News in POWHEG and MINLO

Emanuele Re*
Rudolf Peierls Centre for Theoretical Physics, University of Oxford

QCD@LHC

DESY Hamburg, 5 September 2013

[^0]- MiNLO: Multiscale Improved NLO
[Hamilton,Nason,Zanderighi,1206.3572]
- NLOPS merging of X @ NLO and $X+1 j @$ NLO
[Hamilton,Nason,Oleari,Zanderighi,1212.4504]
- NNLOPS simulation of Higgs production
[Hamilton,Nason,ER,Zanderighi,1309.0017]
- News in POWHEG BOX

MiNLO: Multiscale Improved NLO

- goal: method to a-priori choose scales in NLO computation
- relevant for processes with widely different scales (e.g. $X+$ jets close to Sudakov regions)
How?
- At LO, the CKKW procedure allows to take these effects into account: modify the LO weight $B\left(\boldsymbol{\Phi}_{n}\right)$ in order to include (N)LL effects.
\Rightarrow "Use CKKW" on top of NLO computation that potentially involves many scales

[^1]
MiNLO: Multiscale Improved NLO

- goal: method to a-priori choose scales in NLO computation
- relevant for processes with widely different scales (e.g. $X+$ jets close to Sudakov regions)
How?
- At LO, the CKKW procedure allows to take these effects into account: modify the LO weight $B\left(\boldsymbol{\Phi}_{n}\right)$ in order to include (N)LL effects.
\Rightarrow "Use CKKW" on top of NLO computation that potentially involves many scales

Next-to-Leading Order accuracy needs to be preserved

(1) Scale dependence shows up at NNLO ["scale compensation"]:

$$
O\left(\mu^{\prime}\right)-O(\mu)=\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+2}\right) \quad \text { if } \quad O \sim \alpha_{\mathrm{S}}^{n} \quad \text { at LO }
$$

(2) Away from soft-collinear regions, exact NLO recovered:

$$
O_{\mathrm{MiNLO}}=O_{\mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+2}\right)
$$

- Find "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1} \equiv Q_{0}$

From CKKW to MiNLO

- Find "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1} \equiv Q_{0}$

- Find "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1} \equiv Q_{0}$

- Evaluate α_{S} at nodal scales

$$
\alpha_{\mathrm{S}}^{n}\left(\mu_{R}\right) B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow \alpha_{\mathrm{S}}\left(q_{1}\right) \alpha_{\mathrm{S}}\left(q_{2}\right) \ldots \alpha_{\mathrm{S}}\left(q_{n}\right) B\left(\boldsymbol{\Phi}_{n}\right)
$$

* scale compensation requires $\bar{\mu}_{R}^{2}=\left(q_{1} q_{2} \ldots q_{n}\right)^{2 / n}$ in V

From CKKW to MiNLO

- Find "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1} \equiv Q_{0}$

- Evaluate α_{S} at nodal scales

$$
\alpha_{\mathrm{S}}^{n}\left(\mu_{R}\right) B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow \alpha_{\mathrm{S}}\left(q_{1}\right) \alpha_{\mathrm{S}}\left(q_{2}\right) \ldots \alpha_{\mathrm{S}}\left(q_{n}\right) B\left(\boldsymbol{\Phi}_{n}\right)
$$

* scale compensation requires $\bar{\mu}_{R}^{2}=\left(q_{1} q_{2} \ldots q_{n}\right)^{2 / n}$ in V
- Sudakov FFs in internal and external lines of Born "skeleton"

$$
B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow B\left(\boldsymbol{\Phi}_{n}\right) \times\left\{\Delta\left(Q_{0}, Q\right) \Delta\left(Q_{0}, q_{i}\right) \ldots\right\}
$$

* Upon expansion, $\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+1}\right)(\log)$ terms are introduced, and need to be removed

$$
B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow B\left(\boldsymbol{\Phi}_{n}\right)\left(1-\Delta^{(1)}\left(Q_{0}, Q\right)-\Delta^{(1)}\left(Q_{0}, q_{i}\right)+\ldots\right)
$$

