Dijet azimuthal decorrelations at the LHC in the Regge limit of QCD

M.A. Nefedov, V.A. Saleev, A.V. Shipilova

Samara State University

04.09.2013, QCD&LHC, DESY, Hamburg

Dijets at the LHC in the Regge limit of QCD

> Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Outline

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Motivation

- Multiple jet production is the dominant high transverse-momentum (p_T) process at LHC energies.
- Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets.
- Particularly, the measurements of decorrelations in the azimuthal angle between the two most energetic jets, Δφ, as a function of number of produced jets, give the chance to separate directly leading order (LO) and next-to-leading orders (NLO) contributions in the strong coupling constant α_s.
- A detailed understanding of events with large azimuthal decorrelations is important to searches for new physical phenomena with dijet signatures, such as supersymmetric extensions to the Standard Model.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Motivation

- Multiple jet production is the dominant high transverse-momentum (p_T) process at LHC energies.
- Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets.
- Particularly, the measurements of decorrelations in the azimuthal angle between the two most energetic jets, Δφ, as a function of number of produced jets, give the chance to separate directly leading order (LO) and next-to-leading orders (NLO) contributions in the strong coupling constant α_s.
- A detailed understanding of events with large azimuthal decorrelations is important to searches for new physical phenomena with dijet signatures, such as supersymmetric extensions to the Standard Model.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Motivation

- Multiple jet production is the dominant high transverse-momentum (p_T) process at LHC energies.
- Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets.
- Particularly, the measurements of decorrelations in the azimuthal angle between the two most energetic jets, Δφ, as a function of number of produced jets, give the chance to separate directly leading order (LO) and next-to-leading orders (NLO) contributions in the strong coupling constant α_s.
- A detailed understanding of events with large azimuthal decorrelations is important to searches for new physical phenomena with dijet signatures, such as supersymmetric extensions to the Standard Model.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Motivation

- Multiple jet production is the dominant high transverse-momentum (p_T) process at LHC energies.
- Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets.
- Particularly, the measurements of decorrelations in the azimuthal angle between the two most energetic jets, Δφ, as a function of number of produced jets, give the chance to separate directly leading order (LO) and next-to-leading orders (NLO) contributions in the strong coupling constant α_s.
- A detailed understanding of events with large azimuthal decorrelations is important to searches for new physical phenomena with dijet signatures, such as supersymmetric extensions to the Standard Model.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Experimental studies

- ► ATLAS Collaboration: √S = 7 TeV, 30 GeV < p_T GeV, |y_{ij}| < 1.1 G. Aad et al., Measurement of Dijet Azimuthal Decorrelations in pp Collisions at √S = 7 TeV, Phys. Rev. Lett. **106**, 172002 (2011).
- CMS Collaboration: √S = 7 TeV, 100 GeV < p_T GeV, |y_{jj}| < 0.8 V. Khachatryan at al., Dijet Azimuthal Decorrelations in pp Collisions at √S = 7 TeV, Phys. Rev. Lett. **106**, 122003 (2011).

Theoretical studies

 pQCD calculations, next-to-leading order (NLO) in three-parton production: Z. Nagy, Phys. Rev. D 68, 094002 (2003), Phys. Rev. Lett. 88, 122003 (2002).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Event generators: PYTHIA, HERWIG, SHERPA, MADGRAPH, ...

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Experimental studies

- ► ATLAS Collaboration: √S = 7 TeV, 30 GeV < p_T GeV, |y_{ij}| < 1.1 G. Aad et al., Measurement of Dijet Azimuthal Decorrelations in pp Collisions at √S = 7 TeV, Phys. Rev. Lett. **106**, 172002 (2011).
- ► CMS Collaboration: √S = 7 TeV, 100 GeV < p_T GeV, |y_{jj}| < 0.8 V. Khachatryan at al., Dijet Azimuthal Decorrelations in pp Collisions at √S = 7 TeV, Phys. Rev. Lett. **106**, 122003 (2011).

Theoretical studies

 pQCD calculations, next-to-leading order (NLO) in three-parton production: Z. Nagy, Phys. Rev. D 68, 094002 (2003), Phys. Rev. Lett. 88, 122003 (2002).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Event generators: PYTHIA, HERWIG, SHERPA, MADGRAPH, ...

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Experimental studies

- ► ATLAS Collaboration: √S = 7 TeV, 30 GeV < p_T GeV, |y_{ij}| < 1.1 G. Aad et al., Measurement of Dijet Azimuthal Decorrelations in pp Collisions at √S = 7 TeV, Phys. Rev. Lett. **106**, 172002 (2011).
- ▶ CMS Collaboration: $\sqrt{S} = 7$ TeV, 100 GeV< p_T GeV, $|y_{jj}| < 0.8$ V. Khachatryan at al., Dijet Azimuthal Decorrelations in pp Collisions at $\sqrt{S} = 7$ TeV, Phys. Rev. Lett. **106**, 122003 (2011).

Theoretical studies

 pQCD calculations, next-to-leading order (NLO) in three-parton production: Z. Nagy, Phys. Rev. D 68, 094002 (2003), Phys. Rev. Lett. 88, 122003 (2002).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Event generators: PYTHIA, HERWIG, SHERPA, MADGRAPH, ...

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Experimental studies

- ► ATLAS Collaboration: √S = 7 TeV, 30 GeV < p_T GeV, |y_{ij}| < 1.1 G. Aad et al., Measurement of Dijet Azimuthal Decorrelations in pp Collisions at √S = 7 TeV, Phys. Rev. Lett. **106**, 172002 (2011).
- ▶ CMS Collaboration: $\sqrt{S} = 7$ TeV, 100 GeV< p_T GeV, $|y_{jj}| < 0.8$ V. Khachatryan at al., Dijet Azimuthal Decorrelations in pp Collisions at $\sqrt{S} = 7$ TeV, Phys. Rev. Lett. **106**, 122003 (2011).

Theoretical studies

 pQCD calculations, next-to-leading order (NLO) in three-parton production: Z. Nagy, Phys. Rev. D 68, 094002 (2003), Phys. Rev. Lett. 88, 122003 (2002).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Event generators: PYTHIA, HERWIG, SHERPA, MADGRAPH, ...

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

The Regge limit of QCD: the center-of-mass energy is large $\sqrt{S} \to \infty$ and the momentum transfer $\sqrt{-t}$ is fixed

We propose the c.m. energy of LHC $\sqrt{S} = 7$ TeV to be large enough, and the finiteness of *t* is controlled by fixed p_T of final jets.

The most appropriate approach for the description of scattering amplitudes is given by the theory of complex angular momenta (Gribov-Regge theory)

The Regge kinematics is a particular case of **multi-Regge kinematics (MRK)**. MRK is the kinematics where all particles have limited (not growing with s) transverse momenta and are combined into jets with limited invariant mass of each jet and large (growing with *s*) invariant masses of any pair of the jets. The MRK gives dominant contributions to cross sections of QCD processes at high energy.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

The Regge limit of QCD: the center-of-mass energy is large $\sqrt{S} \to \infty$ and the momentum transfer $\sqrt{-t}$ is fixed We propose the c.m. energy of LHC $\sqrt{S} = 7$ TeV to be large enough, and the finiteness of *t* is controlled by fixed p_T of final jets.

The most appropriate approach for the description of scattering amplitudes is given by the theory of complex angular momenta (Gribov-Regge theory)

The Regge kinematics is a particular case of **multi-Regge kinematics (MRK)**. MRK is the kinematics where all particles have limited (not growing with s) transverse momenta and are combined into jets with limited invariant mass of each jet and large (growing with *s*) invariant masses of any pair of the jets. The MRK gives dominant contributions to cross sections of QCD processes at high energy.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

The Regge limit of QCD: the center-of-mass energy is large $\sqrt{S} \to \infty$ and the momentum transfer $\sqrt{-t}$ is fixed We propose the c.m. energy of LHC $\sqrt{S} = 7$ TeV to be large enough, and the finiteness of *t* is controlled by fixed p_T of final jets.

