New results on W/Z measurements from ATLAS

Simon Wollstadt

 on behalf of the ATLAS CollaborationQCD@LHC 2013

W/Z production at LHC

Drell-Yan production of W and Z calculable to high orders in pQCD (diagramm only LO)

- High-mass Drell-Yan cross-sections arXiv:1305.4192
- Test of perturbative QCD (pQCD), EW corrections, γ-induced processes, sensitive to poorly known \bar{q} PDF at large x-Bjorken
- $Z / \gamma^{*} \rightarrow l l$ cross-section vs. $\Phi_{\eta}^{*} \quad$ Phys. Lett. B 720 (2013) 32-51
- Test of pQCD, resummation
- W production in association with a charm hadron

ATLAS-CONF-2013-045

- Sensitive to s-quark PDF for high Q2
- Forward-backward Z asymmetry measurement

ATLAS-CONF-2013-043

- Measurement of $\sin ^{2} \Theta_{W}^{e f f}$

The ATLAS Detector

- EM calorimeter and tracking system up to $|\eta|<2.5 \rightarrow$ electrons
- Muon spectrometer up to $|\eta|<2.7$, trigger up to $|\eta|<2.4 \rightarrow$ muons
- Calorimetric coverage up to $|\eta|<4.9 \rightarrow$ jets, MET, forward electrons

High-mass Drell-Yan cross-sections

- Cross-sections measured for leptons with $P_{T}^{l}>25 \mathrm{GeV},\left|\eta^{l}\right|<2.5$
- As function of the invariant mass in the region $116 \mathrm{GeV}<\mathrm{m}_{\|}<1500 \mathrm{GeV}$
- Measured in the electron-positron channel

High-mass Drell-Yan cross-sections

- Dominant background (6-16\% depending on $m_{e e}$) by particles misidentified as electrons (DiJet (QCD) and jet+real electron (e.g. pp $\rightarrow \mathrm{W}(\mathrm{ev})+\mathrm{jets})$)
- This background estimated with a data driven matrix-method
- Fake rate calculated in a jet enriched control sample

- Smaller irreversible background (up to 5\% and 9\%) from other processes with two real electrons in the final state estimated from MC samples

High-mass Drell-Yan cross-sections

- Measurement dominated by systematic uncertainty up to $\mathrm{m}_{\mathrm{ee}} \sim 400 \mathrm{GeV}$

	Uncertainty [\%] in $m_{e e}$ bin	
Source of uncertainty	$116-130 \mathrm{GeV} 1000-1500 \mathrm{GeV}$	
Total background estimate (Stat.)	0.1	7.6
Total background estimate (Syst.)	1.3	3.1
Electron energy scale \& resolution	2.1	3.3
Electron identification	2.3	2.5
Electron reconstruction	1.6	1.7
Bin-by-bin correction	1.5	1.5
Trigger efficiency	0.8	0.8
MC statistics ($C_{\text {DY }}$ stat.)	0.7	0.4
MC modelling	0.2	0.3
Theoretical uncertainty	0.3	0.4
Total systematic uncertainty	4.2	9.8
Luminosity uncertainty	1.8	1.8
Data statistical uncertainty	1.1	50

- Complete results with all uncertanties, seperated as correlated and uncorrelated are availabe at HepData
\rightarrow http://hepdata.cedar.ac.uk/view/ins1234228

High-mass Drell-Yan cross-sections

- Born cross-section compared to NNLO QCD FEWZ calculation with different NNLO PDFs, NLO EW corrections
- Photon induced contribution (1-8\%) and real W/Z FSR (0.1-2\%) are included

- Data generally lies above the FEWZ calculations
- X^{2} fits over the full mass yield, taking all uncertainties into account gives values

$Z / \gamma^{*} \rightarrow l l$ cross-section vs. Φ_{η}^{*}

- Measurement of angle correlations Φ_{η}^{*} probes the same physics as measurement of P_{T}^{Z}
- Depends only on direction of tracks \rightarrow Better experimental resolution

$$
\begin{aligned}
& \Phi_{\eta}^{*}=\tan \left(\frac{\Phi_{\text {acop }}}{2}\right) * \sin \left(\Theta_{\eta}^{*}\right) \\
& \quad \Phi_{\text {acop }}=\pi-\Delta \Phi \\
& \left.\cos \left(\Theta_{\eta}^{*}\right)=\tanh \left[\left(\eta^{-}-\eta^{+}\right)\right) / 2\right]
\end{aligned}
$$

$Z / \gamma^{*} \rightarrow l l$ cross-section vs. Φ_{η}^{*}

- Measurements done in electron and muon channels
- Cross-sections are measured for $P_{T}^{l}>20 \mathrm{GeV},\left|\eta_{l}\right|<2.4$ and 66 $<\mathrm{m}_{\|}<116 \mathrm{GeV}$
- Multi-jet background derived from data fitting the Z lineshape
- Total background is only in the order of 0.6\%
\rightarrow high-precision measurement
- Systematics (0.1-0.3\%) smaller than statistical uncertainty (0.3\%)

Comparison to predictions of different MC generators and NNLL calculations

Short reminder

- ATLAS W, Z data from 2010 was fitted together with HERA data with the HERAFITTER framework $\left(Q_{0}^{2}=1.9 \mathrm{GeV}^{2}, m_{c}=1.4 \mathrm{GeV}, m_{b}=4.75 \mathrm{GeV}, \alpha_{s}\left(M_{Z}\right)=0.1176\right)$
- Fits are run with fixed $\bar{s} / \bar{d}=0.5$ and leaving $\bar{s}(x)$ free (with $\mathrm{s}=\bar{s}$)
- The „free \bar{s} fit" leads to better X^{2} to ATLAS data and determines

$$
r_{s}=0.5(s+\bar{s}) / \bar{d}=1.00_{-0.28}^{+0.25}
$$

W in association with a charm hadron

Details of the analysis: see talks of Vargas Trevino in PDF + PDF4LHC session and Ishitsuka in Hard QC: NLO, NNLO, EW session

