Planar Two-loop Master Integrals for the Production of Two Equal-mass Particles at the LHC

Erich Weihs
Institut für Theoretische Physik
Universität Zürich
> QCD @ LHC > DESY Hamburg > September 4, 2013

based on work together with Thomas Gehrmann and Lorenzo Tancredi:
JHEP 08 (2013) 070 (arXiv:1306.6344)

What is diboson production?

The production of two electroweak gauge bosons ($\gamma, W^{+,-}, Z$)

- Background for Higgs boson searches, Beyond the Standard Model (BSM) Physics searches
- Study of electroweak symmetry breaking, unitarization of $W_{L} W_{L}$ scattering
- Indirect probe for new physics

Diboson production at leading order

Example: Production of a $W^{+} W^{-}$pair

Triple Gauge Coupling: modified by New Physics?

Triple Gauge Couplings

- Probe for physics above the LHC scale (i.e. a few TeV)
- present couplings: modified by BSM physics?
- new couplings: generated by BSM physics?
- in general: modifications very small

We need

- to study distributions
- precise measurements and predictions

Triple Gauge Couplings

Influence of a modified $Z W W$ coupling

Leading lepton p_{T} distribution in WW events at the LHC (CMS) [1306.1126]

Status of higher order computations

- Electroweak corrections: done at NLO for all processes
[Accomando et al. (2005), Bierweiler et al. (2013)]
- QCD NLO: done for all processes
[Ohnemus et al. (1993), Baur et al. $(1993,1998)$, Dixon et al. $(1998,1999)$]
- QCD NNLO:
- complete: only $\gamma \gamma$
- MINLO / VBFNLO approximation: W Z

Ingredients of the NNLO computation

- double-real corrections: known for all processes
- real-virtual corrections: known for all processes [Ditmaie, Kalweit,

Binoth, Campanario, ...]

- virtual corrections:
- $\gamma \gamma$ [Bernetal. (2001)]
- W γ and $Z \gamma$
[Gehrmann, Tancredi, Weihs (2012/13)]
- W W (high energy limit)
[Chachamis et al. (2008)]

NNLO virtual contributions for two equal-mass particles

- write down Feynman diagrams (143 for $q \bar{q} \rightarrow Z Z$)

NNLO virtual contributions for two equal-mass particles

- write down Feynman diagrams (143 for $q \bar{q} \rightarrow Z Z$)
- computation of tensor coefficients using projectors

NNLO virtual contributions for two equal-mass particles

- write down Feynman diagrams (143 for $q \bar{q} \rightarrow Z Z$)
- computation of tensor coefficients using projectors
- Result: ≈ 4600 scalar integrals, classified into 3 topologies

Solution of the Integrals

- derive relations among them exploiting analytic structure, Lorentz covariance and symmetries
- reduction to Master Integrals (MIs) using Laporta's algorithm implemented in Reduze [studerus, v. Manteuffel (2012)]

$$
\text { Topo A: } 26 \text { MIs Topo B: } 13 \text { Topo C: } 16
$$

- solution of MIs: Method of differential equations
[Kotikov (1991), Remiddi (1997), Remiddi, Gehrmann (2000)]

Idea:

derive differential equation for the integral with respect to external invariants

Solution of the Differential Equations

$$
\frac{\partial}{\partial s_{\alpha}} M_{j}(D, \mathbf{s})=\sum_{k} A_{k}(D, \mathbf{s}) M_{k}(D, \mathbf{s})+\text { Inhom }
$$

Solution of the Differential Equations

$\frac{\partial}{\partial s_{\alpha}} M_{j}(D, \mathbf{s})=\sum_{k} A_{k}(D, \mathbf{s}) M_{k}(D, \mathbf{s})+$ Inhom.