The most appropriate approach for the description of scattering amplitudes is given by the theory of complex angular momenta (Gribov-Regge theory)

The Regge kinematics is a particular case of **multi-Regge kinematics (MRK)**. MRK is the kinematics where all particles have limited (not growing with s) transverse momenta and are combined into jets with limited invariant mass of each jet and large (growing with *s*) invariant masses of any pair of the jets. The MRK gives dominant contributions to cross sections of QCD processes at high energy.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introductior

Parton Reggeization Approach

Single jet production

Dijet production

The Regge limit of QCD: the center-of-mass energy is large $\sqrt{S} \to \infty$ and the momentum transfer $\sqrt{-t}$ is fixed We propose the c.m. energy of LHC $\sqrt{S} = 7$ TeV to be large enough, and the finiteness of *t* is controlled by fixed p_T of final jets.

The most appropriate approach for the description of scattering amplitudes is given by the theory of complex angular momenta (Gribov-Regge theory)

The Regge kinematics is a particular case of **multi-Regge kinematics (MRK)**. MRK is the kinematics where all particles have limited (not growing with s) transverse momenta and are combined into jets with limited invariant mass of each jet and large (growing with *s*) invariant masses of any pair of the jets. The MRK gives dominant contributions to cross sections of QCD processes at high energy.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Despite of a great number of contributing Feynman diagrams it turns out that at the Born level in the MRK amplitudes acquire a simple factorized form. In the leading logarithmic approximation (LLA) the n-gluon production amplitude in this kinematics has the multi-Regge form

$$A_{2+n}^{LLA} = A_{2+n}^{tree} \prod_{i=1}^{n+1} s_i^{\omega(t_i)}$$

Radiative corrections to these amplitudes do not destroy this form, and their energy dependence is given by Regge factors $s_i^{\omega(t_i)}$. This phenomenon is called **gluon Reggeization**.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Despite of a great number of contributing Feynman diagrams it turns out that at the Born level in the MRK amplitudes acquire a simple factorized form. In the leading logarithmic approximation (LLA) the n-gluon production amplitude in this kinematics has the multi-Regge form

$$A_{2+n}^{LLA} = A_{2+n}^{tree} \prod_{i=1}^{n+1} s_i^{\omega(t_i)}$$

Radiative corrections to these amplitudes do not destroy this form, and their energy dependence is given by Regge factors $s_i^{\omega(t_i)}$. This phenomenon is called **gluon Reggeization**.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Particle Reggeization

The gluons in each crossing channel t_i are Reggeized if one takes into account the radiative corrections to the Born production amplitude A_{2+n}^{tree} .

The production amplitude in the tree approximation has the factorised form:

 $A_{2+n}^{tree} = 2Sg_s T_{AA'}^{c_1} \Gamma_{A'A} \frac{1}{t_1} g_s T_{c_2c_1}^{d_1} \Gamma_{21}^1 \frac{1}{t_2} \dots g_s T_{c_{n+1}c_n}^{d_n} \Gamma_{n+1,n}^n \frac{1}{t_{n+1}} g_s T_{B'B}^{c_{n+1}} \Gamma_{B'B},$

 $\Gamma_{r+1,r}^{r}$ – Reggeon-Reggeon-particle (RRP) vertex, Γ_{AAr} – Reggeon-particle-particle (RPP) vertex.

The effect of particle Reggeization was discovered in QED in 1964: M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and F. Zachariasen, Phys.Rev. 133, B161-B174 (1964).

The gluon Reggeization in QCD:

E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 44, 443 (1976) I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

The quark Reggeization in QCD: V. S. Fadin and V. E. Sherman, JETP Lett. **23**, 599 (1976)

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Particle Reggeization

The gluons in each crossing channel t_i are Reggeized if one takes into account the radiative corrections to the Born production amplitude A_{2+n}^{tree} .

The production amplitude in the tree approximation has the factorised form:

$$A_{2+n}^{tree} = 2Sg_s T_{AA'}^{c_1} \Gamma_{A'A} \frac{1}{t_1} g_s T_{c_2c_1}^{d_1} \Gamma_{21}^1 \frac{1}{t_2} \dots g_s T_{c_{n+1}c_n}^{d_n} \Gamma_{n+1,n}^n \frac{1}{t_{n+1}} g_s T_{B'B}^{c_{n+1}} \Gamma_{B'B},$$

 $\Gamma_{r+1,r}^{r}$ – Reggeon-Reggeon-particle (RRP) vertex, Γ_{AAr} – Reggeon-particle-particle (RPP) vertex.

The effect of particle Reggeization was discovered in QED in 1964: M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and F. Zachariasen, Phys.Rev. **133**, B161-B174 (1964).

The gluon Reggeization in QCD:

E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 44, 443 (1976) I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

The quark Reggeization in QCD: V. S. Fadin and V. E. Sherman, JETP Lett. **23**, 599 (1976)

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Particle Reggeization

The gluons in each crossing channel t_i are Reggeized if one takes into account the radiative corrections to the Born production amplitude A_{2+n}^{tree} .

The production amplitude in the tree approximation has the factorised form:

$$A_{2+n}^{tree} = 2Sg_s T_{AA\prime}^{c_1} \Gamma_{A\prime A} \frac{1}{t_1} g_s T_{c_2c_1}^{d_1} \Gamma_{21}^1 \frac{1}{t_2} \dots g_s T_{c_{n+1}c_n}^{d_n} \Gamma_{n+1,n}^n \frac{1}{t_{n+1}} g_s T_{B\prime B}^{c_{n+1}} \Gamma_{B\prime B},$$

 $\Gamma_{r+1,r}^{r}$ – Reggeon-Reggeon-particle (RRP) vertex, Γ_{AAr} – Reggeon-particle-particle (RPP) vertex.

The effect of particle Reggeization was discovered in QED in 1964: M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and F. Zachariasen, Phys.Rev. **133**, B161-B174 (1964).

The gluon Reggeization in QCD:

E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 44, 443 (1976) I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

The quark Reggeization in QCD: V. S. Fadin and V. E. Sherman, JETP Lett. 23, 599 (1976)

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

There are two ways to derive effective vertices:

- From the analyticity and unitarity constraints for multiparticle productior amplitudes. These methods were developed in the works of Lipatov, Fadin, Kuraev and co-authors.
- From the Lagrangian of non-Abelian gauge invariant effective theory, which includes fields of Reggeized particles, firstly written down in L. N. Lipatov, Nucl. Phys. B452, 369 (1995).

The set of Feynman rules for Reggeized particles interactions was derived and presented in the works:

E. N. Antonov, L. N. Lipatov, E. A. Kuraev, and I. O. Cherednikov, Nucl. Phys. B721, 111 (2005)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

L. N. Lipatov and M. I. Vyazovsky, Nucl. Phys. B597, 399 (2001).

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introductior

Parton Reggeization Approach

Single jet production

Dijet production

There are two ways to derive effective vertices:

- From the analyticity and unitarity constraints for multiparticle production amplitudes. These methods were developed in the works of Lipatov, Fadin, Kuraev and co-authors.
- From the Lagrangian of non-Abelian gauge invariant effective theory, which includes fields of Reggeized particles, firstly written down in L. N. Lipatov, Nucl. Phys. B452, 369 (1995).

The set of Feynman rules for Reggeized particles interactions was derived and presented in the works:

E. N. Antonov, L. N. Lipatov, E. A. Kuraev, and I. O. Cherednikov, Nucl. Phys. B721, 111 (2005)

L. N. Lipatov and M. I. Vyazovsky, Nucl. Phys. B597, 399 (2001).

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introductior

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

・ロト・日本・山田・山田・山口・

There are two ways to derive effective vertices:

- From the analyticity and unitarity constraints for multiparticle production amplitudes. These methods were developed in the works of Lipatov, Fadin, Kuraev and co-authors.
- From the Lagrangian of non-Abelian gauge invariant effective theory, which includes fields of Reggeized particles, firstly written down in L. N. Lipatov, Nucl. Phys. B452, 369 (1995).

The set of Feynman rules for Reggeized particles interactions was derived and presented in the works: *E. N. Antonov, L. N. Lipatov, E. A. Kuraev, and I. O. Cherednikov, Nucl. Phys.*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

B721, 111 (2005)

L. N. Lipatov and M. I. Vyazovsky, Nucl. Phys. B597, 399 (2001).

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introductior

Parton Reggeization Approach

Single jet production

Dijet production

There are two ways to derive effective vertices:

- From the analyticity and unitarity constraints for multiparticle production amplitudes. These methods were developed in the works of Lipatov, Fadin, Kuraev and co-authors.
- From the Lagrangian of non-Abelian gauge invariant effective theory, which includes fields of Reggeized particles, firstly written down in L. N. Lipatov, Nucl. Phys. B452, 369 (1995).