Left plot: Sum of measured cross-sections compared to different PDF predictions Right plot: Measured asymmetry ratios $R_{c}^{ \pm}=\sigma\left(W^{+} D^{*-}\right) / \sigma\left(W^{-} D^{*+}\right)$ compared to different PDF predictions

Forward-backward Z asymmetry

- Measurement of A_{FB} in $Z \rightarrow l l$ decays to determine $\sin ^{2} \Theta_{W}^{\text {eff }}$
- Electrons with $\mathrm{P}_{\mathrm{T}}>25 \mathrm{GeV}$ selected from central ($|\eta|<2.47$) and forward (2.5<| $\eta \mid<4.9$) region
- Muons from inner tracker and muon -spectrometer measurements selected with $\mathrm{P}_{\mathrm{T}}>20 \mathrm{GeV}$ and $|\eta|<2.4$

Both elec from central region

One central, one forward

Muon channel 13

Forward-backward Z asymmetry

- Very important to include "forward" electrons (2.5<| $\quad \eta \mid<4.9$) to reconstruct Z events at large rapidity
- For these events the direction of the incoming quark is better determined
- For CF (one central, one forward electron) $A_{F B}$ is already visible from the reco-level distribution

Forward-backward Z asymmetry

- Unfolded $A_{\text {FB }}$ distribution to Born-level compared to PYTHIA prediction including QED FSR NLO QCD corrections
- $A_{F B}$ corrected for detector effects, QED corrections
- For data the boxed shaded region represents the total uncertainty
- Systematic uncertainty from unfolding, MC dependence, PDFs, backgrounds and other experimental effects
- MC is only shown with the statistical uncertaintv

05.09.2013

Forward-backward Z asymmetry

The value of $\sin ^{2} \Theta_{W}^{e f f}$ is extracted from the raw AFB spectra by comparing it to MC predictions produced with varying initial values of the weak mixing angle

Combined result: $\sin ^{2} \Theta_{W}^{e f f}=0.2297 \pm 0.0004$ (stat.) ± 0.0009 (sys.) $=0.2297 \pm 0.0010$ (tot.)
Most precise result by including one „forward" electron

- The systematic uncertainty is dominated by the PDF uncertainty and MC statistics
- Result is consistent with previous measurements
- Already as precise as the DO result

Summary \& Outlook

W and Z Physics at LHC can be measured with very high precision

- Measurement of the high-mass Drell-Yan differential cross-section up to 1.5 TeV
- Tests PQCD and EW corrections with sensitivity to photon induced processes
- Very presice measurement of Φ^{*} in $Z \rightarrow l l$ decay
- Stringent test to resummation calculations
- High rates at LHC of Production of a W in association with a single charm hadron
- Sensitive to the s-quark PDF
- First ATLAS measurement of $\sin ^{2} \Theta_{W}^{e f f}$ analyzing A_{FB} in $Z \rightarrow l l$ decays
- already as precise as the best Tevatron result

Other results with 2011 dataset will be out soon, some analysis already started to look into 2012 data

Back-up slides

W in association with a charm hadron

- Possibility of using $W+c$ events as probes of s-quark PDF
- Events with W leptonic decays in association with a single charm quark
- Charm hadrons are reconstructed in the decay modes into Kaons and Pions
- $P_{T}^{l}>20 \mathrm{GeV},|\eta|<2.5, P_{T}^{v}>25 \mathrm{GeV}, m_{T}^{W}>40 \mathrm{GeV}$ and $P_{T}^{D}>8 \mathrm{GeV},\left|\eta^{D}\right|<2.2$

W in association with a charm hadron

- Combined measured cross-section in bins of P_{T}^{D} (left side) and lepton $|\eta|$ (right side)
- Compared to cross section based on aMC@NLO simulations with different PDF sets

- Shapes of the different PDF sets are similar, but predicted cross-section differ as much as 25%

Forward-backward Z asymmetry

How $\sin ^{2} \Theta_{W}^{e f f}$ was extracted

Definition of Collin-Soper Frame (CS)

(a)
q

(c)

(b)

(d)

Forward-backward Z asymmetry atLas-conf-2013-043

Table of uncertainties for extraction of $\sin ^{2} \Theta_{W}^{e f f}$

Uncertainty source	CC electrons $\left(10^{-4}\right)$	CF electrons $\left(10^{-4}\right)$	Muons $\left(10^{-4}\right)$	Combined $\left(10^{-4}\right)$
PDF	9	5	9	7
MC statistics	9	5	9	4
Electron energy scale	4	6	-	4
Electron energy smearing	4	5	-	3
Muon energy scale	-	-	5	2
Higher-order corrections	3	1	3	2
Other sources	1	1	2	2

- CF channel smallest total uncertainty
- Due to larger rapidity of the dilepton system reduced sensitivity to dilution
- PDF uncertainty of CF selection phasespace is smaller

Forward-backward Z asymmetry

- Fully unfolded $A_{F B}$ distribution to Born-level compared to PYTHIA prediction including QED FSR NLO QCD corrections
- $A_{\text {FB }}$ corrected for detector effects, QED corrections and corrected for dilution

