Towards an extragalactic supernova neutrino detector at the South Pole

Markus Voge¹*, Sebastian Böser¹, Marek Kowalski¹, Lukas Schulte¹, Nora Linn Strotjohann¹ ¹Physikalisches Institut, Universität Bonn, D-53115 Bonn, Germany * voge@physik.uni-bonn.de

Neutrinos from extragalactic core-collapse supernovae (SNe)

- With today's neutrino observatories, only Galactic SNe (~2–3 per century) visible¹
- Need to extend sensitivity to neighboring galaxies (5–10 Mpc) for a routine detection of ~ 1 SN per year in neutrinos (see Figure 1), this means ~10 Mton detector needed (see below)
- Physics motivation:

Simulation setup

Studied two locations for Cherenkov array in South

Pole ice: shallow **diffuse ice** and deep **clear ice**

ce properties:^{10,11} Clear ice has low scattering, diffuse ce "captures"	lce type	Depth	Absorption Length	Scattering Length
	diffuse	750- 1050 m	350 m	0.3 m
		0150		

- Measure the core-collapse SN rate accurately
- Study the core-collapse mechanism
- Trigger early optical observations of SNe
- Probe for optically dark SNe (see below)
- Set limits on neutrino mass

Fig. 1: Cumulative number of SNe per year, as predicted from star formation rate (red)^{2,5} and as observed (black)^{2,3,4}

Supernova models

These models of SN neutrinos were used:

- Lawrence-Livermore model⁶ (LL): One of the few model calculations leading to an explosion
- **Thompson-Burrows-Pinto model⁷ (TBP):** More recent than LL, but does not lead to an explosion.
- **Dark SNe⁸:** While the collapse of a fast-rotating star with \geq 25 MO leads to a hypernova, a slow-rotating one might collapse to a black hole without emitting photons. These "dark" SNe or failed SNe could be detected with a SN ν detector.

2150-2450 m photons 20-90 m 20-50 m clear

- Strings arranged in hexagonal pattern
- 300 optical sensors on each string (1 sensor per meter), each having an eff. photosensitive area:
- ~78 cm² in diffuse ice (2.4 high QE IceCube sensors)
- ~180 cm² in clear ice (5.5 high QE IceCube sensors)

Photon propagation: • diffuse ice: random 🚆 100

- walk
- clear ice: Photonics⁹
- Event trigger require-
- ment: 5 photon hits anywhere in detector
- SN trigger requirement: \geq 3 (10) v events within 1–10 s

-200 -150 -100 -50 distance [m] Fig. 3: Detector viewed from above (# of detected

> photons as function of *neutrino vertex position)*

Geometry optimization

Backgrounds

- But photon scattering prohibits directional reconstructions and discrimination of noise \rightarrow diffuse ice no option
- **Clear ice:** scaling sensors' photosensitive area up by factor 2.3 (i.e. ~ 180 cm² per sensor), similar performance is obtained (dotted curve)

Backgrounds are challenging, need BG rate ≤4 mHz to get at most 1 fake SN event/year

- Atmospheric muons¹²: Easily recognized if through-going. Need outer veto layers (IceCube) against stopping muons. Diffuse ice: 14% dead time, clear ice: 0.16% dead time
- Solar neutrinos¹³: Only v_{a} that cannot interact via inverse beta decay (IBD), thus elastic scattering on electrons

28.2

0.32

100%

(lower x-sec than IBD).¹⁴ Can discriminate via energy and direction (latter only in clear ice)

Atmospheric neutrinos¹⁵: \boldsymbol{v}_{e} component small, v_{μ} contrib. via Trigger Trigger 5 phot. 7 phot. invis. μ (under Cherenkov thresh.) 7.9 that decay to visible Michel electrons 0.27 • Sensor noise: Needs to be low (few Hz). Temporal and spatial pattern of 63% signal must be exploited for ~1.5 mHz* discrimination of noise, impossible * = SuperK measurein diffuse ice ment¹⁶ scaled up

Noise cuts

- Reject events triggered by sensor noise using hit topology
- Eff. mass significantly reduced, low noise rate is crucial!

Results SN detection rate and detector reach

- SN detection probability computed from eff. mass in clear ice
- (~5 Mtons for 61 strings, ~12 Mtons for 127 strings); see Fig. 7
- LL model, $N_{\nu} \geq 3$ Dark SN model, $N_{\nu} \geq 3$ TBP model, $N_{\nu} \ge 3$ 1.0ţ

1. M. Ikeda, A. Takeda, Y. Fukuda, et al., ApJ 669: 519 (2007) 2. D. J. White, E. J. Daw, V. S. Dhillon, Classical and Quantum Gravity 28:085016 (2011) 3. E. Cappellaro, R. Evans, M. Turatto, A&A 351: 459 (1999) 4. W. Li, R. Chornock, J. Leaman, et al., MNRAS 412: 1473 (2010) 5. S. Horiuchi, J. F. Beacom, C. S. Kochanek, et al., ApJ 738: 154 (2011) 6. T. Totani, K. Sato, H. E. Dalhed, et al., ApJ 496: 216 (1998) 7. T. A. Thompson, A. Burrows, P. A. Pinto, ApJ 592: 434 (2003) 8. L. Yang, C. Lunardini, Phys. Rev. D 84: 063002 (2011)

9. J. Lundberg, P. Mioinovi, K. Woschnagg, et al., NIM A 581: 619 (2007) 10. M. Ackermann, et al., J. of Geoph. Res. 111: D13203 (2006) 11. R. A. Porrata, PhD dissertation, University of California (1997) 12. E. V. Bugaev, et al., Phys. Rev. D 58: 054001 (1998) 13. J. N. Bahcall, et al., Phys. Rev. C 54: 411 (1996) 14. W. Haxton, R. Robertson, Phys. Rev. C 59: 515 (1999) 15. T. Gaisser, T. Stanev, G. Barr, Phys. Rev. D 38: 85 (1988) 16. M. Malek, M. Morii, S. Fukuda, et al., PRL 90: 061101 (2003)