The set of Feynman rules for Reggeized particles interactions was derived and presented in the works:

E. N. Antonov, L. N. Lipatov, E. A. Kuraev, and I. O. Cherednikov, Nucl. Phys. **B721**, 111 (2005)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

L. N. Lipatov and M. I. Vyazovsky, Nucl. Phys. B597, 399 (2001).

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introductior

Parton Reggeization Approach

Single jet production

Dijet production

Since 1970-s until now the strong mathematical apparatus concerning parton Reggeization was developed and in 2011 was extended to the gravity. We are aim to apply this model to the description of real processes. The reasons are:

- To obtain the agreement with experimental data one needs to perform the pQCD calculations in NLO order and higher => much time and computational resources are involved.
- ▶ Just at the Tevatron and certainly at the LHC $S \gg \mu^2$, $\mu \sim m_T \approx p_T$. So we enter in the region of small $x \simeq \mu/\sqrt{S}$ and large logarithms of type $\ln^n(1/x)$ arise violating the convergence of pQCD series in α_s .

These large logarithms $\ln^{n}(1/x)$ are resummed by Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation for non-integrated over transverse parton distribution functions (PDFs). The gluon Reggeization is the basis of BFKL approach.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introductior

Parton Reggeization Approach

Single jet production

Dijet production

Since 1970-s until now the strong mathematical apparatus concerning parton Reggeization was developed and in 2011 was extended to the gravity. We are aim to apply this model to the description of real processes. The reasons are:

- ► To obtain the agreement with experimental data one needs to perform the pQCD calculations in NLO order and higher ⇒ much time and computational resources are involved.
- ▶ Just at the Tevatron and certainly at the LHC $S \gg \mu^2$, $\mu \sim m_T \approx p_T$. So we enter in the region of small $x \simeq \mu/\sqrt{S}$ and large logarithms of type $\ln^n(1/x)$ arise violating the convergence of pQCD series in α_s .

These large logarithms $\ln^{n}(1/x)$ are resummed by Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation for non-integrated over transverse parton distribution functions (PDFs). The gluon Reggeization is the basis of BFKL approach.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introductior

Parton Reggeization Approach

Single jet production

Dijet production

Since 1970-s until now the strong mathematical apparatus concerning parton Reggeization was developed and in 2011 was extended to the gravity. We are aim to apply this model to the description of real processes. The reasons are:

- To obtain the agreement with experimental data one needs to perform the pQCD calculations in NLO order and higher ⇒ much time and computational resources are involved.
- ▶ Just at the Tevatron and certainly at the LHC $S \gg \mu^2$, $\mu \sim m_T \approx p_T$. So we enter in the region of small $x \simeq \mu/\sqrt{S}$ and large logarithms of type $\ln^n(1/x)$ arise violating the convergence of pQCD series in α_s .

These large logarithms $\ln^n(1/x)$ are resummed by Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation for non-integrated over transverse parton distribution functions (PDFs). The gluon Reggeization is the basis of BFKL approach.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introductior

Parton Reggeization Approach

Single jet production

Dijet production

Since 1970-s until now the strong mathematical apparatus concerning parton Reggeization was developed and in 2011 was extended to the gravity. We are aim to apply this model to the description of real processes. The reasons are:

- To obtain the agreement with experimental data one needs to perform the pQCD calculations in NLO order and higher ⇒ much time and computational resources are involved.
- ▶ Just at the Tevatron and certainly at the LHC $S \gg \mu^2$, $\mu \sim m_T \approx p_T$. So we enter in the region of small $x \simeq \mu/\sqrt{S}$ and large logarithms of type $\ln^n(1/x)$ arise violating the convergence of pQCD series in α_s .

These large logarithms $\ln^{n}(1/x)$ are resummed by Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation for non-integrated over transverse parton distribution functions (PDFs). The gluon Reggeization is the basis of BFKL approach.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introductior

Parton Reggeization Approach

Single jet production

Dijet production

Parton Reggeization Approach: the factorization hypothesis

In the leading order of PRA the hypothesis of factorization of the effects of long and short distances is proved:

$$\begin{split} d\sigma(\boldsymbol{p} + \boldsymbol{p} \to \mathcal{H} + \boldsymbol{X}, \boldsymbol{S}) &= \int \frac{dx_1}{x_1} \int d|\mathbf{q}_{1T}|^2 \int \frac{d\varphi_1}{2\pi} \Phi(x_1, |\mathbf{q}_{1T}|^2, \mu^2) \\ &\times \int \frac{dx_2}{x_2} \int d|\mathbf{q}_{2T}|^2 \int \frac{d\varphi_2}{2\pi} \Phi(x_2, |\mathbf{q}_{2T}|^2, \mu^2) \\ &\times d\hat{\sigma}(\boldsymbol{R} + \boldsymbol{R} \to \mathcal{H} + \boldsymbol{X}, \mathbf{q}_{1T}, \mathbf{q}_{2T}, \hat{\mathbf{s}}), \end{split}$$

The unintegrated over transverse momenta parton distribution functions

$$\Phi(x,|\mathbf{q}_{2T}|^2,\mu_0^2) \rightarrow \Phi(x,|\mathbf{q}_{2T}|^2,\mu^2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

satisfy the BFKL evolution equations.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Several methods to obtain $\Phi_g^{\rho(\bar{\rho})}(x, |\mathbf{q_T}|^2, \mu^2)$ from fenomenologically derived collinear ones were developed: KMR distributions, Jung and Salam functions; Blümlein approach.

We use the KMR PDF (M. A. Kimber, A. D. Martin, M. G. Ryskin, G. Watt, 2001–2004) with input set of integrated ones of A. D. Martin, R. G. Roberts , V. G. Stirling , R. S. Thorne, 2002 (MRST2002).

KMR PDFs are based on Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations with contribution of the large logarithms $\log(\frac{\mu^2}{\Lambda_{QCD}^2})$ and include additionally (model dependent) BFKL corrections due to large logarithms $\log(\frac{g}{\mu^2}) \simeq \log(\frac{1}{x})$. The KMR procedure (realized as the open code in C++) is constructed in the way which takes into account the gluon Reggeization and so far it is clear to use it together with Reggeon effective vertices.

All PDFs satisfy the normalization condition:

$$xF_{g}^{\rho,\bar{\rho}}(x,\mu^{2}) = \int^{\mu^{2}} \Phi_{g}^{\rho,\bar{\rho}}(x,|\mathbf{q}_{\mathsf{T}}|^{2},\mu^{2}) d|\mathbf{q}_{\mathsf{T}}|^{2}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Several methods to obtain $\Phi_g^{\rho(\bar{\rho})}(x, |\mathbf{q_T}|^2, \mu^2)$ from fenomenologically derived collinear ones were developed: KMR distributions, Jung and Salam functions; Blümlein approach.

We use the KMR PDF (M. A. Kimber, A. D. Martin, M. G. Ryskin, G. Watt, 2001–2004) with input set of integrated ones of A. D. Martin, R. G. Roberts , V. G. Stirling , R. S. Thorne, 2002 (MRST2002).

KMR PDFs are based on Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations with contribution of the large logarithms $\log(\frac{\mu^2}{\Lambda_{QCD}^2})$ and include additionally (model dependent) BFKL corrections due to large logarithms $\log(\frac{s}{\mu^2}) \simeq \log(\frac{1}{x})$. The KMR procedure (realized as the open code in C++) is constructed in the way which takes into account the gluon Reggeization and so far it is clear to use it together with Reggeon effective vertices.

All PDFs satisfy the normalization condition:

$$xF_{g}^{\rho,\bar{\rho}}(x,\mu^{2}) = \int^{\mu^{2}} \Phi_{g}^{\rho,\bar{\rho}}(x,|\mathbf{q}_{\mathsf{T}}|^{2},\mu^{2}) d|\mathbf{q}_{\mathsf{T}}|^{2}$$

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroductior

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

▲□▶▲□▶▲□▶▲□▶ = のへで

Several methods to obtain $\Phi_g^{\rho(\bar{\rho})}(x, |\mathbf{q_T}|^2, \mu^2)$ from fenomenologically derived collinear ones were developed: KMR distributions, Jung and Salam functions; Blümlein approach.

