Detection of Electron-Antineutrinos in Double Chooz via the Inverse Beta Decay -Event Signatures, Backgrounds and Results

Martin Hofmann

Physik Department E15 TU Munich

January 22nd, 2013

Double Chooz Detector Setup

Detection Reaction: Inverse Beta Decay

Inverse Beta Decay

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- High Cross Section: $\sigma_{IBD} \approx 9.30 \cdot 10^{-42} \, \left(\frac{E_{\nu}}{10 \, MeV}\right)^2 cm^2$
- Energy threshold: 1.8 MeV
- $\Rightarrow~{\sf E}_{
 u} pprox {\sf E}_{\sf vis} + 0.8\,{\sf MeV}$
 - Subsequent thermalization and capture of the neutron

Neutron Capture

$$n + Gd \rightarrow Gd^* \rightarrow Gd + \sum_i \gamma_i \ (\sim 8 MeV)$$

 $n + H \rightarrow d + \gamma \ (2.2 MeV)$

\Rightarrow Clear event signature (Coincidence in space and time)

Correlated background

- β-n-emitting cosmogenic isotopes like ⁹Li or ⁸He produced by muons in the scintillator
- Fast neutrons, especially after spallation reactions of untagged muons
- Stopping muons entering the detector through the chimney
- (α,n)-reactions in the liquid scintillator

Accidental background

• Accidental coincidences between a positron-like prompt event and a neutron-like delayed event, which are correlated in space and time

Muon-induced Background

Double Chooz: 46 Hz muon rate in InnerVeto

- Cosmogenic Isotopes (⁹Li and ⁸He)
 - Produced in spallation reactions on ¹²C
 - Long half-lives (178.3 ms and 119 ms)
 - $\bullet\,$ Prompt energies up to $\sim 10\,\text{MeV}$
 - Determined with a fit to the $\Delta t_{\mu \textit{IDB}}\text{-distribution of muon-IBD}$ candidate-pairs
 - \Rightarrow Rate: $(1.25\pm0.54)\cdot d^{-1}$

Energy Spectrum of Cosmogenics

Muon-induced Background

Double Chooz: 46 Hz muon rate in InnerVeto

- Cosmogenic Isotopes (⁹Li and ⁸He)
 - Produced in spallation reactions on ¹²C
 - Long half-lives (178.3 ms and 119 ms)
 - $\bullet\,$ Prompt energies up to $\sim 10\,\text{MeV}$
 - Determined with a fit to the $\Delta t_{\mu \textit{IDB}}\text{-distribution of muon-IBD}$ candidate-pairs
 - \Rightarrow Rate: $(1.25\pm0.54)\cdot d^{-1}$

• Fast Neutrons and Stopping Muons

- Produced by untagged muons
- Statistically separable by Δt between prompt and delayed event
- Flat energy spectrum up to tens of MeV
- \Rightarrow Rate (FN): (0.30 \pm 0.14)·d⁻¹
- \Rightarrow Rate (SM): (0.34 \pm 0.18)·d⁻¹

• Rates confirmed during reactor off period

Energy Spectrum of Background (Reactor off period)

Radioactivity-induced Background (BiPo analysis)

	U-chain	Th-chain
mass concentration	$(1.71 \pm 0.08) \cdot 10^{-14} \frac{g}{g}$	$(8.16 \pm 0.49) \cdot 10^{-14} \frac{g}{g}$

- DC design goal (in sum $< 4 \cdot 10^{-13} \frac{g}{g}$) matched very well!
- Internal prompt trigger rate $\sim\!0.4\,Hz{\cdot}m^{-3}$
- \Rightarrow Accidental Coincidences:

 $\begin{array}{ll} (0.261 \pm 0.002) \cdot d^{-1} & \mbox{Gd-analysis} \ (\Delta t < 100 \ \mu s) \\ (73.45 \pm 0.16) \cdot d^{-1} & \mbox{H-analysis} \ (\Delta t < 600 \ \mu s) \end{array}$

- \Rightarrow (α ,n)-reactions: <1.72 \cdot 10^{-2} \cdot d^{-1}
 - Background below $\sim 3 \, \text{MeV}$

Backgrounds (H-analysis)

Double Chooz Final Results on ϑ_{13}

Double Chooz Result

$$\begin{aligned} \sin^2(2\vartheta_{13}) &= 0.109 \pm 0.030(\textit{stat}) \pm 0.025(\textit{syst}) \ (\textit{Gd}) \\ \sin^2(2\vartheta_{13}) &= 0.097 \pm 0.034(\textit{stat}) \pm 0.034(\textit{syst}) \ (\textit{H}) \end{aligned}$$

- Rate+Shape Analyses, Far Detector only
- Two independant analyses of ϑ_{13}

Backup Slides

Measurements of ϑ_{13}

M. Hofmann (TU Munich)

Decay scheme of the BiPo coincidences

- Fast coincidence signal between β^- and α signal, spatially correlated
- $\Rightarrow\,$ Clear signal and easily distinguishable from background
- \Rightarrow Tagging of the number of decays within the U decay chain and the Th decay chain (assuming radioactive equilibrium)