupling is sufficient to describe the strong interaction

2

Multijet ratios for α_s measurements

- Ratios of inclusive cross-sections for event with ≥ 3 jets and ≥ 2 jets
 - Sensitive to the value of α_{s}
 - Cancellation of systematic uncertainties (luminosity, PDFs, etc) for more precise test of QCD
- Cross-section can be measured relative to various quantities, typically jet transverse momenta
 - Collision energy at LHC means running of the coupling can be tested at new scales

Multijet ratios in 2010 ATLAS data ATLAS-CONF-2013-041

 Two ratios of inclusive cross-sections for event with ≥ 3 jets and ≥ 2 jets were studied

Benchmark measurement:

$$R_{3/2}(p_{\rm T}^{\rm lead}) = \left. \frac{d\sigma_{N_{\rm jet} \ge 3}}{dp_{\rm T}^{\rm lead}} \right| \left| \frac{d\sigma_{N_{\rm jet} \ge 2}}{dp_{\rm T}^{\rm lead}} \right| \sim \alpha_s \quad \text{`Probability that a 2-jet event has a third jet''}$$

New observable:

$$N_{3/2}(p_{\mathrm{T}}^{(\text{all jets})}) = \sum_{i}^{N_{\text{jet}}} \frac{d\sigma_{N_{\text{jet}}\geq3}}{dp_{\mathrm{T},i}} \Big/ \sum_{i}^{N_{\text{jet}}} \frac{d\sigma_{N_{\text{jet}}\geq2}}{dp_{\mathrm{T},i}} \sim f(\alpha_s)$$

• Comparable sensitivity to α_s , $N_{3/2}$ has smaller dependence on the choice of scale in the phase-space studied, used for α_s determination

Jets at ATLAS in 2010

- Jets reconstructed with the anti- k_t algorithm with distance parameter R=0.6
 - Use jets in the region |y| < 2.8 with $p_T > 40$ GeV
 - Leading jet must have $p_T > 60 \text{ GeV}$
- Use the highest p_T fully-efficient single-jet trigger to populate each p_T bin of the ratio measurement
- Experimental effects on data (detector inefficiency, resolution, etc) corrected for using bin-by-bin multiplicative factor
 - ALPGEN+HERWIG/JIMMY, correction up to ${\sim}7\%$

Theoretical Predictions

- NLO pQCD predictions from NLOJet++ using MSTW2008 NLO PDFs ($0.110 < \alpha_s(M_Z) < 0.130$)
- Distributions generated separately for events with ≥ 3 jets and ≥ 2 jets, then divided to get ratio prediction
- Renormalisation and factorisation scales for each observable is chosen to be the respective event variable $(p_T^{\text{lead}}, p_T^{\text{all jets}})$
- Parton-level prediction from NLOJet++ corrected for nonperturbative effects (hadronisation, underlying event)
 - Pythia AMBT1 tune, correction <1% at high p_T and up to ~10% at p_T = 60 GeV

- Two ratio measurements sensitive to different event kinematics
- Total experimental uncertainty in yellow, dominated by jet energy scale
- Theoretical errors dominated by scale uncertainty and also include PDF uncertainty and non-perturbative correction uncertainty

Determination of α_s , ATLAS 2010

- Least-squares fit comparison to NLOJet++ predictions with different values of $\alpha_s(M_z)$ in range 210 GeV < p_T < 800 GeV

Multijet Ratio in 2011 CMS data CMS-QCD-11-003, submitted to EPJC

 Ratio studied by CMS in 2011 data (5.0 fb⁻¹) is given by

$$R_{32} = \left. \frac{d\sigma_{N_{\text{jet}} \ge 3}}{d\langle p_{\text{T}1,2} \rangle} \right| \frac{d\sigma_{N_{\text{jet}} \ge 2}}{d\langle p_{\text{T}1,2} \rangle}$$

- where $\langle p_{T1,2} \rangle$ is the average of the transverse momentum of the two leading jets: $(p_{T1}+p_{T2})/2$
- Trigger strategy uses 3 single jet triggers in the $\langle p_{T1,2} \rangle$ range where each is fully efficient

Jets at CMS in 2011

- Jets reconstructed with the anti- k_t algorithm with distance parameter R=0.7
 - Use jets in the region |y| < 2.5 with $p_T > 150$ GeV
 - Select events with at least 2 such jets and reject events with either or both leading jets beyond |y|=2.5
- Experimental effects on data (detector inefficiency, resolution, etc) using the iterative Bayesian method as implemented in ROOUNFOLD
 - Pythia 6 tune Z2 used to create response matrix