We use the KMR PDF (M. A. Kimber, A. D. Martin, M. G. Ryskin, G. Watt, 2001–2004) with input set of integrated ones of A. D. Martin, R. G. Roberts , V. G. Stirling , R. S. Thorne, 2002 (MRST2002).

KMR PDFs are based on Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations with contribution of the large logarithms $\log(\frac{\mu^2}{\Lambda_{QCD}^2})$ and include additionally (model dependent) BFKL corrections due to large logarithms $\log(\frac{S}{\mu^2}) \simeq \log(\frac{1}{x})$. The KMR procedure (realized as the open code in C++) is constructed in the way which takes into account the gluon Reggeization and so far it is clear to use it together with Reggeon effective vertices.

All PDFs satisfy the normalization condition:

$$xF_{g}^{\rho,\bar{\rho}}(x,\mu^{2}) = \int^{\mu^{2}} \Phi_{g}^{\rho,\bar{\rho}}(x,|\mathbf{q}_{\mathsf{T}}|^{2},\mu^{2}) d|\mathbf{q}_{\mathsf{T}}|^{2}$$

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Several methods to obtain $\Phi_g^{\rho(\bar{\rho})}(x, |\mathbf{q_T}|^2, \mu^2)$ from fenomenologically derived collinear ones were developed: KMR distributions, Jung and Salam functions; Blümlein approach.

We use the KMR PDF (M. A. Kimber, A. D. Martin, M. G. Ryskin, G. Watt, 2001–2004) with input set of integrated ones of A. D. Martin, R. G. Roberts, V. G. Stirling, R. S. Thorne, 2002 (MRST2002).

KMR PDFs are based on Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations with contribution of the large logarithms $\log(\frac{\mu^2}{\Lambda_{QCD}^2})$ and include additionally (model dependent) BFKL corrections due to large logarithms $\log(\frac{S}{\mu^2}) \simeq \log(\frac{1}{x})$. The KMR procedure (realized as the open code in C++) is constructed in the way which takes into account the gluon Reggeization and so far it is clear to use it together with Reggeon effective vertices.

All PDFs satisfy the normalization condition:

$$xF_{g}^{p,ar{p}}(x,\mu^{2}) = \int^{\mu^{2}} \Phi_{g}^{p,ar{p}}(x,|\mathbf{q_{T}}|^{2},\mu^{2})d|\mathbf{q_{T}}|^{2}$$

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

Previously we successfully described single jet hadroproduction at LHC using the presented approach, see *B. A. Kniehl, V. A. Saleev, A. V. Shipilova, E. V. Yatsenko.* Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC. Phys. Rev. D **84**, 074017 (2011).

The production of jets in the central rapidity region occur under the conditions of multi-Regge kinematics

Figure 1 : MRK: $y_1 \ll y_g \ll y_2$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Previously we successfully described single jet hadroproduction at LHC using the presented approach, see *B. A. Kniehl, V. A. Saleev, A. V. Shipilova, E. V. Yatsenko.* Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC. Phys. Rev. D **84**, 074017 (2011).

The production of jets in the central rapidity region occur under the conditions of multi-Regge kinematics

Figure 1 : MRK: $y_1 \ll y_g \ll y_2$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

The effective \mathcal{RRg} vertex (V. S. Fadin, E. A. Kuraev, L. N. Lipatov, 1976):

$$egin{split} \mathcal{C}^{g,\mu}_{\mathcal{R}\mathcal{R}}(q_1,q_2) &= -\sqrt{4\pilpha_{\mathrm{S}}} f^{abc} rac{q_1^+q_2^-}{2\sqrt{t_1t_2}} \left[(q_1-q_2)^\mu +
ight. \ &+ rac{(n^+)^\mu}{q_1^+} \left(q_2^2 + q_1^+q_2^-
ight) - rac{(n^-)^\mu}{q_2^-} \left(q_1^2 + q_1^+q_2^-
ight)
ight], \end{split}$$

$$(n^{\pm})^{\mu} = (1, 0, 0, \pm 1), \, k^{\pm} = k \cdot n^{\pm}$$
 for any four-vector k^{μ} .
 $q_{1,2} = x_{1,2}P_{1,2} + q_{1,2T}, \, t_1 = -q_1^2 = |\mathbf{q}_{1T}|^2, \quad t_2 = -q_2^2 = |\mathbf{q}_{2T}|^2.$

$$\frac{d\sigma}{dp_T \, dy} \left(pp \to j + X \right) = \frac{1}{p_T^3} \int d\phi_1 \int dt_1 \Phi_g^p(x_1, t_1, \mu^2) \Phi_g^p(x_2, t_2, \mu^2) \overline{|\mathcal{M}(\mathcal{RR} \to g)|}$$

$$\overline{|\mathcal{M}(\mathcal{R}+\mathcal{R}
ightarrow g)|^2} = rac{3}{2}\pilpha_s \mathbf{p}_T^2$$
 $rac{p_T^2}{2} < \mu < 2p_T^2$

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

Figure 2 : LHC, $\sqrt{S} = 7$ TeV, ATLAS. Solid lines – KMR unPDF, dashed lines – Blümlein unPDF. (1) $|y| < 0.3 (\times 10^8)$, (2) $0.3 < |y| < 0.8 (\times 10^6)$, (3) $0.8 < |y| < 1.2 (\times 10^4)$, (4) $1.2 < |y| < 2.1 (\times 10^2)$, and (5) 2.1 < |y| < 2.6

Figure 3 : LHC, \sqrt{S} = 7 TeV, ATLAS. Solid lines – KMR unPDF, dashed lines – Blümlein unPDF. (1) 60 GeV $< p_T <$ 80 GeV, (2) 110 GeV $< p_T <$ 160 GeV, (3) 210 GeV $< p_T <$ 250 GeV, and (4) 310 GeV $< p_T <$ 400 GeV

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Dijet production in QMRK

The production of gluon pairs with close rapidities in the central region whereas the protons remnants have large modula of rapidities satisfies the conditions of quasi-multi-Regge kinematics (QMRK). MRK is a particular case of QMRK.

Figure 4 : QMRK: $y_1 \ll y_{g1} \simeq y_{g2} \ll y_2$

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

・ロト・西ト・ヨト ・ヨー シタの

The full number of hard subprocesses in QMRK contributing to dijet production:

$$\begin{array}{rrrrr} R+R & \rightarrow & g+g, \\ R+R & \rightarrow & q+\bar{q}, \\ Q+R & \rightarrow & q+g, \\ Q+Q & \rightarrow & q+g, \\ Q+Q' & \rightarrow & q+q', \\ Q+\bar{Q} & \rightarrow & q+\bar{q}, \\ Q+\bar{Q} & \rightarrow & q'+\bar{q}' \\ Q+\bar{Q} & \rightarrow & g+g. \end{array}$$

,

At the LHC the dominant partonic subprocess is:

$$\mathcal{R}(q_1) + \mathcal{R}(q_2) \to g(k_1) + g(k_2)$$

 $q_i^{\mu} = x_i P_i^{\mu} + q_{iT}^{\mu}$ (i = 1, 2) - four-momenta of the Reggeized gluons $P_{1,2}^{\mu} = (\sqrt{S}/2)(1, 0, 0, \pm 1)$ - four-momenta of the incoming protons $q_{iT}^{\mu} = (0, \mathbf{q}_{iT}, 0), t_i = -q_{iT}^2 = \mathbf{q}_{iT}^2.$ $k_{1,2}$ - four-momenta of the final gluons, $k_1^2 = k_2^2 = 0.$

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

▲□▶▲□▶▲□▶▲□▶ = のへで

The full number of hard subprocesses in QMRK contributing to dijet production:

$$\begin{array}{rrrr} R+R & \rightarrow & g+g, \\ R+R & \rightarrow & q+\bar{q}, \\ Q+R & \rightarrow & q+g, \\ Q+Q & \rightarrow & q+g, \\ Q+Q' & \rightarrow & q+q', \\ Q+\bar{Q} & \rightarrow & q+\bar{q}, \\ Q+\bar{Q} & \rightarrow & q'+\bar{q}' \\ Q+\bar{Q} & \rightarrow & g+g. \end{array}$$