- Find "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1} \equiv Q_{0}$

- Evaluate α_{S} at nodal scales

$$
\alpha_{\mathrm{S}}^{n}\left(\mu_{R}\right) B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow \alpha_{\mathrm{S}}\left(q_{1}\right) \alpha_{\mathrm{S}}\left(q_{2}\right) \ldots \alpha_{\mathrm{S}}\left(q_{n}\right) B\left(\boldsymbol{\Phi}_{n}\right)
$$

* scale compensation requires $\bar{\mu}_{R}^{2}=\left(q_{1} q_{2} \ldots q_{n}\right)^{2 / n}$ in V
- Sudakov FFs in internal and external lines of Born "skeleton"

$$
B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow B\left(\boldsymbol{\Phi}_{n}\right) \times\left\{\Delta\left(Q_{0}, Q\right) \Delta\left(Q_{0}, q_{i}\right) \ldots\right\}
$$

* Upon expansion, $\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+1}\right)(\mathrm{log})$ terms are introduced, and need to be removed

$$
B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow B\left(\boldsymbol{\Phi}_{n}\right)\left(1-\Delta^{(1)}\left(Q_{0}, Q\right)-\Delta^{(1)}\left(Q_{0}, q_{i}\right)+\ldots\right)
$$

$X+$ jets cross-section finite without generation cuts
$\Rightarrow \bar{B}$ with MinLO prescription: ideal starting point for NLOPS (POWHEG) for $X+$ jets

Example, in 1 line: $H+1$ jet

- Pure NLO:

$$
d \sigma=\bar{B} d \mathbf{\Phi}_{n}=\alpha_{\mathrm{S}}^{3}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{rad}} R\right] d \mathbf{\Phi}_{n}
$$

Example, in 1 line: $H+1$ jet

- Pure NLO:

$$
d \sigma=\bar{B} d \boldsymbol{\Phi}_{n}=\alpha_{\mathrm{S}}^{3}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{rad}} R\right] d \boldsymbol{\Phi}_{n}
$$

- MiNLO:
$\bar{B}=\alpha_{\mathrm{S}}^{2}\left(M_{H}\right) \alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{g}^{2}\left(q_{T}, M_{H}\right)\left[B\left(1-2 \Delta_{g}^{(1)}\left(q_{T}, M_{H}\right)\right)+\alpha_{\mathrm{S}} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{rad}} R\right]$

$\Delta\left(Q_{0}, Q\right) Q$

${ }^{*} \bar{\mu}_{R}=\left(M_{H}^{2} q_{T}\right)^{1 / 3}$
${ }^{*} \log \Delta_{\mathrm{f}}\left(q_{T}, Q\right)=-\int_{q_{T}^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}} \frac{\alpha_{\mathrm{S}}\left(q^{2}\right)}{2 \pi}\left[A_{f} \log \frac{Q^{2}}{q^{2}}+B_{f}\right]$
${ }^{*} \Delta_{\mathrm{f}}^{(1)}\left(q_{T}, Q\right)=-\frac{\alpha_{\mathrm{S}}}{2 \pi}\left[\frac{1}{2} A_{1, \mathrm{f}} \log ^{2} \frac{Q^{2}}{q_{T}^{2}}+B_{1, \mathrm{f}} \log \frac{Q^{2}}{q_{T}^{2}}\right]$
${ }^{*} \mu_{F}=Q_{0}\left(=q_{T}\right)$
- Accuracy of BJ+MinLO for inclusive observables carefully investigated
- BJ+MiNLO describes inclusive boson observables at relative order α_{S} wrt $B+0 j$ at LO
- However, to reach genuine NLO, higher terms must be order α_{S}^{2}, i.e.

$$
O_{\mathrm{VJ}+\mathrm{MiNLO}}=O_{\mathrm{V} @ \mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)
$$

if O is inclusive. "Original MiNLO" contains ambiguous $\mathcal{O}\left(\alpha_{\mathrm{S}}^{3 / 2}\right)$ terms

- Possible to improve BJ+MiNLO such that NLO $B+0 j$ is recovered, without spoiling NLO accuracy for $B+1 j$.
- proof based on careful comparisons of general resummation formula with MiNLO ingredients
- need to include B_{2} in Sudakovs
- need to evaluate $\alpha_{\mathrm{S}}{ }^{(\mathrm{NLO})}$ in BJ+MiNLO at scale q_{T}, and $\mu_{F}=q_{T}$

Effectively it is like if we merged $\mathrm{NLO}^{(0)}$ and $\mathrm{NLO}^{(1)}$ samples, without merging different samples (no merging scale used).

