New results on W/Z measurements from ATLAS

Simon Wollstadt on behalf of the ATLAS Collaboration

QCD@LHC 2013

RiSMA

W/Z production at LHC

Drell-Yan production of W and Z calculable to high orders in pQCD (diagramm only LO)

٠	High-mass Drell-Yan cross-sections arXiv:13	305.4192		
	 Test of perturbative QCD (pQCD), EW correction 	ns, γ-induced processes,		
	sensitive to poorly known $ar{q}$ PDF at large x-Bjorl	ken		
•	$Z/\gamma^* \rightarrow ll$ cross-section vs. Φ_{η}^* Phys. Lett. B 720 (2013) 32-51			
	 Test of pQCD, resummation 			
•	W production in association with a charm hadron	ATLAS-CONF-2013-045		
	 Sensitive to s-quark PDF for high Q² 			
•	Forward-backward Z asymmetry measurement	ATLAS-CONF-2013-043		
	• Measurement of $\sin^2 \Theta_W^{eff}$			

05.09.2013

The ATLAS Detector

- EM calorimeter and tracking system up to $|\eta| < 2.5 \rightarrow$ electrons
- Muon spectrometer up to $|\eta| < 2.7$, trigger up to $|\eta| < 2.4 \rightarrow$ muons
- Calorimetric coverage up to $|\eta| < 4.9 \rightarrow$ jets, MET, forward electrons

High-mass Drell-Yan cross-sections arXiv:1305.4192

- Cross-sections measured for leptons with $P_T^l > 25$ GeV, $|\eta^l| < 2.5$
- As function of the invariant mass in the region 116 GeV < m_{\parallel} < 1500 GeV
- Measured in the electron-positron channel

High-mass Drell-Yan cross-sections arXiv:1305.4192

- Dominant background (6-16% depending on m_{ee}) by particles misidentified as electrons (DiJet (QCD) and jet+real electron (e.g. pp \rightarrow W(e ν)+jets))
- This background estimated with a data driven matrix-method
- Fake rate calculated in a jet enriched control sample

 Smaller irreversible background (up to 5% and 9%) from other processes with two real electrons in the final state estimated from MC samples

High-mass Drell-Yan cross-sections

Measurement dominated by systematic uncertainty up to m_{ee} ~400 GeV

	Uncertainty	$[\%]$ in m_{ee} bin
Source of uncertainty	$116130\mathrm{GeV}$	$10001500\mathrm{GeV}$
Total background estimate (Stat.)	0.1	7.6
Total background estimate (Syst.)	1.3	3.1
Electron energy scale & resolution	2.1	3.3
Electron identification	2.3	2.5
Electron reconstruction	1.6	1.7
Bin-by-bin correction	1.5	1.5
Trigger efficiency	0.8	0.8
MC statistics $(C_{\rm DY} \text{ stat.})$	0.7	0.4
MC modelling	0.2	0.3
Theoretical uncertainty	0.3	0.4
Total systematic uncertainty	4.2	9.8
Luminosity uncertainty	1.8	1.8
Data statistical uncertainty	1.1	50

 Complete results with all uncertanties, seperated as correlated and uncorrelated are available at HepData

→ http://hepdata.cedar.ac.uk/view/ins1234228

High-mass Drell-Yan cross-sections arXiv:1305.4192

- Born cross-section compared to NNLO QCD FEWZ calculation with different NNLO PDFs, NLO EW corrections
- Photon induced contribution (1-8%) and real W/Z FSR (0.1-2%) are included

- Data generally lies above the FEWZ calculations
- X² fits over the full mass yield, taking all uncertainties into account gives values between 13.5 (HERAPDF) and 18.9 (CT10) for 13 data points

$Z/\gamma^* \rightarrow ll$ cross-section vs. Φ_{η}^*

- Measurement of angle correlations Φ^*_η probes the same physics as measurement of P^Z_T
- Depends only on direction of tracks \rightarrow Better experimental resolution

$$\Phi_{\eta}^{*} = \tan\left(\frac{\Phi_{acop}}{2}\right) * \sin(\Theta_{\eta}^{*})$$
$$\Phi_{acop} = \pi - \Delta\Phi$$
$$\cos(\Theta_{\eta}^{*}) = \tanh[((\eta^{-} - \eta^{+}))/2]$$

- Correlation matrix between Φ^* and P_T^Z variables, at born level, for $Z/\gamma^* \rightarrow l^+l^-$
- Φ_{η}^* of 1 is equal to P_T^Z of 100 GeV

$Z/\gamma^* \rightarrow ll$ cross-section vs. Φ_n^*

- Measurements done in electron
 and muon channels
- Cross-sections are measured for $P_T^l > 20 {\rm GeV}, \ |\eta_l| < 2.4 \ {\rm and} \ 66 \ < {\rm m_{II}} < 116 \ {\rm GeV}$
- Multi-jet background derived from data fitting the Z lineshape
- Total background is only in the order of 0.6%
 - \rightarrow high-precision measurement
- Systematics (0.1-0.3%) smaller than statistical uncertainty (0.3%)

$Z/\gamma^* \rightarrow ll$ cross-section vs. Φ_{η}^*

Phys. Lett. B 720 (2013) 32-51

Comparison to predictions of different MC generators and NNLL calculations

Very important input for MC tuning (ISR parameters)