•

At the LHC the dominant partonic subprocess is:

$$\mathcal{R}(q_1) + \mathcal{R}(q_2) \rightarrow g(k_1) + g(k_2)$$

 $q_i^{\mu} = x_i P_i^{\mu} + q_{iT}^{\mu}$ (i = 1, 2) – four-momenta of the Reggeized gluons; $P_{1,2}^{\mu} = (\sqrt{S}/2)(1, 0, 0, \pm 1)$ – four-momenta of the incoming protons; $q_{iT}^{\mu} = (0, \mathbf{q}_{iT}, 0), t_i = -q_{iT}^2 = \mathbf{q}_{iT}^2.$ $k_{1,2}$ – four-momenta of the final gluons, $k_1^2 = k_2^2 = 0.$

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

・ロト・日本・日本・日本・日本・日本

The effective \mathcal{RRgg} vertex

$$\begin{split} C_{RR,ab}^{gg,\ cd,\ \mu\nu}(q_1,q_2,k_1,k_2) &= g_s^2 \frac{q_1^+ q_2^-}{4\sqrt{t_1 t_2}} \times \\ \times \left(T_1 s^{-1} \Gamma^{(+-)\sigma}(q_1,q_2) \gamma_{\mu\nu\sigma}(-k_1,-k_2) + \right. \\ &+ T_3 t^{-1} \Gamma^{\sigma\mu-}(q_1,k_1-q_1) \Gamma^{\sigma\nu+}(k_2-q_2,q_2) - \\ &- T_2 u^{-1} \Gamma^{\sigma\nu-}(q_1,k_2-q_1) \Gamma^{\sigma\mu+}(k_1-q_2,q_2) - \\ &- T_1 \left(n_\mu^- n_\nu^+ - n_\nu^- n_\mu^+ \right) - T_2 (2g_{\mu\nu} - n_\mu^- n_\nu^+) - T_3 (-2g_{\mu\nu} + n_\nu^- n_\mu^+) + \\ &+ \Delta^{\mu\nu+}(q_1,q_2,k_1,k_2) + \Delta^{\mu\nu-}(q_1,q_2,k_1,k_2) \Big) \end{split}$$

$$\begin{split} T_1 &= f_{cdr} f_{abr}, \quad T_2 = f_{dar} f_{cbr}, \quad T_3 = f_{acr} f_{dbr}, \quad T_1 + T_2 + T_3 = 0 \\ \Delta^{\mu\nu+}(q_1, q_2, k_1, k_2) &= 2t_2 n_{\mu}^+ n_{\nu}^+ \left(\frac{T_3}{k_2^+ q_1^+} - \frac{T_2}{k_1^+ q_1^+}\right), \\ \Delta^{\mu\nu-}(q_1, q_2, k_1, k_2) &= 2t_1 n_{\mu}^- n_{\nu}^- \left(\frac{T_3}{k_1^- q_2^-} - \frac{T_2}{k_2^- q_2^-}\right) \end{split}$$

The light-cone vectors $n^+ = 2P_2/\sqrt{S}$ and $n^- = 2P_1/\sqrt{S}$, $k^{\pm} = k \cdot n^{\pm}$ for any four-vector k^{μ} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

The effective \mathcal{RRgg} vertex

$$\begin{split} C_{RR,ab}^{gg,\ cd,\ \mu\nu}(q_1,q_2,k_1,k_2) &= g_s^2 \frac{q_1^+ q_2^-}{4\sqrt{t_1 t_2}} \times \\ \times \left(T_1 s^{-1} \Gamma^{(+-)\sigma}(q_1,q_2) \gamma_{\mu\nu\sigma}(-k_1,-k_2) + \right. \\ &+ T_3 t^{-1} \Gamma^{\sigma\mu-}(q_1,k_1-q_1) \Gamma^{\sigma\nu+}(k_2-q_2,q_2) - \\ &- T_2 u^{-1} \Gamma^{\sigma\nu-}(q_1,k_2-q_1) \Gamma^{\sigma\mu+}(k_1-q_2,q_2) - \\ &- T_1 \left(n_\mu^- n_\nu^+ - n_\nu^- n_\mu^+ \right) - T_2 (2g_{\mu\nu} - n_\mu^- n_\nu^+) - T_3 \left(-2g_{\mu\nu} + n_\nu^- n_\mu^+ \right) + \\ &+ \Delta^{\mu\nu+}(q_1,q_2,k_1,k_2) + \Delta^{\mu\nu-}(q_1,q_2,k_1,k_2) \right) \end{split}$$

$$T_{1} = f_{cdr}f_{abr}, \quad T_{2} = f_{dar}f_{cbr}, \quad T_{3} = f_{acr}f_{dbr}, \quad T_{1} + T_{2} + T_{3} = 0$$

$$\Delta^{\mu\nu+}(q_{1}, q_{2}, k_{1}, k_{2}) = 2t_{2}n_{\mu}^{+}n_{\nu}^{+}\left(\frac{T_{3}}{k_{2}^{+}q_{1}^{+}} - \frac{T_{2}}{k_{1}^{+}q_{1}^{+}}\right),$$

$$\Delta^{\mu\nu-}(q_{1}, q_{2}, k_{1}, k_{2}) = 2t_{1}n_{\mu}^{-}n_{\nu}^{-}\left(\frac{T_{3}}{k_{1}^{-}q_{2}^{-}} - \frac{T_{2}}{k_{2}^{-}q_{2}^{-}}\right)$$

The light-cone vectors $n^+ = 2P_2/\sqrt{S}$ and $n^- = 2P_1/\sqrt{S}$, $k^{\pm} = k \cdot n^{\pm}$ for any four-vector k^{μ} .

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeizatior Approach

Single jet production

Dijet production

Summary and Conclusions

・ロト・日本・日本・日本・日本・日本

The effective \mathcal{RRgg} vertex

$$\begin{split} C_{RR,ab}^{gg,\ cd,\ \mu\nu}(q_1,q_2,k_1,k_2) &= g_s^2 \frac{q_1^+ q_2^-}{4\sqrt{t_1 t_2}} \times \\ \times \left(T_1 s^{-1} \Gamma^{(+-)\sigma}(q_1,q_2) \gamma_{\mu\nu\sigma}(-k_1,-k_2) + \right. \\ &+ T_3 t^{-1} \Gamma^{\sigma\mu-}(q_1,k_1-q_1) \Gamma^{\sigma\nu+}(k_2-q_2,q_2) - \\ &- T_2 u^{-1} \Gamma^{\sigma\nu-}(q_1,k_2-q_1) \Gamma^{\sigma\mu+}(k_1-q_2,q_2) - \\ &- T_1 \left(n_\mu^- n_\nu^+ - n_\nu^- n_\mu^+ \right) - T_2 (2g_{\mu\nu} - n_\mu^- n_\nu^+) - T_3 \left(-2g_{\mu\nu} + n_\nu^- n_\mu^+ \right) + \\ &+ \Delta^{\mu\nu+}(q_1,q_2,k_1,k_2) + \Delta^{\mu\nu-}(q_1,q_2,k_1,k_2) \right) \end{split}$$

$$T_{1} = f_{cdr}f_{abr}, \quad T_{2} = f_{dar}f_{cbr}, \quad T_{3} = f_{acr}f_{dbr}, \quad T_{1} + T_{2} + T_{3} = 0$$

$$\Delta^{\mu\nu+}(q_{1}, q_{2}, k_{1}, k_{2}) = 2t_{2}n_{\mu}^{+}n_{\nu}^{+}\left(\frac{T_{3}}{k_{2}^{+}q_{1}^{+}} - \frac{T_{2}}{k_{1}^{+}q_{1}^{+}}\right),$$

$$\Delta^{\mu\nu-}(q_{1}, q_{2}, k_{1}, k_{2}) = 2t_{1}n_{\mu}^{-}n_{\nu}^{-}\left(\frac{T_{3}}{k_{1}^{-}q_{2}^{-}} - \frac{T_{2}}{k_{2}^{-}q_{2}^{-}}\right)$$

The light-cone vectors $n^+ = 2P_2/\sqrt{S}$ and $n^- = 2P_1/\sqrt{S}$, $k^{\pm} = k \cdot n^{\pm}$ for any four-vector k^{μ} .

