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What is diboson production?

The production of two electroweak gauge bosons (v, W ~,2)

q Vi

q Vo

» Background for Higgs boson searches, Beyond the Standard
Model (BSM) Physics searches

» Study of electroweak symmetry breaking, unitarization of W; W,
scattering

» Indirect probe for new physics



Diboson production at leading order

Example: Production of a W* W~ pair
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Triple Gauge Coupling: modified by New Physics?



Triple Gauge Couplings

Probe for physics above the LHC scale (i.e. a few TeV)
present couplings: modified by BSM physics?

new couplings: generated by BSM physics?

in general: modifications very small

vV v v v

We need

» to study distributions
» precise measurements and predictions



Triple Gauge Couplings

Influence of a modified ZWW coupling
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Status of higher order computations

» Electroweak corrections: done at NLO for all processes

[Accomando et al. (2005), Bierweiler et al. (2013)]

» QCD NLO: done for all processes
[Ohnemus et al. (1993), Baur et al. (1993,1998), Dixon et al. (1998,1999)]

» QCD NNLO:

» complete: only v v [Catani et al. (2012)]
> MINLO / VBFNLO approximation: W Z [Campanario & Sapeta (2012)]



Ingredients of the NNLO computation

» double-real corrections: q Vi
known for all processes

q Vo
- L q Vi
» real-virtual corrections: known _~
for all processes  ipitmaier, kaliwet,
Binoth, Campanario, ...] Y
» virtual corrections: q 2
> 7Y 7Y [Bernetal (2001)] q V1

» W~and Z v
[Gehrmann, Tancredi, Weihs (2012/13)]
» W W (high energy limit)

[Chachamis et al. (2008)]

AR



NNLO virtual contributions for two equal-mass
particles

» write down Feynman diagrams (143 for qq — Z 2)
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NNLO virtual contributions for two equal-mass
particles

» write down Feynman diagrams (143 for qq — Z 2)
» computation of tensor coefficients using projectors
» Result: ~ 4600 scalar integrals, classified into 3 topologies

X

Topo A Topo B Topo C



Solution of the Integrals

» derive relations among them exploiting analytic structure,
Lorentz covariance and symmetries

» reduction to Master Integrals (MIs) using Laporta’s algorithm
implemented in Reduze [Studerus, v. Manteuffel (2012)]

Topo A: 26 MIs  Topo B: 13 Topo C: 16
» solution of Mis: Method of differential equations
[Kotikov (1991), Remiddi (1997), Remiddi, Gehrmann (2000)]
Idea:

derive differential equation for the integral with respect to external
invariants



Solution of the Differential Equations

2 M(D,s) = S A(D, $)Mi(D, s) + Inhom.
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Solution of the Differential Equations

aiﬂw( s) => . Ax(D,s)M(D,s) + Inhom.

. expansion in ¢ = 1(4 — D)
. decoupling of differential equations
. solve by Euler's method of variation of constants

fix boundary conditions by imposing regularity at
pseudo-thresholds

A WD =

Challenges

» Variable transformations
» Taking limits
» Analytical continuations

Solution [C. Duhr]

Make use of algebraic structure of underlying functions!



Multiple Polylogarithms

» Multiple Polylogarithms (MPLs) are defined as iterated
integrals:

X dt
G(a1,...,a,,;x)z/ " G(ao,...,ant)
o I—a

» Many curious properties, e.g. shuffle product

G(a1,...,an; X) G(@n+1,- - 8n1ny: X) =

G(@s (1), - - - Ao(m+me): X)
oce€X(n,n)

» They form an algebra

» Can be extended to a Hopf algebra, i.e. an algebra with
additional structure: COpI’OdUCT [A. B. Goncharov (2002)]



Idea for manipulating MPLS ¢ oux orey

Transformations of MPLs are complicated
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ldea for manipulating MPLS  c ouw oz

Transformations of MPLs are complicated

4

Translate the problem to an algebraic tensor product space

I

Transformations there are simple

I

Translate the result back to the function space

Algorithm is described in

[Anastasiou, Duhr et al. (1302.4379)], [Gehrmann, Tancredi, Weihs (1306.6344)]



An example problem

Integration of

» Transform the differential equation from given in (z, y) to (z, x)
» obtain terms like

z 1 1 2
/dz’ - G(O,—1,—2—z’;y—> X —z’>
0 zZ'—X X

Easy to integrate in terms of MPLs if their z’ dependence is only
G(...; 2')!