- Resummation formula

$$
\frac{d \sigma}{d q_{T}^{2} d y}=\sigma_{0} \frac{d}{d q_{T}^{2}}\left\{\left[C_{g a} \otimes f_{a}\right]\left(x_{A}, q_{T}\right) \times\left[C_{g b} \otimes f_{b}\right]\left(x_{B}, q_{T}\right) \times \exp S\left(q_{T}, Q\right)\right\}+R_{f}
$$

- $\mathrm{NLO}^{(0)}$ if $C_{i j}^{(1)}$ included and R_{f} is $\mathrm{LO}^{(1)}$
- Take derivative, then compare with MinLO:

$$
\sim \sigma_{0} \frac{1}{q_{T}^{2}}\left[\alpha_{\mathrm{S}}, \alpha_{\mathrm{S}}^{2}, \alpha_{\mathrm{S}}^{3}, \alpha_{\mathrm{S}}^{4}, \alpha_{\mathrm{S}} L, \alpha_{\mathrm{S}}^{2} L, \alpha_{\mathrm{S}}^{3} L, \alpha_{\mathrm{S}}^{4} L\right] \exp S\left(q_{T}, Q\right) \quad L=\log \left(Q^{2} / q_{T}^{2}\right)
$$

- can be shown that

$$
\int^{Q^{2}} \frac{d q_{T}^{2}}{q_{T}^{2}} L^{m} \alpha_{\mathrm{S}}{ }^{n}\left(q_{T}\right) \exp S \sim\left(\alpha_{\mathrm{S}}\left(Q^{2}\right)\right)^{n-(m+1) / 2}
$$

- if I drop B_{2} in MinLO Δ_{g}, I miss a term $\left(1 / q_{T}^{2}\right) \alpha_{S}^{2} B_{2} \exp S$
- upon integration, violate $\mathrm{NLO}^{(0)}$ by a term $\mathcal{O}\left(\alpha_{\mathrm{S}}^{3 / 2}\right)$
- "wrong" scale in $\alpha_{\mathrm{S}}^{(\mathrm{NLO})}$ in MiNLO produces again same error

Alternative proof also available in the paper.

- "H+Pythia": standalone POWHEG $(g g \rightarrow H)$ + PYTHIA (PS level) [7pts band, $\mu=m_{H}$]
- "HJ+Pythia": HJ-MinLO* + PYTHIA (PS level) [7pts band, μ from MiNLO]
\checkmark very good agreement (both value and band)
Notice: band is $\sim 20-30 \%$

- Good agreement
- At high p_{T}, bands as expected (LO vs NLO) (POWHEG $(g g \rightarrow H)$ with hfact $=m_{H} / 1.2$, YR1)
- Low p_{T} shape difference: different NNLL terms in MiNLO Sudakovs
- Bands at low p_{T} : " $\mathrm{H}+$ Pythia" band spurious (S-events, i.e. inherit property of full \bar{B})
- HJ-MinLO* differential cross section $(d \sigma / d y)_{\mathrm{HJ}-\mathrm{MiNLO}}$ is NLO accurate

$$
W(y)=\frac{\left(\frac{d \sigma}{d y}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d y}\right)_{\mathrm{HJ}-\mathrm{MiNLO}}}=\frac{c_{2} \alpha_{\mathrm{S}}^{2}+c_{3} \alpha_{\mathrm{S}}^{3}+c_{4} \alpha_{\mathrm{S}}^{4}}{c_{2} \alpha_{\mathrm{S}}^{2}+c_{3} \alpha_{\mathrm{S}}^{3}+d_{4} \alpha_{\mathrm{S}}^{4}} \simeq 1+\frac{c_{4}-d_{4}}{c_{2}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- thus, reweighting each event with this factor, we get NNLO+PS
* obvious for y_{H}, by construction
* α_{S}^{4} accuracy of HJ-MiNLO* in 1-jet region not spoiled, because $W(y)=1+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)$
* if we had $\mathrm{NLO}^{(0)}+\alpha_{\mathrm{S}}^{3 / 2}$, 1-jet region spoiled because

$$
\left[\mathrm{NLO}^{(1)}\right]_{\mathrm{NNLOPS}}=\mathrm{NLO}^{(1)}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{4.5}\right)
$$