Dijets at the LHC in the Regge limit of QCD

> Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ()

The matrix element of subprocess $\mathcal{RR} \rightarrow gg$

The general form of the squared amplitudes for all subprocesses

$$\overline{|\mathcal{M}|^2} = \pi^2 \alpha_S^2 A \sum_{n=0}^4 W_n S^n,$$

For the subprocess $\mathcal{RR} \rightarrow gg$:

$$A = \frac{18}{a_1a_2b_1b_2s^2t^2u^2t_1t_2},$$

$$W_0 = x_1x_2s^2tut_1t_2(x_1x_2(tu + t_1t_2) + (a_1b_2 + a_2b_1)tu),$$

$$W_1 = x_1x_2st_1t_2\left[t^2u\left(a_1b_2(a_2b_2 + a_1x_2)(t_1 + t_2) - a_2b_1(a_1b_1t_1 + a_2b_2t_2) + (x_2(a_1^2b_2 + a_2^2b_1) + a_1a_2(b_1 - b_2)^2)u + x_1x_2a_1b_2t\right)\right] + \left[a_1 \leftrightarrow a_2, b_1 \leftrightarrow b_2, t \leftrightarrow u\right],$$

$$W_2 = a_1a_2b_1b_2tu\left(x_1^2x_2^2\left[2(t_1 + t_2)(t^2u + t_1t_2(s + u - t)) + (t_1(t_1 - t_2)^2 + t(u + 2t))\right] + x_1x_2t_1t_2(4(x_1b_1 + x_2a_2)(s + u) - (a_1b_1 + a_2b_2)u) + t_2tu(x_1^2b_2(2x_2t - b_1t_1)t_1 + x_2^2a_1(2x_1t - a_2t_2)t_2)\right) + \left(a_1 \leftrightarrow a_2, b_1 \leftrightarrow b_2, t \leftrightarrow u\right),$$

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

The matrix element of subprocess $\mathcal{RR} \rightarrow gg$

$$W_{3} = x_{1}x_{2}a_{1}a_{2}b_{1}b_{2}\left[t^{2}u\left(2a_{1}b_{2}(x_{1}x_{2}(t_{1}+t_{2})(2t-u-s)-(x_{1}b_{2}t_{1}+x_{2}a_{1}t_{2})\right)\right] + \left[x_{1}t_{1}\left(2(a_{1}b_{2}^{2}+a_{2}b_{1}^{2})+3x_{1}b_{1}b_{2}\right)+x_{2}t_{2}\left(2(a_{1}^{2}b_{2}+a_{2}^{2}b_{1})+3a_{1}a_{2}x_{2}\right)\right]u + 4x_{1}x_{2}t\left((a_{1}b_{2}+a_{2}b_{1})u+a_{1}b_{2}t\right)\right) + \left[a_{1}\leftrightarrow a_{2},b_{1}\leftrightarrow b_{2},t\leftrightarrow u\right],$$

$$W_{4} = x_{1}^{2}x_{2}^{2}a_{1}a_{2}b_{1}b_{2}\left[t\left(a_{1}a_{2}b_{1}b_{2}u(t_{1}+t_{2})(t-u-s)+(a_{1}b_{2}+a_{2}b_{1})^{2}tu^{2}-2a_{1}b_{2}t(s+u)(2a_{2}b_{1}u-a_{1}b_{2}s)\right)\right] + \left[a_{1}\leftrightarrow a_{2},b_{1}\leftrightarrow b_{2},t\leftrightarrow u\right].$$

The invariant variables: $s = (q_1 + q_2)^2$, $t = (q_1 - k_1)^2$, $u = (q_1 - k_2)^2$, $a_1 = 2k_1 \cdot P_2/S$, $a_2 = 2k_2 \cdot P_2/S$, $b_1 = 2k_1 \cdot P_1/S$, $b_2 = 2k_2 \cdot P_1/S$.

The amplitudes and squared matrix elements for the full set of $2 \rightarrow 2$ subprocesses with Reggeons in the initial state which give contribution to dijet production are presented in the work *M.A. Nefedov, V.A. Saleev, A. V Shipilova.* Dijet azimuthal decorrelations at the LHC in the parton Reggeization approach. Phys. Rev. D87 (2013) 094030. The all squared matrix elements are checked to give the correct expressions in the Parton Model limit.

Dijets at the LHC in the Regge limit of QCD

> Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへで

The matrix element of subprocess $\mathcal{RR} \rightarrow gg$

$$\begin{split} W_3 &= x_1 x_2 a_1 a_2 b_1 b_2 \Big[t^2 u \Big(2a_1 b_2 \big(x_1 x_2 (t_1 + t_2) (2t - u - s) - (x_1 b_2 t_1 + x_2 a_1 t_2) \\ &+ \big[x_1 t_1 \big(2(a_1 b_2^2 + a_2 b_1^2) + 3x_1 b_1 b_2 \big) + x_2 t_2 \big(2(a_1^2 b_2 + a_2^2 b_1) + 3a_1 a_2 x_2 \big) \big] u \\ &+ 4x_1 x_2 t \big((a_1 b_2 + a_2 b_1) u + a_1 b_2 t \big) \Big) \Big] + \Big[a_1 \leftrightarrow a_2, b_1 \leftrightarrow b_2, t \leftrightarrow u \Big], \\ W_4 &= x_1^2 x_2^2 a_1 a_2 b_1 b_2 \Big[t \Big(a_1 a_2 b_1 b_2 u (t_1 + t_2) (t - u - s) + (a_1 b_2 + a_2 b_1)^2 t u^2 - \\ &- 2a_1 b_2 t (s + u) (2a_2 b_1 u - a_1 b_2 s) \Big) \Big] + \Big[a_1 \leftrightarrow a_2, b_1 \leftrightarrow b_2, t \leftrightarrow u \Big]. \end{split}$$

The invariant variables: $s = (q_1 + q_2)^2$, $t = (q_1 - k_1)^2$, $u = (q_1 - k_2)^2$, $a_1 = 2k_1 \cdot P_2/S$, $a_2 = 2k_2 \cdot P_2/S$, $b_1 = 2k_1 \cdot P_1/S$, $b_2 = 2k_2 \cdot P_1/S$.

The amplitudes and squared matrix elements for the full set of $2 \rightarrow 2$ subprocesses with Reggeons in the initial state which give contribution to dijet production are presented in the work *M.A. Nefedov, V.A. Saleev, A. V Shipilova.* Dijet azimuthal decorrelations at the LHC in the parton Reggeization approach. Phys. Rev. D87 (2013) 094030. The all squared matrix elements are checked to give the correct expressions in the Parton Model limit.

Dijets at the LHC in the Regge limit of QCD

> Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Dijet production: cross section.

Exploiting the hypothesis of high-energy factorization, we express the hadronic cross sections $d\sigma$ as convolutions of partonic cross sections $d\hat{\sigma}$ with unintegrated PDFs Φ_{α}^{h} of Reggeized gluons in the hadrons *h*.

$$\begin{aligned} \frac{d\sigma(pp \to ggX)}{dk_{1T}dy_1dk_{2T}dy_2d\Delta\varphi} &= \frac{k_{1T}k_{2T}}{16\pi^3}\int dt_1 \int d\phi_1 \Phi_g^p(x_1, t_1, \mu^2) \Phi_g^p(x_2, t_2, \mu^2) \\ &\times \frac{\overline{|\mathcal{M}(RR \to gg)|^2}}{(x_1 x_2 S)^2}, \end{aligned}$$

where $k_{1,2T}$ and $y_{1,2}$ are final gluon transverse momenta and rapidities, respectively, and $\Delta \varphi$ is an azimuthal angle enclosed between the vectors \vec{k}_{1T} and \vec{k}_{2T} ,

$$x_{1} = (k_{1}^{0} + k_{2}^{0} + k_{1}^{z} + k_{2}^{z})/\sqrt{S}, \quad x_{2} = (k_{1}^{0} + k_{2}^{0} - k_{1}^{z} - k_{2}^{z})/\sqrt{S},$$

$$k_{1,2}^{0} = k_{1,2T}\cosh(y_{1,2}), \quad k_{1,2}^{z} = k_{1,2T}\sinh(y_{1,2}).$$

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

▲□▶▲□▶▲□▶▲□▶ = のへで

Figure 5 : The azimuthal dijet decorrelations at $\sqrt{S} = 7$ TeV, $|y_{ij}| < 1.1$

イロト 不得 とく ヨ とく ヨ と

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Figure 6 : The azimuthal dijet decorrelations at $\sqrt{S} = 7$ TeV, $|y_{ij}| < 1.1$

ヘロト ヘ回ト ヘヨト ヘヨト

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Figure 7 : The azimuthal dijet decorrelations at $\sqrt{S} = 7$ TeV, $|y_{ij}| < 1.1$

イロト 不得 とく ヨ とく ヨ と

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Figure 8 : The azimuthal dijet decorrelations at $\sqrt{S} = 7$ TeV, $|y_{jj}| < 1.1$

イロト 不得 とく ヨ とく ヨ と

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Figure 9 : The azimuthal dijet decorrelations at $\sqrt{S} = 7$ TeV, $|y_{ij}| < 1.1$

The next step of the analysis can be **an inclusion of a** $2 \rightarrow 3$ **process RR** \rightarrow **ggg** to the calculations. That would lead to a more complete and precise description of the data which contain more than 2 jets in the final state.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Figure 3: Normalized $\Delta \rho_{app}$, distributions in several $\eta \tau^{max}$ regions, scaled by the multiplicative factors given in the figure for easier presentation. The curves represent predictions from LO (dotted line) and NLO pQCD (solid line). Non-perturbative corrections have been applied to the predictions. The error bars on the data points include statistical and systematic uncertainties.