1. expansion in $\epsilon=\frac{1}{2}(4-D)$
2. decoupling of differential equations
3. solve by Euler's method of variation of constants
4. fix boundary conditions by imposing regularity at pseudo-thresholds

Solution of the Differential Equations

$$
\frac{\partial}{\partial s_{\alpha}} M_{j}(D, \mathbf{s})=\sum_{k} A_{k}(D, \mathbf{s}) M_{k}(D, \mathbf{s})+\text { Inhom. }
$$

1. expansion in $\epsilon=\frac{1}{2}(4-D)$
2. decoupling of differential equations
3. solve by Euler's method of variation of constants
4. fix boundary conditions by imposing regularity at pseudo-thresholds

Challenges

- Variable transformations
- Taking limits
- Analytical continuations

Solution of the Differential Equations

$$
\frac{\partial}{\partial s_{\alpha}} M_{j}(D, \mathbf{s})=\sum_{k} A_{k}(D, \mathbf{s}) M_{k}(D, \mathbf{s})+\text { Inhom. }
$$

1. expansion in $\epsilon=\frac{1}{2}(4-D)$
2. decoupling of differential equations
3. solve by Euler's method of variation of constants
4. fix boundary conditions by imposing regularity at pseudo-thresholds

Challenges

- Variable transformations
- Taking limits
- Analytical continuations

Solution

Make use of algebraic structure of underlying functions!

Multiple Polylogarithms

- Multiple Polylogarithms (MPLs) are defined as iterated integrals:

$$
G\left(a_{1}, \ldots, a_{n} ; x\right) \equiv \int_{0}^{x} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right)
$$

- Many curious properties, e.g. shuffle product

$$
\begin{array}{r}
G\left(a_{1}, \ldots, a_{n_{1}} ; x\right) G\left(a_{n_{1}+1}, \ldots, a_{n_{1}+n_{2}} ; x\right)= \\
\sum_{\sigma \in \Sigma\left(n_{1}, n_{2}\right)} G\left(a_{\sigma(1)}, \ldots, a_{\sigma\left(n_{1}+n_{2}\right)} ; x\right)
\end{array}
$$

- They form an algebra
- Can be extended to a Hopf algebra, i.e. an algebra with additional structure: coproduct [A. в. Goncharov (2002)]

Idea for manipulating MPLs

Transformations of MPLs are complicated

Idea for manipulating MPLs

Transformations of MPLs are complicated

\Downarrow
Translate the problem to an algebraic tensor product space

Idea for manipulating MPLs

Transformations of MPLs are complicated

\Downarrow
Translate the problem to an algebraic tensor product space
\Downarrow
Transformations there are simple

Idea for manipulating MPLs

Transformations of MPLs are complicated

\Downarrow
Translate the problem to an algebraic tensor product space
\Downarrow
Transformations there are simple
\Downarrow
Translate the result back to the function space

Algorithm is described in

An example problem

Integration of

- Transform the differential equation from given in (z, y) to (z, x)
- obtain terms like

$$
\int_{0}^{z} d z^{\prime} \frac{1}{z^{\prime}-x} G\left(0,-1,-2-z^{\prime} ; y \rightarrow \frac{1+x^{2}}{x}-z^{\prime}\right)
$$

Easy to integrate in terms of MPLs if their z^{\prime} dependence is only $G\left(\ldots ; z^{\prime}\right)$!

