

 ν_{μ}

Benjamin Büttner, Joachim Ebert, Christoph Göllnitz, Caren Hagner, Annika Hollnagel, Jan Lenkeit, Walter Schmidt-Parzefall, Björn Wonsak

The OPERA Experiment

Appearance search:

- First direct observation of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations
- Detection of τ lepton production & decay

Realisation:

- High-intensity long-baseline ν_{μ} beam from CERN to LNGS
- Large target mass ($\lesssim 1.28 \, \mathrm{kt}$):
- ▷ Instrumentation with electronic detector elements (ED)
- μm -precision:
- ▷ Emulsion Cloud Chamber photo emulsions (ECC)

The LNGS Underground Laboratory

LNGS: Laboratori Nazionali del Gran Sasso

- Location: Gran Sasso, Italy
- **Baseline:** \sim 732 km away from the ν_{μ} source at CERN
- Vertical rock coverage: $1\,300\,\mathrm{m}\,(3\,400\,\mathrm{m}\,w.e.)$
- \triangleright Number of cosmic μ : $\sim 1 \,\mathrm{m}^{-2} \mathrm{h}^{-1}$

The CNGS Neutrino Beam

CNGS: CERN Neutrinos to Gran Sasso

3-Flavour Neutrino Oscillations

Mixing of mass and flavour eigenstates:

	Oscillatio	n	
$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \end{pmatrix} \times \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$	Parameters:		
$ \begin{pmatrix} \mu \\ \nu_{\tau} \end{pmatrix} \begin{pmatrix} \mu^{\mu} \\ U_{\tau 1} \end{pmatrix} \begin{pmatrix} \mu^{\mu} \\ U_{\tau 2} \end{pmatrix} \begin{pmatrix} \mu^{\mu} \\ U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{\tau} \\ \nu_{3} \end{pmatrix} $	$ \Delta m^2_{32} $	$(2.32^{+0.12}_{-0.08}) \ imes 10^{-3} { m eV^2}$	
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix:	Δm_{21}^2	$\begin{array}{c} (7.50\pm 0.20) \\ \times 10^{-5} {\rm eV}^2 \end{array}$	
$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} e^{i\epsilon_{1}/2} & 0 & 0 \\ 0 & e^{i\epsilon_{2}/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\sin^2(2 heta_{23})\ \sin^2(2 heta_{12})\ \sin^2(2 heta_{13})$	> 0.95 0.857 ± 0.024 0.098 ± 0.013	
Atmospheric terms Unknown terms Solar terms Majorana terms SuperKamiokande DoubleChooz,T2K KamLAND MINOS, OPERA	δ	?	

OPERA Expected Performance

 $(22.5 \times 10^{19} p.o.t., \Delta m_{23}^2 = 2.5 \times 10^{-3} \, {\rm eV}^2)$

CC + NC interactions: 23600	au decay channel	BR [%]	Number of signal events	Number of BG events
	$\tau^- ightarrow \mu^-$	17.7	1.79	0.09
+ ν_e CC interactions:	$ au^- ightarrow e^-$	17.8	2.89	0.22
160	$ au^- ightarrow h^-$	49.5	2.25	0.24
CC interactions:	$ au^- ightarrow 3h$	15.0	0.71	0.18
115				
	Total		7.63	0.73

ν_{τ} Detection

 ν_{τ} signal:

- τ creation:
- ν_{τ} CC reactions: $\nu_{\tau} + N \rightarrow \tau^{-} + X$
- au decay modes (1-prong):
- Muonic: $\tau^- \rightarrow \mu^- + \nu_\tau + \overline{\nu}_\mu$
- Electronic: $\tau^- \rightarrow e^- + \nu_\tau + \overline{\nu}_e$
- Hadronic: $\tau^- \rightarrow h^- + \nu_\tau + X^0$
- τ decay modes (3-prong):
- Hadronic: $\tau \rightarrow 2h^- + h^+ + \nu_{\tau} + X^0$