- HJ-MiNLO* differential cross section $(d \sigma / d y)_{\mathrm{HJ}-\mathrm{MiNLO}}$ is NLO accurate

$$
W(y)=\frac{\left(\frac{d \sigma}{d y}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d y}\right)_{\mathrm{HJ}-\mathrm{MiNLO}}}=\frac{c_{2} \alpha_{\mathrm{S}}^{2}+c_{3} \alpha_{\mathrm{S}}^{3}+c_{4} \alpha_{\mathrm{S}}^{4}}{c_{2} \alpha_{\mathrm{S}}^{2}+c_{3} \alpha_{\mathrm{S}}^{3}+d_{4} \alpha_{\mathrm{S}}^{4}} \simeq 1+\frac{c_{4}-d_{4}}{c_{2}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- thus, reweighting each event with this factor, we get NNLO+PS
* obvious for y_{H}, by construction
* α_{S}^{4} accuracy of HJ-MiNLO* in 1-jet region not spoiled, because $W(y)=1+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)$
* if we had $\mathrm{NLO}^{(0)}+\alpha_{\mathrm{S}}^{3 / 2}$, 1-jet region spoiled because

$$
\left[\mathrm{NLO}^{(1)}\right]_{\mathrm{NNLOPS}}=\mathrm{NLO}^{(1)}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{4.5}\right)
$$

* Variants for W are possible: with

$$
\begin{aligned}
& W\left(y, p_{T}\right)=h\left(p_{T}\right) \frac{\int d \sigma^{\mathrm{NNLO}} \delta(y-y(\boldsymbol{\Phi}))-\int d \sigma_{B}^{\mathrm{MiNLO}} \delta(y-y(\boldsymbol{\Phi}))}{\int d \sigma_{A}^{\mathrm{MiNLO}} \delta(y-y(\boldsymbol{\Phi}))}+\left(1-h\left(p_{T}\right)\right) \\
& d \sigma_{A}=d \sigma h\left(p_{T}\right), \quad \quad d \sigma_{B}=d \sigma\left(1-h\left(p_{T}\right)\right), \quad h=\frac{\left(\beta m_{H}\right)^{2}}{\left(\beta m_{H}\right)^{2}+p_{T}^{2}}
\end{aligned}
$$

we get exactly $(d \sigma / d y)_{\mathrm{NNLOPS}}=(d \sigma / d y)_{\mathrm{NNLO}}$ (no α_{S}^{5} terms)

* h essentially controls where the NNLO/NLO K-factor is spread.
- NNLO with $\mu=m_{H} / 2$, HJ-MinLO "core scale" m_{H}
- events reweighted at the LH level, then showered with PYTHIA (PS level)
- (7×3) pts scale var. in NNLOPS, 7 pts in NNLO

Notice: band is 10%
[Until and including $\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)$, PS effects don't affect y_{H} (first 2 emissions controlled properly at $\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)$ by MiNLO + POWHEG $)$]
$\beta=\infty\left(\mathbf{W}\right.$ indep. of $\left.p_{T}\right)$

$$
\beta=1 / 2
$$

- HqT: NNLL+NNLO, $\mu_{R}=\mu_{F}=m_{H} / 2$ [7pts], $\quad Q_{\mathrm{res}} \equiv m_{H} / 2$
- $\beta=1 / 2 \& \infty$: uncertainty bands of HqT (not shown) contain nNLOPS at low-/moderate p_{T}
- $\beta=1 / 2$: NNLOPS tail \rightarrow NLOPS tail $\left[W\left(y, p_{T} \gg m_{H}\right) \rightarrow 1\right]$ larger band (affected just marginally by NNLO, so it's \sim genuine NLO band)
- $\beta=1 / 2$: HqT tail harder than NNLOPS tail ($\mu_{\mathrm{HqT}}<" \mu_{\mathrm{MiNLO}}$ ")
- $\beta=1 / 2$: very good agreement with HqT resummation

$$
\varepsilon\left(p_{\mathrm{T}, \text { veto }}\right)=\frac{\Sigma\left(p_{\mathrm{T}, \text { veto }}\right)}{\sigma^{\text {tot }}}=\frac{1}{\sigma^{\text {tot }}} \int d \sigma \theta\left(p_{\mathrm{T}, \text { veto }}-p_{\mathrm{T}}^{\mathrm{j}_{1}}\right)
$$