Result

1+ %2

G <o, 1,27y _ z’) = —G(0; )3 /6 + (G(O: x)2 Gy i 2')) /2 — Gy i 2 )(2G(O, —15x)

X
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F (= G(0; %)% /2 + G(—1;2')(— G(0; X) + G(—I; X) + G(i: X))
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The “Coproduct enhanced symbol formalism”

» straightforward procedure
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The “Coproduct enhanced symbol formalism”

» straightforward procedure
» possible to automatise
» it works!

Topo A Topo B Topo C
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Conclusions and Outlook

v

The coproduct can be very useful in transforming expressions
containing MPLs

We used it during the computation of all planar two-loop master
integrals for

v

pp—ZZ/ Wt W~

Results checked with
> FIESTA [A. V. Smirnov, V. A. Smirnov, M. Tentyukov]
» SecDec (s Borowka, J. Carter, G. Heinrich]
» GiNaC [J. Vollinga, S. Weinzierl]

v

v

next steps:

» use planar integrals to compute leading color amplitudes
» solve nonplanar master integrals for the full result



Backup slides



Alternative formulation of an algebra using a tensor
product

A “textbook” result from linear algebra

A: a general algebra

Ax A A® A

G(a; x)G(b; x) = G(a, b; x) + G(b, a; x)
becomes

u(G(a; x) ® G(b; x)) = G(a, b; x) + G(b, a; x)



Alternative formulation of an algebra using a tensor
product

Associativity

(a-b)-c=a-(b-c) (a,b,ce A)
becomes (5 = bilinear algebra multiplication)

Ax Ax A idxp Ax A

B xid i

Ax A b A




Alternative formulation of an algebra using a tensor
product

Associativity

(a-b)-c=a-(b-c) (a,b,ce A)
becomes (u = linear tensor multiplication)

Ao AgA— 9O Ao A

p®id I

A A - A




the Hopf-Algebra

A Hopf algebra H has one more structure:

id A

HOHOH HOH
A®id A
A
HOH < H

Hopf algebra: H coproduct: A

A is coassiociative
= unique way to iterate the coproduct:

HEHOH WS HeHoH 1C®A



Hopf Algebra

Hopf algebra:

1. at the same time algebra (associative product)
2. and coalgebra (coassociative coproduct) (= bialgebra)

3. connected (the field over which the algebra is generated is
included in the algebra)

» Product and coproduct are not dual any more!
» We require their compatibility
A(a-b) = A(a) - A(b),

with (81 ® 32) . (b1 ® bg) = (a1 . b1) ® (32 . bg) .



the Multiple Polylogarithm Hopf Algebra

> ThIS can be done fOI’ the MPLS [Alexander B. Goncharov, 2002]
» some examples for A:

A(lnz) =1@hz+Ihze1,

In z
A(Lin(2)) =1 ®Lip(2) + Lis(z ®1+Zun K@=

Notation

» Ay 1 = Apply coproduct; select tensors with weights 2 ® 1.

» Ay 1,1 = Apply coproduct two times; select tensors with weights
11®1.



Ideas for manipulating MPLS ¢ ou o

(obvious) observation

Equal expressions involving MPLs have an equal coproduct!
i.e. at weight 3:

F3 = Gs
A 1(F3) = Az.1(Gs) Aqo(F3) = A12(Gs)

Aq1.1(F3) = A11,1(Gs)

Advantage: only identities of lower weight needed



An Algorithm to simplify/transform MPLS ¢ ooy :

compute the “symbol” Ay 1(F)
U
integrate it in terms of MPLs (yielding G)
I

compute A, 1. 1(F — G), etc. to recover the parts lost by the symbol

map (x 7", ¢(n))
(8

determine missing constant term using PSLQ algorithm or guess

ocog
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