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Towards an extragalactic supernova
neutrino detector at the South Pole

 With today's neutrino observatories, only Galactic SNe (~2–3 per century) 

visible1

 Need to extend sensitivity to neighboring galaxies (5–10 Mpc) for a 

routine detection of  ~1 SN per year in neutrinos (see Figure 1), this 

means ~10 Mton detector needed (see below)

 Physics motivation:

 Measure the core-collapse SN rate accurately

 Study the core-collapse mechanism

 Trigger early optical observations of  SNe

 Probe for optically dark SNe (see below)

 Set limits on neutrino mass

Fig. 1: Cumulative number of  SNe per 
year, as predicted from star formation 
rate (red) 2,5 and as observed (black) 2,3,4

These models of  SN neutrinos were used:

 Lawrence-Livermore model6  (LL):  One of  the few model calculations 

leading to an explosion

 Thompson-Burrows-Pinto model7  (TBP):  More recent than LL, but 

does not lead to an explosion.

 Dark SNe8:  While the collapse of  a fast-rotating star with  25 M  ≳ ⊙

leads to a hypernova, a slow-rotating one might collapse to a black hole 

without emitting photons. These „dark“ SNe or failed SNe could be 

detected with a SN  detector.νFig. 2: Positron spectrum from SN in 1 Mpc 
distance for 1 Mton effective mass

 Studied two locations for Cherenkov array in South 

Pole ice: shallow diffuse ice and deep clear ice

 Strings arranged in hexagonal pattern

 300 optical sensors on each string (1 sensor per 

meter), each having an eff. photosensitive area:

 ~78 cm2 in diffuse ice (2.4 high QE IceCube sensors)

 ~180 cm2 in clear ice (5.5 high QE IceCube sensors)

Ice properties:10,11

Clear ice has low 
scattering, diffuse 
ice “captures” 
photons

Ice 
type

Depth
Absorption 

Length
Scattering 

Length

diffuse
750-

1050 m
350 m 0.3 m

clear
2150-

2450 m
20-90 m 20-50 m

 Photon propagation:

 diffuse ice: random 

walk

 clear ice: Photonics9

 Event trigger require-

ment: 5 photon hits 

anywhere in detector

 SN trigger require-

ment: ≥ 3 (10)  ν

events within 1–10 s

Fig. 3: Detector viewed 
from above (# of  detected 
photons as function of  
neutrino vertex position)

Backgrounds are challenging, need BG rate ≤4 mHz to get at most 1 fake SN event/year

 Atmospheric muons12: Easily recognized if  through-going. Need outer veto layers (IceCube) against stopping muons. 

Diffuse ice: 14% dead time, clear ice: 0.16% dead time

 Solar neutrinos13: Only νe  that cannot interact via inverse beta decay (IBD), thus elastic scattering on electrons 

(lower x-sec than IBD).14 Can discriminate via energy and direction (latter only in clear ice)

 Atmospheric neutrinos15: νe 

component small, νμ  contrib. via 

invis. µ (under Cherenkov thresh.) 

that decay to visible Michel electrons

 Sensor noise: Needs to be low (few 

Hz). Temporal and spatial pattern of  

signal must be exploited for 

discrimination of  noise, impossible 

in diffuse ice

Fig. 6: Differential event rate (clear ice, 127 strings)

Rates for 127 strings
after noise cuts:

Rate 
[mHz]

Trigger 
5 phot.

Trigger 
7 phot.

Solar νe 28.2 7.9

Atm. νe 0.32 0.27

SN 
Signal

100% 63%

Michel e- 

(atm. νμ)
~1.5 mHz*

Model Nν ≥ 3 Nν ≥ 10

LL 1.0 – 2.0 0.2 – 0.4

TBP 0.5 – 1.0 0.1 – 0.2

Dark 
SN*

0.9 0.1

* = assuming dark SNe occur at 10% of  observed SN rate

Model Nν ≥ 3 Nν ≥ 10

LL 2.3 – 4.6 0.5 – 1.1

TBP 1.1 – 2.2 0.3 – 0.5

Dark 
SN*

2.0 0.3

61 strings (clear ice): 127 strings (clear ice):

Fig. 7: SN detection probability as function of  
SN distance (clear ice, 127 strings, noise cuts 
applied)

 SN detection probability computed from eff. mass in clear ice

(~5 Mtons for 61 strings, ~12 Mtons for 127 strings); see Fig. 7

 Using Fig. 7 and Fig. 1, taking observed as lower and predicted SN 

rate as upper limit, we estimate the number of SN detections per 

year:
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* = SuperK measure-
ment16 scaled up

Fig. 4: Effective mass at trigger level for 
positrons from LL spectrum (61 strings)

 Starting point: 

61 strings

 Diffuse ice: 

high photon 

detection 

prob. due to 

weak abs. and 

strong scatt. 

(solid curve)

 But photon scattering prohibits directional reconstructions 

and discrimination of  noise  diffuse ice no option→

 Clear ice: scaling sensors' photosensitive area up by factor 

2.3 (i.e. ~180 cm2  per sensor), similar performance is 

obtained (dotted curve)

LL SN at 10 Mpc

 Reject events triggered by sensor noise using hit topology

 Eff. mass significantly reduced, low noise rate is crucial!

 Need to ~double number of  strings to 127 for ~10 Mtons

Fig. 5: Effective 
mass before 
and after noise 
cuts for 61 and 
127 strings in 
clear ice (10 
Hz noise per 
optical sensor)
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