Result

$$
\begin{aligned}
G\left(0,-1,-2-z^{\prime} ; y \rightarrow \frac{1+x^{2}}{x}-z^{\prime}\right) & =-G(0 ; x)^{3} / 6+\left(G(0 ; x)^{2} G\left(J_{x}^{-1} ; z^{\prime}\right)\right) / 2-G\left(J_{x}^{-1} ; z^{\prime}\right)(2 G(0,-1 ; x) \\
& -2 G(-c,-1 ; x)+G(-c, 0 ; x)-2 G(-\bar{c},-1 ; x)+G(-\bar{c}, 0 ; x)) \\
& +G\left(-2 ; z^{\prime}\right)\left(-G(0 ; x)^{2} / 2+G(0,-c ; x)+G(0,-\bar{c} ; x)+G(-I, 0 ; x)\right. \\
& -(G(-c ; x)+G(-\bar{c} ; x))\left(G\left(-2, J_{x}^{-1} ; z^{\prime}\right)-G\left(-1, J_{x}^{-1} ; z^{\prime}\right)\right. \\
& \left.+G\left(J_{x}^{-1},-2 ; z^{\prime}\right)-G\left(J_{x}^{-1},-1 ; z^{\prime}\right)\right)+G(0 ; x)\left(G\left(-2, J_{x}^{-1} ; z^{\prime}\right)\right. \\
& \left.-G\left(-1,-2 ; z^{\prime}\right)+G\left(J_{x}^{-1},-2 ; z^{\prime}\right)-G\left(J_{x}^{-1}, I_{x}^{-1} ; z^{\prime}\right)\right) \\
& \ldots \\
& -G(i,-\bar{c}, 0 ; x)-G\left(J_{x}^{-1},-2, I_{x}^{-1} ; z^{\prime}\right)+G\left(J_{x}^{-1},-1,-2 ; z^{\prime}\right) \\
& +G\left(J_{x}^{-1},-1, I_{x}^{-1} ; z^{\prime}\right)-G\left(J_{x}^{-1}, I_{x}^{-1},-2 ; z^{\prime}\right)+\pi^{2}\left(\left(-2 G\left(-2 ; z^{\prime}\right)\right.\right. \\
& \left.\left.-G(0 ; x)+G(-I ; x)+G(i ; x)+G\left(J_{x}^{-1} ; z^{\prime}\right)\right) / 12-\log (2) / 6\right) \\
& +\left(-G(0 ; x)^{2} / 2+G\left(-1 ; z^{\prime}\right)\left(-G(0 ; x)+G\left(-I_{;} x\right)+G(i ; x)\right)\right. \\
& +(G(0 ; x)-G(-c ; x)-G(-\bar{c} ; x)) G\left(J_{x}^{-1} ; z^{\prime}\right)-G\left(-1,-2 ; z^{\prime}\right) \\
& +G\left(-1, J_{x}^{-1} ; z^{\prime}\right)+G(0,-c ; x)+G(0,-\bar{c} ; x)+G(-I, 0 ; x) \\
& -G(-I,--c ; x)-G(-I,-\bar{c} ; x)+G(i, 0 ; x)-G(i,-c ; x) \\
& \left.-G(i,-\bar{c} ; x)+G\left(J_{x}^{-1},-1 ; z^{\prime}\right)-G\left(J_{x}^{-1}, I_{x}^{-1} ; z^{\prime}\right)\right) \log (2) \\
& -\left(G\left(-1 ; z^{\prime}\right) \log (2)^{2}\right) / 2+(7 \zeta(3)) / 8
\end{aligned}
$$

The "Coproduct enhanced symbol formalism"

- straightforward procedure

The "Coproduct enhanced symbol formalism"

- straightforward procedure
- possible to automatise

The "Coproduct enhanced symbol formalism"

- straightforward procedure
- possible to automatise
- it works!

2
$シ 15$

Conclusions and Outlook

- The coproduct can be very useful in transforming expressions containing MPLs

Conclusions and Outlook

- The coproduct can be very useful in transforming expressions containing MPLs
- We used it during the computation of all planar two-loop master integrals for

$$
p p \rightarrow Z Z / W^{+} W^{-}
$$

Conclusions and Outlook

- The coproduct can be very useful in transforming expressions containing MPLs
- We used it during the computation of all planar two-loop master integrals for

$$
p p \rightarrow Z Z / W^{+} W^{-}
$$

- Results checked with
- FIESTA [A. v. Smirnov, V. A. Smirnov, M. Tentyukov]
- SecDec [s. Borowka, J. Carter, G. Heinrich]
- GiNaC [J. Vollinga, s. Weinzierl]

Conclusions and Outlook

- The coproduct can be very useful in transforming expressions containing MPLs
- We used it during the computation of all planar two-loop master integrals for

$$
p p \rightarrow Z Z / W^{+} W^{-}
$$

- Results checked with
- FIESTA [A. v. Smirnov, V. A. Smirnov, M. Tentyukov]
- SecDec [s. Borowka, J. Carter, G. Heinrich]
- GiNaC [J. Vollinga, s. Weinzierl]
- next steps:
- use planar integrals to compute leading color amplitudes