Theoretical Predictions

- NLO pQCD predictions from NLOJet++/FASTNLO using 4 PDFs sets: NNPDF 2.1, ABM11, MSTW2008 and CT10, each with NNLO evolution code
- Renormalisation and factorisation scales chosen to be equal to ${<}p_{{\rm T}1,2}{>}$
- Parton-level prediction from NLOJet++ corrected for nonperturbative effects (hadronisation, underlying event, etc)
- Pythia 6 tune Z2 and Herwig++ tune 2.3, correction factor 1.02 at $\langle p_{T1,2} \rangle = 250$ GeV decreasing to 1.0 for higher $\langle p_{T1,2} \rangle$

Ratio Measurement, CMS 2011

• Ratio is measured and compared to a range of values for the strong coupling constant

• Jet energy scale and unfolding the main sources of experimental systematic uncertainties

Determination of α_s , CMS 2011

• Least-squares fit comparison to NLOJet++ predictions with different values of $\alpha_s(M_z)$ in range 420 GeV < $< p_{T1,2} > < 1390$ GeV

 $\alpha_S(M_Z) = 0.1148 \pm 0.0014 \text{ (exp.)} \pm 0.0018 \text{ (PDF)}^{+0.0050}_{-0.0000} \text{ (scale)}$

- Result dominated by theoretical uncertainties
- Test running behaviour by using RGE to evolve value of α_s from a scale of M_z to the scale Q of different regions
- Energy-dependence measurement extended to the TeV range for the first time

Top pair production, CMS 2011 CMS-TOP-12-022, submitted to PLB

- NNLO calculations now available for top pair production cross-section
 - m_t , α_s and gluon PDF the main inputs for calculation
- Dependence of the cross-section result on these inputs allows determination of one of them when fixing the other two.
- The top quark pole ("on-shell") mass m_t^{pole} , which could be up to 1 GeV higher than the top mass used in current Monte Carlo event generators is used throughout this analysis

Predicted top pair cross-section, sensitivity to α_s

- NNLO prediction calculated with Top++2.0 for all production channels with the renormalisation and factorisation scales set to m_t^{pole} and using NNPDF2.3
- Well-described by 2nd-order polynomial

Measured cross-section

• Use most precise individual cross-section result (dilepton), JHEP **11** (2012) 067: 161.9 ± 6.7 pb

- assuming m_t=172.5 GeV and $\alpha_s(M_Z)=0.1180$

- Parametrize the dependence of the event kinematics and thus acceptance corrections as in reference.
- Additional 1% uncertainty due to dependence of the acceptance correction on the value of $\alpha_s(M_Z)$ used in the simulation from which the correction is derived

Derivation of $\alpha_s(M_Z)$

• Combine the theoretical probability distribution f_{th} with the experimental result+uncertainty f_{exp} to form a Bayesian posterior probability distribution:

 $P(\alpha_{s}) = \int f_{\exp}(\sigma_{t\bar{t}}|\alpha_{s}) f_{th}(\sigma_{t\bar{t}}|\alpha_{s}) d\sigma_{t\bar{t}} \quad \text{taking } m_{t}^{\text{pole}} = 173.2 \pm 1.4 \text{ GeV}$

• Probability function for the predicted cross-section is used as a Bayesian prior:

$$f_{\rm th}(\sigma_{\rm t\bar{t}}) = \frac{1}{2\left(\sigma_{\rm t\bar{t}}^{(h)} - \sigma_{\rm t\bar{t}}^{(l)}\right)} \left(\operatorname{erf}\left[\frac{\sigma_{\rm t\bar{t}}^{(h)} - \sigma_{\rm t\bar{t}}}{\sqrt{2}\,\delta_{\rm PDF}}\right] - \operatorname{erf}\left[\frac{\sigma_{\rm t\bar{t}}^{(l)} - \sigma_{\rm t\bar{t}}}{\sqrt{2}\,\delta_{\rm PDF}}\right] \right)$$

• Probability function for the predicted cross-section is used as a Bayesian prior:

Derivation of $\alpha_s(M_Z)$

• Combine theoretical probability distribution f_{th} with the experimental result+uncertainty f_{exp} to form a Bayesian posterior probability distribution:

 $P(\alpha_{s}) = \int f_{\exp}(\sigma_{t\bar{t}}|\alpha_{s}) f_{th}(\sigma_{t\bar{t}}|\alpha_{s}) d\sigma_{t\bar{t}} \quad \text{taking } m_{t}^{\text{pole}} = 173.2 \pm 1.4 \text{ GeV}$