Dijets at the LHC in the Regge limit of QCD

> Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

- The good description of dijet azimuthal decorrelations is achieved just in the LO parton Reggeization approach, without any ad-hoc adjustments of input parameters, whereas in the collinear parton model, such a degree of agreement calls for NLO and NNLO corrections and complementary initial-state radiation effects and ad-hoc nonperturbative transverse momenta of partons.
- By presented work we continue the series of studies implemented by us in terms of Parton Reggeization Approach:
- Jet and Dijet Jet production at the LHC B. A. Kniehl, V. A. Saleev, A. V. Shipilova, E. V. Yatsenko. Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC. Phys. Rev. D 84, 074017 (2011); M. A. Nefedov, N. N. Nikolaev, V. A. Saleev. Drell-Yan lepton pair production at high energies in the parton Reggeization approach. Phys. Rev. D 87, 014022 (2013). M.A. Nefedov, V.A. Saleev, A. V Shipilova.Dijet azimuthal decorrelations at the LHC in the parton Reggeization approach. Phys. Rev. D87 (2013) 094030.
- b—jet production at the LHC

B. A. Kniehl, A. V. Shipilova and V. A. Saleev. Inclusive b and b anti-b production with quasi-multi-Regge kinematics at the Tevatron. Phys. Rev. D 81, 094010 (2010); V. A. Saleev and A. V. Shipilova. Inclusive b-jet and bb-dijet production at the LHC via Reggeized gluons. Phys. Rev. D 86, 034032 (2012).

 Heavy quarkonium production at the LHC M.A. Nefedov, V.A. Saleev, A. V. Shipilova.Prompt Upsilon(nS) production at the LHC in the Regge limit of QCD. Phys. Rev. D87 (2013)
 M.A. Nefedov, V.A. Saleev, A. V. Shipilova.Prompt J/psi production in the Regge limit of QCD: From Tevatron to LHC Phys. Rev. D85 (2012) 074013.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

- The good description of dijet azimuthal decorrelations is achieved just in the LO parton Reggeization approach, without any ad-hoc adjustments of input parameters, whereas in the collinear parton model, such a degree of agreement calls for NLO and NNLO corrections and complementary initial-state radiation effects and ad-hoc nonperturbative transverse momenta of partons.
- By presented work we continue the series of studies implemented by us in terms of Parton Reggeization Approach:
- Jet and Dijet Jet production at the LHC
 B. A. Kniehl, V. A. Saleev, A. V. Shipilova, E. V. Yatsenko. Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC. Phys. Rev. D 84, 074017 (2011);
 M. A. Nefedov, N. N. Nikolaev, V. A. Saleev. Drell-Yan lepton pair production at high energies in the parton Reggeization approach. Phys. Rev. D 87, 014022 (2013).
 M.A. Nefedov, V.A. Saleev, A. V Shipilova.Dijet azimuthal decorrelations at the LHC in the parton Reggeization approach. Phys. Rev. D87 (2013) 094030.
- ▶ b—jet production at the LHC

B. A. Kniehl, A. V. Shipilova and V. A. Saleev. Inclusive b and b anti-b production with quasi-multi-Regge kinematics at the Tevatron. Phys. Rev. D **81**, 094010 (2010); *V. A. Saleev and A. V. Shipilova.* Inclusive b-jet and bb-dijet production at the LHC via Reggeized gluons. Phys. Rev. D **86**, 034032 (2012).

Heavy quarkonium production at the LHC M.A. Nefedov, V.A. Saleev, A. V. Shipilova.Prompt Upsilon(nS) production at the LHC in the Regge limit of QCD. Phys. Rev. D87 (2013) M.A. Nefedov, V.A. Saleev, A. V. Shipilova.Prompt J/psi production in the Regge limit of QCD: From Tevatron to LHC Phys. Rev. D85 (2012) 074013.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

- The good description of dijet azimuthal decorrelations is achieved just in the LO parton Reggeization approach, without any ad-hoc adjustments of input parameters, whereas in the collinear parton model, such a degree of agreement calls for NLO and NNLO corrections and complementary initial-state radiation effects and ad-hoc nonperturbative transverse momenta of partons.
- By presented work we continue the series of studies implemented by us in terms of Parton Reggeization Approach:
- Jet and Dijet Jet production at the LHC B. A. Kniehl, V. A. Saleev, A. V. Shipilova, E. V. Yatsenko. Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC. Phys. Rev. D 84, 074017 (2011); M. A. Nefedov, N. N. Nikolaev, V. A. Saleev. Drell-Yan lepton pair production at high energies in the parton Reggeization approach. Phys. Rev. D 87, 014022 (2013). M.A. Nefedov, V.A. Saleev, A. V Shipilova.Dijet azimuthal decorrelations at the LHC in the parton Reggeization approach. Phys. Rev. D87 (2013) 094030.
- b—Jet production at the LHC
 B. A. Kniehl, A. V. Shipilova and V. A. Saleev. Inclusive b and b anti-b production with quasi-multi-Regge kinematics at the Tevatron. Phys. Rev. D 81, 094010 (2010);
 V. A. Saleev and A. V. Shipilova. Inclusive b-jet and bb-dijet production at the LHC via Reggeized gluons. Phys. Rev. D 86, 034032 (2012).
- Heavy quarkonium production at the LHC M.A. Nefedov, V.A. Saleev, A. V. Shipilova.Prompt Upsilon(nS) production at the LHC in the Regge limit of QCD. Phys. Rev. D87 (2013) M.A. Nefedov, V.A. Saleev, A. V. Shipilova.Prompt J/psi production in the Regge limit of QCD: From Tevatron to LHC Phys. Rev. D85 (2012) 074013.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

- The good description of dijet azimuthal decorrelations is achieved just in the LO parton Reggeization approach, without any ad-hoc adjustments of input parameters, whereas in the collinear parton model, such a degree of agreement calls for NLO and NNLO corrections and complementary initial-state radiation effects and ad-hoc nonperturbative transverse momenta of partons.
- By presented work we continue the series of studies implemented by us in terms of Parton Reggeization Approach:
- Jet and Dijet Jet production at the LHC B. A. Kniehl, V. A. Saleev, A. V. Shipilova, E. V. Yatsenko. Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC. Phys. Rev. D 84, 074017 (2011); M. A. Nefedov, N. N. Nikolaev, V. A. Saleev. Drell-Yan lepton pair production at high energies in the parton Reggeization approach. Phys. Rev. D 87, 014022 (2013). M.A. Nefedov, V.A. Saleev, A. V Shipilova.Dijet azimuthal decorrelations at the LHC in the parton Reggeization approach. Phys. Rev. D87 (2013) 094030.
- ▶ b−jet production at the LHC

B. A. Kniehl, A. V. Shipilova and V. A. Saleev. Inclusive b and b anti-b production with quasi-multi-Regge kinematics at the Tevatron. Phys. Rev. D **81**, 094010 (2010); *V. A. Saleev and A. V. Shipilova.* Inclusive b-jet and bb-dijet production at the LHC via Reggeized gluons. Phys. Rev. D **86**, 034032 (2012).