- JetVHeto: NNLL resum, $\mu_{R}=\mu_{F}=m_{H} / 2$ [7pts], $Q_{\text {res }} \equiv m_{H} / 2$, (a)-scheme only
- nice agreement, differences never more than 5-6 \%

POWHEG BOX: news and technical improvements

Number of processes still increasing (~ 30)

Automation:

- Interface to MadGraph 4 [Frederix]: automatically builds subprocesses list, $B, B_{i j}, B^{\mu \nu}, R$ and large- N Born color structures.
- Used to build the code for $H j$ and $H j j$ [Campbell, Ellis, Frederix, Nason, Oleari], with virtuals from MCFM.
- interface to GoSam [Luisoni, Nason, Oleari, Tramontano]: automatically write the code for 1-loop amplitudes, and interface it via BLHA - Used to study $V H$ and $V H j$

PDF and scale uncertainties:

- Generate MC samples for different scale choices, and, even more, for different PDFs, is very time consuming
- Primitive reweighting facility now superseded by new mechanism

V2 ready and under testing; MiNLO will also be the default for $X+$ jets processes.

Conclusions

(1) MiNLO:

- assign scales and Sudakov FF in $B+n$ jets NLO computations
- well-behaved in Sudakov regions
- NLO away from Sudakov regions
- ideal as starting point for POWHEG
(2) Improved MiNLO:
- $B+1$ jet improved MiNLO allows to merge $\mathrm{NLO}^{(0)}$ and $\mathrm{NLO}^{(1)}$ samples, without merging (no merging scale used)
- merging for higher multiplicity requires further study, it'll take some time
(1) NNLOPS:
- MiNLO allows to define a procedure to reach NNLOPS
- Shown results for Higgs production
- Progress in POWHEG BOX:
- list of processes steadily increasing
- automation (via interfaces to MG4 / GoSam)
- several technical improvements to keep up with theoretical and experimental needs \hookrightarrow in the process all cleaning things up for a V2

Conclusions

(1) MiNLO:

- assign scales and Sudakov FF in $B+n$ jets NLO computations
- well-behaved in Sudakov regions
- NLO away from Sudakov regions
- ideal as starting point for POWHEG
(2) Improved MiNLO:
- $B+1$ jet improved MiNLO allows to merge $\mathrm{NLO}^{(0)}$ and $\mathrm{NLO}^{(1)}$ samples, without merging (no merging scale used)
- merging for higher multiplicity requires further study, it'll take some time
(3) NNLOPS:
- MiNLO allows to define a procedure to reach NNLOPS
- Shown results for Higgs production
- Progress in POWHEG BOX:
- list of processes steadily increasing
- automation (via interfaces to MG4 / GoSam)
- several technical improvements to keep up with theoretical and experimental needs \hookrightarrow in the process all cleaning things up for a V2
- Start from ME weight: $B\left(\boldsymbol{\Phi}_{n}\right)$
- Find "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1} \equiv Q_{0}$

- New weight:

$$
\begin{aligned}
\alpha_{\mathrm{S}}^{5}(Q) B\left(\boldsymbol{\Phi}_{3}\right) \rightarrow & \alpha_{\mathrm{S}}^{2}(Q) B\left(\boldsymbol{\Phi}_{3}\right) \frac{\Delta_{g}\left(Q_{0}, Q\right)}{\Delta_{g}\left(Q_{0}, q_{2}\right)} \frac{\Delta_{g}\left(Q_{0}, Q\right)}{\Delta_{g}\left(Q_{0}, q_{3}\right)} \frac{\Delta_{g}\left(Q_{0}, q_{3}\right)}{\Delta_{g}\left(Q_{0}, q_{1}\right)} \\
& \Delta_{g}\left(Q_{0}, q_{2}\right) \Delta_{g}\left(Q_{0}, q_{2}\right) \Delta_{g}\left(Q_{0}, q_{3}\right) \Delta_{g}\left(Q_{0}, q_{1}\right) \Delta_{g}\left(Q_{0}, q_{1}\right) \\
& \alpha_{\mathrm{S}}\left(q_{1}\right) \alpha_{\mathrm{S}}\left(q_{2}\right) \alpha_{\mathrm{S}}\left(q_{3}\right)
\end{aligned}
$$

where typically

$$
\log \Delta_{\mathrm{f}}\left(q_{T}, Q\right)=-\int_{q_{T}^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}} \frac{\alpha_{\mathrm{S}}\left(q^{2}\right)}{2 \pi}\left[A_{1, \mathrm{f}} \log \frac{Q^{2}}{q^{2}}+B_{1, \mathrm{f}}\right]
$$