• Probability function for the predicted cross-section is used as a Bayesian prior:

$$f_{\rm th}(\sigma_{\rm t\bar{t}}) = \frac{1}{2\left(\sigma_{\rm t\bar{t}}^{(h)} - \sigma_{\rm t\bar{t}}^{(l)}\right)} \left(\operatorname{erf}\left[\frac{\sigma_{\rm t\bar{t}}^{(h)} - \sigma_{\rm t\bar{t}}}{\sqrt{2}\,\delta_{\rm PDF}}\right] - \operatorname{erf}\left[\frac{\sigma_{\rm t\bar{t}}^{(l)} - \sigma_{\rm t\bar{t}}}{\sqrt{2}\,\delta_{\rm PDF}}\right] \right)$$

• Result: $\alpha_S(m_Z) = 0.1151^{+0.0033}_{-0.0032}$

Uncertainty is the sum in quadrature of the 68% CL of the posterior probability, the effect of varying m_t^{pole} within its uncertainty and the uncertainty on the LHC beam energies

3-jet mass cross-section, CMS 2011 CMS-PAS-SMP-12-027

• Double differential 3-jet mass cross-section is measured as a function of the mass m₃ and the maximum rapidity y_{max}

$$m_3^2 = (p_1 + p_2 + p_3)^2$$

 $y_{\max} = \operatorname{sign}(|\max(y_1, y_2, y_3)| - |\min(y_1, y_2, y_3)|) \cdot \max(|y_1|, |y_2|, |y_3|)$

• The cross-section is defined to be

$$\frac{d^2\sigma}{dm_3 dy_{\max}} = \frac{1}{\epsilon \mathcal{L}_{\text{eff}}} \frac{N}{\Delta m_3 (2 \cdot \Delta |y|_{\max})}$$

• Use only jets with $p_T > 100$ GeV within |y| < 3

Prediction and Measurement

- NLO pQCD prediction from NLOJet++/FASTNLO using MSTW2008, factorisation and renormalisation scales set to $m_3/2$
 - Non-perturbative corrections go from 8% to 1% with increasing m₃ from SHERPA and MADGRAPH+PYTHIA8
- Data measurement for α_s determination limited to region $|y|_{max} < 1$
 - Unfolded to particle level with the D'Agostini unfolding algorithm with 4 iterations using Pythia 6 tune Z2 and Herwig++ simulated events
- Jet energy scale uncertainty is dominant, up to 20% at high m_3

3-jet mass result, CMS 2011

0.10

0.08

 $5 \cdot 10^{0}$

- Determination of α_s in the region 445 $< m_3 < 3092$ GeV from least-squares fit:
- $\alpha_S(M_Z) = 0.1160 =$ scale (exp, PDF, NP $\mathcal{L} = 5.0 \, \text{fb}^{-1} \sqrt{s} = 7 \, \text{TeV}$ • Observation of CMS preliminary <u>ල</u>ී 0.22 ප JADE 4-jet rate running behaviour LEP event shapes 0.20 **DELPHI** event shapes in 8 bins of m_3 ZEUS inc. jets H1 DIS 0.18 D0 inc. jets D0 angular cor. 0.16 $\alpha_s(M_Z) = 0.1184 \pm 0.0007$ (world avg.) $\alpha_s(M_Z) = 0.1160^{+0.0072}_{-0.0031}$ (3-jet mass) 0.140.12

CMS R32 ratio

 $2 \cdot 10^{1}$

 10^{2}

 $2 \cdot 10^{2}$

 $5 \cdot 10^{1}$

CMS $t\bar{t}$ prod. CMS 3-jet mass

 10^{1}

 $2 \cdot 10^{3}$

 10^{3}

Q [GeV]

 $5 \cdot 10^2$

- Measurement of the value of the strong coupling constant via multiple experimental observables and across a wide range of energy scales reinforce the position of QCD as a theory of the strong nuclear force
- All LHC-era results are consistent with the current world average from the Particle Data Group, $\alpha_s(M_z)=0.1184\pm0.0007$

		$\alpha_{s}(M_{z})$	
ATLAS N _{3/2} , 2010	0.111	+0.017	-0.007
CMS R ₃₂ , 2011	0.1148	+0.0055	-0.0023
CMS top quark, 2011	0.1151	+0.0033	-0.0032
CMS 3-jet mass, 2011	0.1160	+0.0072	-0.0031