Heavy quarkonium production at the LHC

M.A. Nefedov, V.A. Saleev, A. V. Shipilova.Prompt Upsilon(nS) production at the LHC in the Regge limit of QCD. Phys. Rev. D87 (2013) M.A. Nefedov, V.A. Saleev, A. V. Shipilova.Prompt J/psi production in the Regge limit of QCD: From Tevatron to LHC Phys. Rev. D85 (2012) 074013.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

- The good description of dijet azimuthal decorrelations is achieved just in the LO parton Reggeization approach, without any ad-hoc adjustments of input parameters, whereas in the collinear parton model, such a degree of agreement calls for NLO and NNLO corrections and complementary initial-state radiation effects and ad-hoc nonperturbative transverse momenta of partons.
- By presented work we continue the series of studies implemented by us in terms of Parton Reggeization Approach:
- Jet and Dijet Jet production at the LHC B. A. Kniehl, V. A. Saleev, A. V. Shipilova, E. V. Yatsenko. Single jet and prompt-photon inclusive production with multi-Regge kinematics: From Tevatron to LHC. Phys. Rev. D 84, 074017 (2011); M. A. Nefedov, N. N. Nikolaev, V. A. Saleev. Drell-Yan lepton pair production at high energies in the parton Reggeization approach. Phys. Rev. D 87, 014022 (2013). M.A. Nefedov, V.A. Saleev, A. V Shipilova.Dijet azimuthal decorrelations at the LHC in the parton Reggeization approach. Phys. Rev. D87 (2013) 094030.
- ▶ b−jet production at the LHC

B. A. Kniehl, A. V. Shipilova and V. A. Saleev. Inclusive b and b anti-b production with quasi-multi-Regge kinematics at the Tevatron. Phys. Rev. D **81**, 094010 (2010); *V. A. Saleev and A. V. Shipilova.* Inclusive b-jet and bb-dijet production at the LHC via Reggeized gluons. Phys. Rev. D **86**, 034032 (2012).

Heavy quarkonium production at the LHC M.A. Nefedov, V.A. Saleev, A. V. Shipilova.Prompt Upsilon(nS) production at the LHC in the Regge limit of QCD. Phys. Rev. D87 (2013) M.A. Nefedov, V.A. Saleev, A. V. Shipilova.Prompt J/psi production in the Regge limit of QCD: From Tevatron to LHC Phys. Rev. D85 (2012) 074013.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

The advantages of the Parton Reggeization Approach

1. The gauge invariance of the initial off-shell quarks is held only in the Parton Reggeization Approach.

$$C_{QR,\ a}^{qg,\ b,\ \mu}(q_1,q_2,k_1,k_2) = rac{1}{2}g_s^2rac{q_2^-}{2\sqrt{t_2}}ar{U}(k_1)igg[\gamma_\sigma^{(-)}(q_1,k_1-q_1)t^{-1} imes n^+n^+$$

$$imes (\gamma_{\mu
u\sigma}(k_2,-q_2)n^+_
u+t_2rac{n^+_\mu n^+_\sigma}{k^+_2})[T^a,T^b] - \gamma^+(\hat{q}_1-\hat{k}_2)^{-1}\gamma^{(-)}_\mu(q_1,-k_2)T^aT^b -$$

$$-\gamma_{\mu}(\hat{q}_{1}+\hat{q}_{2})^{-1}\gamma_{\sigma}^{(-)}(q_{1},q_{2})n_{\sigma}^{+}T^{b}T^{a}+\frac{2\hat{q}_{1}n_{\mu}^{-}}{k_{1}^{-}}\left(\frac{T^{a}T^{b}}{k_{2}^{-}}-\frac{T^{b}T^{a}}{q_{2}^{-}}\right)\right]$$

2. The number of matrix elements obtained using the prescription of the k_l -factorization approach for off-shell gluon polarization vectors $\epsilon^{\mu}(q_T) = q_{T\mu}/\sqrt{\vec{q}_T^2}$ has the incorrect parton model limits $q_{1T}, q_{2T} \to 0$, unlike the ones calculated in the Parton Reggeization Approach.

$$C_{RR}^{\mu,g} = \epsilon^{\alpha}(q_{1T})\epsilon^{\beta}(q_{2T})g_{\alpha\beta\mu}(q_1,q_2,q_1+q_2), \qquad C_{RR}^{q\bar{q}} = \epsilon^{\alpha}(q_{1T})\epsilon^{\beta}(q_{2T})M_{\alpha\beta}(gg \to q\bar{q}), \\ C_{RR}^{gg,\mu\nu} \neq \epsilon^{\alpha}(q_{1T})\epsilon^{\beta}(q_{2T})M_{\alpha\beta}^{\mu\nu}(gg \to gg), \qquad C_{RQ}^{gg,\mu} \neq \epsilon^{\alpha}(q_{1T})M_{\alpha}^{\mu}(gq \to gq)$$

3. In the framework of Parton Reggeization Approach the NLO calculations can be correctly implemented.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

ntroduction

Parton Reggeization Approach

Single jet production

Dijet production

The advantages of the Parton Reggeization Approach

1. The gauge invariance of the initial off-shell quarks is held only in the Parton Reggeization Approach.

$$C_{QR, a}^{qg, b, \mu}(q_1, q_2, k_1, k_2) = \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big[\gamma_{\sigma}^{(-)}(q_1, k_1 - q_1)t^{-1} \times \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big] + \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big[\gamma_{\sigma}^{(-)}(q_1, k_1 - q_1)t^{-1} \times \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big] + \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big[\gamma_{\sigma}^{(-)}(q_1, k_1 - q_1)t^{-1} + \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big] + \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big[\gamma_{\sigma}^{(-)}(q_1, k_1 - q_1)t^{-1} + \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big] + \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big[\gamma_{\sigma}^{(-)}(q_1, k_1 - q_1)t^{-1} + \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big] + \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big[\gamma_{\sigma}^{(-)}(q_1, k_1 - q_1)t^{-1} + \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big] + \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big[\gamma_{\sigma}^{(-)}(q_1, k_1 - q_1)t^{-1} + \frac{1}{2}g_s^2 \frac{q_2^-}{2\sqrt{t_2}} \bar{U}(k_1) \Big] + \frac{1}{2}g_s^2 \frac{$$

$$\times \big(\gamma_{\mu\nu\sigma}(k_{2},-q_{2})n_{\nu}^{+}+t_{2}\frac{n_{\mu}^{+}n_{\sigma}^{+}}{k_{2}^{+}}\big)\big[T^{a},T^{b}\big]-\gamma^{+}(\hat{q}_{1}-\hat{k}_{2})^{-1}\gamma_{\mu}^{(-)}(q_{1},-k_{2})T^{a}T^{b}-$$

$$-\gamma_{\mu}(\hat{q}_{1}+\hat{q}_{2})^{-1}\gamma_{\sigma}^{(-)}(q_{1},q_{2})n_{\sigma}^{+}T^{b}T^{a}+\frac{2\hat{q}_{1}n_{\mu}^{-}}{k_{1}^{-}}\left(\frac{T^{a}T^{b}}{k_{2}^{-}}-\frac{T^{b}T^{a}}{q_{2}^{-}}\right)\right]$$

2. The number of matrix elements obtained using the prescription of the k_t -factorization approach for off-shell gluon polarization vectors $\epsilon^{\mu}(q_T) = q_{T\mu}/\sqrt{\tilde{q}_T^2}$ has the incorrect parton model limits $q_{1T}, q_{2T} \to 0$, unlike the ones calculated in the Parton Reggeization Approach.

$$C_{RR}^{\mu;g} = \epsilon^{\alpha}(q_{1T})\epsilon^{\beta}(q_{2T})g_{\alpha\beta\mu}(q_1,q_2,q_1+q_2), \qquad C_{RR}^{q\bar{q}} = \epsilon^{\alpha}(q_{1T})\epsilon^{\beta}(q_{2T})M_{\alpha\beta}(gg \to q\bar{q}), \\ C_{RR}^{gg,\mu\nu} \neq \epsilon^{\alpha}(q_{1T})\epsilon^{\beta}(q_{2T})M_{\alpha\beta}^{\mu\nu}(gg \to gg), \qquad C_{RQ}^{gq,\mu} \neq \epsilon^{\alpha}(q_{1T})M_{\alpha}^{\mu}(gq \to gq)$$

3. In the framework of Parton Reggeization Approach the NLO calculations can be correctly implemented.

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

●●● Ⅲ → Ⅲ → Ⅲ → ▲ ■ → → ■ → → ■ →

Dijets at the LHC in the Regge limit of QCD

Nefedov M.A., Saleev V.A., Shipilova A.V.

Introduction

Parton Reggeization Approach

Single jet production

Dijet production

Summary and Conclusions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Thank you for attention!