- Fill phase space below Q_{0} with vetoed shower

MiNLO: All α_{S} in Born term are chosen with CKKW (local) scales q_{1}, \ldots, q_{n}

$$
\alpha_{\mathrm{S}}^{n}\left(\mu_{R}\right) B \Rightarrow \alpha_{\mathrm{S}}\left(q_{1}\right) \alpha_{\mathrm{S}}\left(q_{2}\right) \ldots \alpha_{\mathrm{S}}\left(q_{n}\right) B
$$

- Normal NLO structure $\left(\mu=\mu_{R}\right)$:

$$
\sigma(\mu)=\underbrace{\alpha_{\mathrm{S}}^{n}(\mu) B}_{\text {Born }}+\underbrace{\alpha_{\mathrm{S}}^{n+1}(\mu)\left(C+n b_{0} \log \left(\mu^{2} / Q^{2}\right) B\right)}_{\text {Virtual }}+\underbrace{\alpha_{\mathrm{S}}^{n+1}(\mu) R}_{\text {Real }}
$$

- Explicit μ dependence of virtual term as required by RG invariance:

$$
\begin{aligned}
& \alpha_{\mathrm{S}}^{n}\left(\mu^{\prime}\right) B=\left[\alpha_{\mathrm{S}}(\mu)-n b_{0} \alpha_{\mathrm{S}}^{n+1}(\mu) \log \left(\mu^{\prime 2} / \mu^{2}\right)\right] B+\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+2}\right) \\
& \operatorname{Virtual}\left(\mu^{\prime}\right)=\operatorname{Virtual}(\mu)+\alpha_{\mathrm{S}}^{n+1}(\mu) n b_{0} \log \left(\mu^{\prime 2} / \mu^{2}\right) B+\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+2}\right) \\
& \Rightarrow \sigma\left(\mu^{\prime}\right)-\sigma(\mu)=\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+2}\right)
\end{aligned}
$$

- In MiNLO "scale compensation" kept if

$$
\left(C+n b_{0} \log \left(\mu_{R}^{2} / Q^{2}\right) B\right) \Rightarrow\left(C+n b_{0} \log \left(\bar{\mu}_{R}^{2} / Q^{2}\right) B\right)
$$

with $\bar{\mu}_{R}^{2}=\left(q_{1} q_{2} \ldots q_{n}\right)^{2 / n}$

Few technicalities for original MiNLO:

- $\mu_{F}=Q_{0}$ (as in CKKW)
- Cluster with CKKW also V and R kinematics
- Actual implementation uses FKS mapping for first cluster of $\boldsymbol{\Phi}_{n+1}$
- Ignore CKKW Sudakov for $1^{\text {st }}$ clustering of $\boldsymbol{\Phi}_{n+1}$ (inclusive on extra radiation)
- Some freedom in choice of $\alpha_{\mathrm{S}}{ }^{(n+1)}$ (entering V, R and $\Delta^{(1)}$) (not free for MiNLO merging)
- Used full NLL-improved Sudakovs $\left(A_{1}, B_{1}, A_{2}\right)$
p_{T}^{H} spectrum:
- " $\mu_{\mathrm{HJ}-\mathrm{MiNLO}}=m_{H}, m_{H}, p_{T} "$
- At high $p_{T}, \mu_{\mathrm{HJ}-\mathrm{MiNLO}}=p_{T}$
- If $\beta=1 / 2$, NNLOPS $\rightarrow \mathrm{HJ}-\mathrm{MiNLO}$ at high p_{T}
- NNLO/NLO ~ 1.5, because HNNLO with $\mu=m_{H} / 2, \quad \mu_{\mathrm{HJ}-\mathrm{MiNLO}, \text { core }}=m_{H}$

[^0]: *based mainly on [1206.3572, 1212.4504, 1309.0017]

[^1]: Next-to-Leading Order accuracy needs to be preserved

