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The Higgs discovery [

* Roughly a year ago (July 4th, 2012): ATLAS and CMS discovered
a bump at 125.5 GeV
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The Higgs discovery [

* Roughly a year ago (July 4th, 2012): ATLAS and CMS dlscovered
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New boson mass, GeV
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Higgs mass: a new precision
parameter of SM

Spin-0 is favored, and it is a
CP-even state
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* Great progress on signal strength
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Higgs in association with jets

WI———

* Higgs cross-sections in pp—H—>WWV are binned according

to the jet multiplicity to beat the background

* The measured value of pp—=H—="WW production cross section results from combining

0 jet, | jet and 2 jet cross sections. Each of them has its own uncertainty

* What we knew so far: H+0j @ NNLO, H+1j and H+2j @ NLO
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Higgs in association with jets
DR ——

The H+1 jet bin: large NLO K-factor and large theoretical uncertainty

—

Source (1-jet)

T-jet incl. ggF signal ren /fact. scale
2-jet incl. ggF signal ren /fact. scale

Missing transverse momentum
W+jets fake factor

b-tagging efficiency

Parton distribution functions
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Need for higher orders!

* Theory uncertainties becoming a limiting factor in many analyses, especially H—=>WW

* Precise exclusive results are needed, also to separate between gg and VBF..

Urgently need NNLO for H+jets to resolve these issues!
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Structure of NNLO cross sections §

® Need the following ingredients for H+1j @ NNLO cross section
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® All ingredients were available, some even for a while, what stopped us from having this
calculation done before now!?

e IR singularities cancel in the sum of real and virtual corrections and mass factorization
counterterms but only after phase space integration for real radiations

® Virtual corrections have explicit IR poles, whereas real corrections have implicit IR poles
that need to be extracted.

e A generic procedure to extract IR singularities from RR and RV was unknown until very
recently
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Sector decomposition
vt st
® One method successfully used in the past to obtain NNLO cross sections is

sector decomPOSition Binoth, Heinrich; Anastasiou, Melnikov, Petriello (2003)
* Basic idea: introduce explicit parameterizations of phase space in which the

poles in € can be easily extracted via a plus-distribution expansion
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Remap singular denominators on the hypercube

Singularities are extracted before integration




Sector decomposition for ’s

simpler processes

2 -£ (0 () — F(0
/ M2de =) / Wl i 4
. € : 4

Subtraction and integrated subtraction terms are for free

(no need for analytic PS integrations)

Successfully applied for NNLO ~__—7 ° ete 2 jets
differential cross sections, but for \: * Higgs production at hadron colliders

“special” processes

* Electroweak gauge boson production

Note that:

® Parametrization known only for one collinear direction
* In its original version, sector decomposition is a highly
process-dependent framework
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The downside |
PE—— ~———

* To illustrate the drawbacks, use Higgs production as an example

* Invariants that occur in this topology :si3, s24, 5134, s34. These contain the collinear

singularities pi||ps, p2||p4, p3||p4, pil[ps3||p4

* Initial uses of sector decomposition attempted to find a global parameterization of

phase space to handle all of these singularities at once

* However, can only have: pl||p3 & p2||p4 or pl||p3||p4. Not all invariants above can have
collinear singularities simultaneously

* The attempt to find suitable global parameterizations meant that one would need to find
an entirely new parameterization for Higgs+jet, since the additional final-state parton leads
to new singularities; can’t recycle information from differential Higgs production
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Higgs plus jet:
singularity structure

* Much more complicated singularity structure, in particular
three collinear directions:

Potential troubles: Si14,524:539: 59> S199> 5299, S3g¢ and combinations

Finding a ‘good’ global parametrization is (very) hard
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Sector-improved subtraction scheme {
A —— SN

* A combination of sector decomposition and FKS (Frixione,Kunszt,Signer)
ideas makes the extraction of singularities more systematic Czakon (2010)

* @ NNLO the elementary building block is the double unresolved phase
space where two unresolved particles can become soft or collinear to one
or two hard directions

* partition the phase space such that in each partition only a subset of
particles leads to singularities: only two soft singularities can occur, and
only one triple collinear or one double collinear singularity can occur.