05.09.2013

10

Short reminder Phys. Rev. D 85, 072004 ; Phys. Rev. Lett. 109, 012001

- ATLAS W, Z data from 2010 was fitted together with HERA data with the HERAFITTER framework ($Q_0^2 = 1.9 \ GeV^2$, $m_c = 1.4 \ GeV$, $m_b = 4.75 \ GeV$, $\alpha_s(M_Z) = 0.1176$)
- Fits are run with fixed \bar{s}/\bar{d} = 0.5 and leaving $\bar{s}(x)$ free (with s = \bar{s})
- The "free \bar{s} fit" leads to better X² to ATLAS data and determines $r_s = 0.5 (s + \bar{s})/\bar{d} = 1.00^{+0.25}_{-0.28}$

1.5

11

da/dh/[pb]

ree/fixed s

650

550

500

1.02

0.98

W⁺→I⁺v

Data 2010 (√s – 7 TeV)

epWZ fixed s epWZ free s

0.5

W in association with a charm hadron ATLAS-CONF-2013-045

<u>Details of the analysis:</u> see talks of Vargas Trevino in PDF + PDF4LHC session and Ishitsuka in Hard QC: NLO, NNLO, EW session

Left plot: Sum of measured cross-sections compared to different PDF predictions Right plot: Measured asymmetry ratios $R_c^{\pm} = \sigma(W^+D^{*-})/\sigma(W^-D^{*+})$ compared to different PDF predictions

05.09.2013

Forward-backward Z asymmetry ATLAS-CONF-2013-043

- Measurement of A_{FB} in $Z \rightarrow ll$ decays to determine $\sin^2 \Theta_W^{eff}$
- Electrons with $P_T > 25$ GeV selected from central ($|\eta| < 2.47$) and forward (2.5 < $|\eta| < 4.9$) region
- Muons from inner tracker and muon –spectrometer measurements selected with $P_T > 20$ GeV and $|\eta| < 2.4$

Forward-backward Z asymmetry ATLAS-CONF-2013-043

- Very important to include "forward" electrons (2.5 < $|\eta|$ < 4.9) to reconstruct Z events at large rapidity
- For these events the direction of the incoming quark is better determined
- For CF (one central, one forward electron) A_{FB} is already visible from the reco-level distribution

Forward-backward Z asymmetry

ATLAS-CONF-2013-043

- Unfolded A_{FB} distribution to Born-level compared to PYTHIA prediction including QED FSR NLO QCD corrections
 - A_{FB} corrected for detector effects, QED corrections
- For data the boxed shaded region represents the total uncertainty
 - Systematic uncertainty from unfolding, MC dependence, PDFs, backgrounds and other experimental effects
- MC is only shown with the statistical uncertainty

Forward-backward Z asymmetry

ATLAS-CONF-2013-043

The value of $\sin^2 \Theta_W^{eff}$ is extracted from the raw AFB spectra by comparing it to MC predictions produced with varying initial values of the weak mixing angle

Combined result: $\sin^2 \Theta_W^{eff} = 0.2297 \pm 0.0004(\text{stat.}) \pm 0.0009(\text{sys.}) = 0.2297 \pm 0.0010(\text{tot.})$

- The systematic uncertainty is dominated by the PDF uncertainty and MC statistics
- Result is consistent with previous measurements
- Already as precise as the D0 result

05.09.2013

Summary & Outlook

W and Z Physics at LHC can be measured with very high precision

- Measurement of the high-mass Drell-Yan differential cross-section up to 1.5 TeV
 - Tests pQCD and EW corrections with sensitivity to photon induced processes
- Very presice measurement of Φ^* in $Z \rightarrow ll$ decay
 - Stringent test to resummation calculations
- High rates at LHC of Production of a W in association with a single charm hadron
 - Sensitive to the s-quark PDF
- First ATLAS measurement of $\sin^2 \Theta_W^{eff}$ analyzing A_{FB} in $Z \rightarrow ll$ decays
 - already as precise as the best Tevatron result

Other results with 2011 dataset will be out soon, some analysis already started to look into 2012 data

Back-up slides

W in association with a charm hadron ATLAS-CONF-2013-045

- Possibility of using W + c events as probes of s-quark PDF
- Events with W leptonic decays in association with a single charm quark
- Charm hadrons are reconstructed in the decay modes into Kaons and Pions
- $P_T^l > 20 \text{ GeV}, |\eta| < 2.5, P_T^{\nu} > 25 \text{ GeV}, m_T^W > 40 \text{ GeV} and <math>P_T^D > 8 \text{ GeV}, |\eta^D| < 2.2$

W in association with a charm hadron ATLAS-CONF-2013-045

- Combined measured cross-section in bins of P_T^D (left side) and lepton $|\eta|$ (right side)
- Compared to cross section based on aMC@NLO simulations with different PDF sets

 Shapes of the different PDF sets are similar, but predicted cross-section differ as much as 25%

05.09.2013

Forward-backward Z asymmetry

ATLAS-CONF-2013-043

Table of uncertainties for extraction of $\sin^2 \Theta_W^{eff}$

	CC electrons	CF electrons	Muons	Combined
Uncertainty source	(10^{-4})	(10^{-4})	(10^{-4})	(10^{-4})
PDF	9	5	9	7
MC statistics	9	5	9	4
Electron energy scale	4	6	_	4
Electron energy smearing	4	5	_	3
Muon energy scale	_	_	5	2
Higher-order corrections	3	1	3	2
Other sources	1	1	2	2

- CF channel smallest total uncertainty
- Due to larger rapidity of the dilepton system reduced sensitivity to dilution
- PDF uncertainty of CF selection phasespace is smaller

Forward-backward Z asymmetry ATLAS-CONF-2013-043

Fully unfolded A_{FB} distribution to Born-level compared to PYTHIA prediction including QED FSR NLO QCD corrections

• A_{FB} corrected for detector effects, QED corrections and corrected for dilution

٠