τ decay length:

• $\sim 600 \,\mu \mathrm{m}$

ED Event Reconstruction

• ν_{τ} CC interactions and τ^{-} lepton decay with 'kink' topology:

Background processes:

• ν_{μ} CC reactions with charm production & undetected 1ry μ :

- Hadronic re-interactions in lead
- Large-angle μ scattering

ECC Event Reconstruction

	•	100 m	992 m	18.2 m 5 m 6	37 m 5 m
	1				
year	p.o.t.	$\# \nu$ interactions		$\langle E_p \rangle$	$400{\rm GeV}$
2008	$1.78 imes10^{19}$	1698		$\langle E_{\nu} \rangle$	$17{ m GeV}$
2009	$3.52 imes10^{19}$	3557			
2010	$4.04 imes10^{19}$	3912		$ u_e/ u_\mu$ (CC)	0.89 %
2011	$4.84 imes10^{19}$	4210		$\overline{\nu}_{\mu}/\nu_{\mu}$ (CC)	2.1%
2012	$3.89 imes10^{19}$	3680		$\overline{\nu}_{e}/\nu_{\mu}$ (CC)	0.06 %
				$ u_{ au}/ u_{\mu}$ (CC)	$< 10^{-4}$ %
Total	$18.1 imes10^{19}$	17057			

The OPERA Detector

2 identical Super Modules (SM), each consisting of:

- Target area
- Magnetic spectrometer, downstream of the target area

Magnetic Spectrometer

- Dipole Magnets: $1.55\,\mathrm{T}$
- Resistive Plate Chambers (RPC & XPC)
- Precision Trackers (PT): $\sim 10\,000$ drift tubes (80% Ar, 20% CO₂), built by the Hamburg group

Target Area

- Target Trackers (TT): 31 walls of horizontal and vertical scintillator strips
- Each ECC brick: 57×2 photo emulsions on plastic bases, 56 lead plates
- In total: $\sim 150\,000$ bricks of 8.3 kg lead each $(\sim 1.28 \, \mathrm{kt} \, \mathrm{target} \, \mathrm{mass})$

The First ν_{τ} Candidate Events

A ν_e Event

OPERA Publications of Note

- N. Agafonova et al. [OPERA Collaboration], "Search for $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation with the OPERA experiment in the CNGS beam", New J. Phys. 14 (2012) 033017
- N. Agafonova et al. [OPERA Collaboration], "Study of neutrino interactions with the electronic detectors of the OPERA experiment", New J. Phys. 13 (2011) 053051
- N. Agafonova et al. [OPERA Collaboration], "Observation of a first ν_{τ} candidate event in the OPERA experiment in the CNGS beam", Phys. Lett. B 691 (2010) 138-145
- N. Agafonova et al. [OPERA Collaboration], "Measurement of the atmospheric muon charge ratio with the OPERA detector", Eur. Phys. J. C 67 (2010) 25-37
- N. Agafonova et al. [OPERA Collaboration], "The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment", JINST 4 (2009) P06020
- R. Acquafredda *et al.* [OPERA Collaboration], "The OPERA experiment in the CERN to Gran Sasso neutrino beam", JINST 4 (2009) P04018
- R. Zimmermann et al., "The precision tracker of the OPERA detector", NIMA 555 (2005) 435

The OPERA Collaboration **Belgium:** Italy: Israel: **Russia:** IIHE-ULB Bruxelles • Bari Technion Haifa INR RAS Moscow LPI RAS Moscow Croatia: Bologna Japan: IRB Zagreb ITEP Moscow Frascati Aichi University SINP MSU Moscow • Toho University I'Aquila France: • JINR Dubna LAPP Annecy Naples • Kobe University Nagoya University IPHC Strasbourg Padova Switzerland: Roma Utsunomiya University Germany: Bern University Hamburg University Salerno Korea: Turkey: Jinju University METU Ankara

Universität Hamburg, Institut für Experimentalphysik