A Single Photon Sensor employing Wavelengthshifting and Light-guiding Technology

Lukas Schulte¹*, Sebastian Böser¹, Markus Voge¹, Marek Kowalski¹ ¹Physikalisches Institut, Universität Bonn, D-53115 Bonn, Germany

*schulte@physik.uni-bonn.de

Photo Sensors in current Neutrino Detectors

- Always PMT-only with no enhancement of collection area [1, 2]
- Sensitive area is given by PMT area
 - need lots of large high-efficiency PMTs
- PMT noise is proportional to photocathode area [3]
 - want to reduce cathode size
- Peak efficiency of PMTs usually in green or blue wavelength range
 - want to match Cherenkov peak in the UV (ice is UV-transparent)
- In dense arrays, module noise is crucial for energy threshold and energy

Time Resolution and Achievable Efficiency

- Created toy Monte Carlo to simulate photon capture and propagation • use same profile as lab samples (100 x 5 mm)
- Assuming photon conversion efficiency of 86 % for dye [6]

New Wavelength Shifter (WLS) based Design Concept

Fig. 1: Design concept of a Wavelength-shifting Optical Module (WOM)

- Module efficiency $\varepsilon_{tot} = \varepsilon_{\Omega}(\vartheta) \cdot \varepsilon_{WLS}(\lambda) \cdot \varepsilon_{PMT}$
 - Transmission of incident photon into glass vessel \rightarrow calculate • ε_Ω:
 - E_{WLS}:
 - ε_{PMT} : Mean PMT quantum efficiency for WLS output spectrum

Capture efficiency \rightarrow lab measurement

- Cylindrical housing of UVtransparent quartz glass (high radiopurity)
- Sandwich of WLS bars (lownoise organic material)
- captures Cherenkov photons
- and converts them to larger wavelength
- Secondary photons are guided towards readout in end caps
- Readout with small (few cm²) off-the-shelf PMTs
- Dominating noise source: PMT cathode (~10 Hz for 2" PMT)

Light Guide

Angular Efficiency 0.6 us v 0.5 effici 0.3 Irai 0.0 0.5 0.0 0. Cosine of angle to WOM axis -0.50.5

Fig. 5: Transmission into WOM interior (left), definition of angle ϑ (right)

PMT readout

- Probability for a photon to penetrate from surrounding ice into WOM interior
- Assume transition ice $(n = 1.33) \rightarrow$ glass $(n = 1.48) \rightarrow$
 - air (n = 1.0)
- Integrate Fresnel's formulae over all *impact parameters* for given angle ϑ between photon and WOM axis
- Consider three different prototype Hamamatsu PMTs:
 - R7600-UBA (ultra-bialkali cathode)

R9792U MHP119 (GaAsP cathode)

• Calculate ε_{PMT} for both WLS materials by

convolving quantum efficiency with

respective output spectrum

Data provided by Hamamatsu [7]

R7600-EG (enhanced green sensitivity)

Fig. 6: Quantum efficiencies of the considered PMTs

Fig. 2: Setup for measuring the capture efficiency ε_{WLS} of a WLS sample

- Capture efficiency = #incoming photons / #photons detected at short edges
- Accessible wavelength range: ~250 nm to well above 600 nm

Measurements

Fig. 3: Capture efficiency measured for (a) BC-480, (b) BC-482A, and (c) a sandwich of both materials (BC-480 in front)

Noise Budget

- Individual components' contribution:
 - Fused quartz glass housing [8]: 0.02 Bq/kg ≜ 0.5 Bq/m²
 - 0.4 Bq/kg \triangleq 3.5 Bq/m² WLS panel [8]:
 - PMT (bialkali cathode [3]): < 1 Hz/cm² @ -50 °C
- Assuming WOM with R = 10 cm, L = 2 m (A \approx 1.25 m²) and \approx 5 cm² PMT cathode, noise rate of full module is only 10 Hz!

- **Full WLS Optical Module Performance**
 - Multiply ε_{Ω} , ε_{WLS} , and ε_{PMT} to get quantum efficiency of full module
 - Calculate mean quantum efficiency for Cherenkov spectrum ($\sim 1/\lambda^2$ between 300 nm and 600 nm) inciding isotropically

Module	Mean QE [%]	Peak QE [%]	Eff. Area [cm ²]	Noise [Hz]
UBA WOM	1.25	3.18	30.5	≈ 10
EG WOM	1.44	3.86	35.2	≈ 10
GaAsP WOM	2.65	7.86	64.7	106
lceCube DOM	7.10	13.4	19.4	800

- Two WLS materials have been tested (sample size: 1000 x 100 x 5 mm): • BC-480 [4]: UV \rightarrow blue (absorption/emission peak: 395 nm/430 nm) • BC-482A [5]: blue \rightarrow green (absorption/emission peak: 425 nm/495 nm) Peak capture efficiency: 7.5 % (BC-480) and 25 % (BC-482A) • For BC-480, efficiency limited due to strong UV absorption of carrier • For BC-482A, mirror behind WLS sample increases efficiency • sample thickness (5 mm) not optimal, absorption length 3.9±0.3 mm Sandwich has lower efficiency in blue, but higher efficiency in UV absorption inside BC-480 (in front) escaping light from BC-480 bar captured in BC-482A bar
- 300 350 400 450 500 550 600 650 700 Wavelength [nm]

Fig. 7: Full quantum efficiency of a WOM with different PMTs compared to IceCube DOM [1], both at angle of optimal acceptance

- Can construct WOM with 50 75 % larger effective area than IceCube DOM from available components
- Noise rate reduced by almost **two orders of magnitude**
- Large room for improvement by future R&D
- Can learn from other fields of physics, e.g. solar energy [10]

References

1. K. Hanson, O. Tarasova, NIM A 567: 214 (2006) 2. P. Amram et al., NIM A 484: 369 (2002) *3. H. O. Meyer, Europhysics Letters* 89: 58001 (2010) 4. Saint-Gobain Crystals, BC480 data sheet 5. Saint-Gobain Crystals, BC-482A and BC-484 data sheet 6. Eljen Technology, EJ-280 data sheet (equivalent to BC-482A) 7. Hamamatsu Corporation, private correspondence 8. Technical Glass Products

http://www.technicalglass.com/trace_impurities.html

- 9. Saint Gobain Crystals, Low level/low background counting
- 10. M. G. Debije, P. P. C. Verbunt, Adv. Energy Mater. 2: 12 (2012)