Conclusions and Outlook

- The coproduct can be very useful in transforming expressions containing MPLs
- We used it during the computation of all planar two-loop master integrals for

$$
p p \rightarrow Z Z / W^{+} W^{-}
$$

- Results checked with
- FIESTA [A. v. Smirnov, V. A. Smirnov, M. Tentyukov]
- SecDec [s. Borowka, J. Carter, G. Heinrich]
- GiNaC [J. Vollinga, s. Weinzierl]
- next steps:
- use planar integrals to compute leading color amplitudes
- solve nonplanar master integrals for the full result

Backup slides

Alternative formulation of an algebra using a tensor product

A "textbook" result from linear algebra
\mathcal{A} : a general algebra

$$
G(a ; x) G(b ; x)=G(a, b ; x)+G(b, a ; x)
$$

becomes

$$
\mu(G(a ; x) \otimes G(b ; x))=G(a, b ; x)+G(b, a ; x)
$$

Alternative formulation of an algebra using a tensor product

Associativity

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad(a, b, c \in \mathcal{A})
$$

becomes ($\beta \equiv$ bilinear algebra multiplication)

Alternative formulation of an algebra using a tensor product

Associativity

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c) \quad(a, b, c \in \mathcal{A})
$$

becomes $(\mu \equiv$ linear tensor multiplication)

the Hopf-Algebra

A Hopf algebra \mathcal{H} has one more structure:

Hopf algebra : \mathcal{H} coproduct : Δ

Δ is coassiociative

\Rightarrow unique way to iterate the coproduct:

$$
\mathcal{H} \xrightarrow{\Delta} \mathcal{H} \otimes \mathcal{H} \xrightarrow{\mathrm{id} \otimes \Delta} \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \xrightarrow{\mathrm{id} \otimes \mathrm{id} \otimes \Delta} \ldots
$$

Hopf Algebra

Hopf algebra:

1. at the same time algebra (associative product)
2. and coalgebra (coassociative coproduct) (= bialgebra)
3. connected (the field over which the algebra is generated is included in the algebra)

- Product and coproduct are not dual any more!
- We require their compatibility

$$
\Delta(a \cdot b)=\Delta(a) \cdot \Delta(b)
$$

with $\left(a_{1} \otimes a_{2}\right) \cdot\left(b_{1} \otimes b_{2}\right) \equiv\left(a_{1} \cdot b_{1}\right) \otimes\left(a_{2} \cdot b_{2}\right)$.

the Multiple Polylogarithm Hopf Algebra

- This can be done for the MPLs [Alexander B. Goncharov, 2002]
- some examples for Δ :

$$
\begin{aligned}
\Delta(\ln z) & =1 \otimes \ln z+\ln z \otimes 1, \\
\Delta\left(\operatorname{Li}_{n}(z)\right) & =1 \otimes \operatorname{Li}_{n}(z)+\operatorname{Li}_{n}(z) \otimes 1+\sum_{k=1}^{n-1} \operatorname{Li}_{n-k}(z) \otimes \frac{\ln ^{k} z}{k!} .
\end{aligned}
$$

Notation

- $\Delta_{2,1}=$ Apply coproduct; select tensors with weights $2 \otimes 1$.
- $\Delta_{1,1,1}=$ Apply coproduct two times; select tensors with weights $1 \otimes 1 \otimes 1$.

Ideas for manipulating MPLs

(obvious) observation

Equal expressions involving MPLs have an equal coproduct! i.e. at weight 3 :

$$
\begin{gathered}
F_{3}=G_{3} \\
\Delta_{2,1}\left(F_{3}\right)=\Delta_{2,1}\left(G_{3}\right) \quad \Delta_{1,2}\left(F_{3}\right)=\Delta_{1,2}\left(G_{3}\right) \\
\Delta_{1,1,1}\left(F_{3}\right)=\Delta_{1,1,1}\left(G_{3}\right)
\end{gathered}
$$

Advantage: only identities of lower weight needed
compute the "symbol" $\Delta_{1, \ldots, 1}(F)$
\Downarrow
integrate it in terms of MPLs (yielding G)
\Downarrow
compute $\Delta_{2,1 \ldots, 1}(F-G)$, etc. to recover the parts lost by the symbol $\operatorname{map}\left(\propto \pi^{n}, \zeta(n)\right)$
\Downarrow
determine missing constant term using PSLQ algorithm or guess