* we can now pick a local parametrization for each partition

* the partitioning is done using energies and angles of the unresolved
particles w.r.t. the hard parton(s) emitting them
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Single collinear direction
~ parametrization of

ggH, DY, e*e- — dijets
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No matter how complicated the process is,
it can be reduced to the sum of individual contributions. For each of
them, we know a sector decomposition-friendly PS parametrization
—
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Sector-improved subtraction scheme 3

* disentangling singularities as energies and angles vanish leads to a tree of
sectors.
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* Need to consider the following T —*
partitions for H+1j: b 2
- triple collinear partitions: "~ A * . . -
(S14][1), (3114112) , (3]14]|3) ; [II m—im, - &
- double collinear partitions: ~ ~ "~ o 8 ;, A \
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| Bwldlng blocks for H+j s
IR

Recall the general structure: F(z) /[y M |?z){dy}

' ‘ F (O - F(x) - F(O
/ M|? D = g -+ /(/.1‘ (z) ©) 4+ ...
.‘ ¢ ,. 15

pd
/ The Subtraction terms are constructed
from reduced matrix elements using QCD

\. factorization of soft and collinear singularitie’

UUU ‘\[l|

VVe need to provide

o (X {(/} ): fully-resolved matrix element (RR and RV)

e 11111“ F(2;{y}): matrix element in a singular configuration
Xi—

'
lim F(Z;{y}):reduced (=lower multiplicity) matrix
xi;—r0

element times universal eikonals / splitting functions
[Catani, Grazzini (1998, 2000); Kosower, Uwer (1999)]
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Building blocks for H+j 1

Because of gluon spin correlations, we are forced to work in full CDR

* tree-level H+3j }
* tree-level H+2j up to O(g?) f
* tree-level H+1|j up to O(¢) a
e one-loop H+2j Badger, Glover, Mastrolia, Williams (2009)
* one-loop H+1j up to O(&?)

o tWO-lOOp H+ |j Gehrmann, Jaquier, Glover, Koukoutsakis (2011)
* renormalization, collinear_subtraction

Since the amplitudes have to be evaluated near singular configurations,
numerical stability of all the above amplitudes is very important
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H+jet @ NNLO: gg-channel 'g
Checks:

* Two separate calculations were performed and agreement was found on all the steps

* Correctness of the limits: the subtraction terms should approach the full amplitudes in
the singular limit. This is a non-trivial check since the two contributions are calculated
independently from each other.

* Numerical cancellation of poles. This is another non-trivial check since all the ingredients

including renormalization and collinear subtraction contribute. A typical cancellation of
poles is 104 for ep? and 103 for ep-'.
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H+jet @ NNLO: gg-channel ';

QCD
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R.B., Caola, Melnikov, Petriello, Schulze (2013)
* We compute partonic cross sections for gg—H+jet at LO, NLO, NNLO in

* We use the kr-jet algorithm, Pr; > 30GeV, R=0.4, mH=125GeV

* Hadronic cross sections for pp—H+jet at 8TeV LHC are produced by convoluting

with PDFs. We present results using NNPDFs for the scale choices mn/2, mn, 2my
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i O [ONno = 1.3
oNNLO(pp — Hj) = 617 1+§(;4) th. NNLO NLO

* Significant reduction of scale dependence from 50% at LO to 20% at NLO
to less than 5% at NNLO.
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Summary |

@ We have moved very quickly from the discovery stage of the
Higgs boson to precise measurements of its properties

@ On the theory side the pace of progress in understanding SM
Higgs production is remarkable

@ New results for Higgs+jet at NNLO in QCD (gg-chanel), an
extremely challenging calculation and one of the first NNLO
QCD results for two-to-two scattering processes at LHC

@ Quark channels are necessary for achieving the relevant
precision for Higgs+jet: ongoing work  R.B, Caola, Melnikov, Petriello, Schulze
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