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Long baseline neutrino oscillations

Physics goals

I Determination of the
mass hierarchy

I Measurement of the
CP-violating phase δCP

Detector requirements

I Good energy resolution
I Large target mass and cheap target material
I Capability to discriminate between νµ-CC, νe-CC and
νx -NC interactions
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Current situation for LENA
NC background discrimination

I Based on multivariate analysis (boosted decision trees)
I Input parameters from overall photon pulse shape
I Only first photon time and total charge on each PMT used
I Time of flight correction w.r.t. charge barycenter

Sensitivity (2300km, 1020POT/a)
Mass Hierarchy δCP

GLoBES plots by Sebastian Lorenz, Universität Hamburg 4 / 25



How to improve the situation

I The arrival times of the photons on the individual PMTs
contains important information

⇒ Go beyond the overall pulse shape
⇒ Use the hit pattern to reconstruct general event structure
⇒ Additional input parameters for multivariate analysis
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Basic considerations for LSc detectors

Problem: Scintillation photons are emitted isotropically

⇒ No directional information from the charge distribution
⇒ Use photons’ arrival times for track reconstruction

General idea

I Isotropic emission over total
track length

I Superposition of spherical
”waves“ leads to first photon
cone

I The shape of the cone
contains information about the
track direction
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Basics
Requirements

I Obtain bubble chamber like images
I Do not require any input knowledge
⇒ Goal: Get basic picture of an event

General idea
I Use only PMTs with a high charge
⇒ The first detected photon on each PMT is emitted instantly
⇒ The first detected photon on each PMT is not scattered

⇒ Time resolution dominated by PMTs
I Photons from a point source in the detector cluster in time

after taking the photon TOF into account

This algorithm is currently developed by Kai Loo (University of
Jyväskylä)
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Algorithm I

1. Choose a point to qualify whether a track was there: xg

2. Create a vector with the TOF-corrected hit times w.r.t. xg :
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Algorithm II

3. Calculate:

h(xg , t) =
NPMT∑
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(t − t tof corr
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Algorithm III

4. Calculate:
∣∣h(xg , t)
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5. The figure of merit is:

fFCN(xg) =

∞∫
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|h(xg , t)|2dt
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Capabilities

I µ−

I 1GeV
I Origin (0,0,0)
I Direction (-1,0,0)

I Only first hit information
used

I 2 µ−
I 1GeV each
I Origin (0,0,0)
I Enclosed angle 45◦

I Multi-hit information used
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Basics
Assumption

I One reference point on/near track known (r0, t0).

Allowed photon emission points
I (t − t0)c = dT + n · dP
I All allowed photon

emission points re are
I on an ellipsoid (n = 1)
I on a drop-like surface

(n 6= 1)
I Drop surfaces are

smeared due to
PMT-resolution and
scintillator decay time

I Superimposing all
smeared drop surfaces
reveals the track

Invented and developed by Björn Wonsak (Universität Hamburg) 14 / 25



Results for LENA
I 2 µ−, 750MeV each, enclosed angle 90◦.
I Full hit information used
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Ridge line analysis
I Tracks should show up as a ridge
⇒ Take only bins with more than 17 smaller neighbors
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Application to CNGS-µ− in Borexino
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Application to CNGS-µ− in Borexino
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Basics

Assumption

I There is at least one model for the event (1 track, 2 tracks,
particle types . . . )

Likelihood fitting

I Determine free parameters of model: x .
I Obtain a set of seed parameters for the fit

(→ Input from other tracking mechanisms)
I Calculate PDF for photon arrival times and charge:

P(t ,q|x)
I Maximize likelihood L(x |t ,q) = P(t ,q|x) w.r.t. x ⇒ x̂ .
I Distinguish different models by taking the model with the

highest L(x̂ |t).
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Considerations for calculating the PDF
I Mean number of photons emitted per unit track length
I Particle/shower propagation in time
I Time resolution of the PMTs
I Finite dimensions of the PMTs
I Winston Cone acceptance function
I Decay time distribution of the scintillator
I Absorption/scattering of photons in the scintillator

(changes both the number of detected photons as well as
their arrival times, have to use MC input)
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Comparison of calculated time PDF with Geant4

I Good agreement for total spectrum as well as for first-hit
spectrum

I Agreement gets worse for lower energies as tracks deviate
from straight line.
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500MeV muons
Sample

I Simulation: 1000 µ− from (0,0,0) along negative x-axis
I Require an identified muon decay with decay time > 500ns

Results
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Multi track fitting
2 µ− with 500MeV each, enclosed angle 45◦

I Currently uses MC-truth as seed.
I Vertex resolution (in 1 direction) ≈ 4cm
I Energy resolution of each track ≈ 4%

I Charge no longer strongly constrains energy
I Energy of track determined from its length
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Conclusion

Current status
I Three approaches to reconstruct spatially extended events

in LENA
I All algorithms work on muon events
I Two algorithms are currently tested on muons in Borexino.

Outlook
I Connect the algorithms: Use the result of one algorithm as

input to the next algorithm.
I Extend the algorithms to be applied to full neutrino events
I Use the gathered information to improve the LENA beam

performance
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Thank you for your attention!



LENA Migration matrices
Simulation

I Neutrino events created with GENIE
I Detector simulation using GEANT4
I Simplified set-up with ∼ 10000 PMTs
I Analysis uses only total charge and position of barycenter
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Resolution Start Point Wonsack’s tracking
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Application CNGS-µ− in Borexino
Complications

I No flash ADCs⇒ Only first hit information
I PMTs/Electronics in saturation⇒ No charge information
⇒ No charge barycenter available
⇒ Getting reference point challenging

Strategy

I Construct reference point
1. For each spatial point, calculate required time correction
2. Histogram time corrections
3. Take point with overall highest bin

I Construct last point on reconstructed track
I Use this point to track backwards in time
I Use the first point on the backwards track as reference

point for final fit
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Resolution w.r.t. Borexino tracking
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Single muon tracking
I Divide event in time snapshots and propagate the PMT

pulses backwards to this time.
I Follow maximum
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Beam performance input
parameters

Sebastian Lorenz, Universität Hamburg
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General setupGeneral setup
 GLoBES simulation

 50 kt LAB LSc detector

 X-secs simulated with GENIE for carbon and 
hydrogen

 5% systematic error for signal and background

 Migration matrices for νe CC, νμ CC and NC events 

 ντ CC events not included
→ migration matrices in preparation

 90% efficiency for νμ CC + efficiency decreases linearly 
between 3 and 7 GeV



  

Oscillation parameters and priors

ParameterParameter ValueValue ErrorError
θ12 33.8° 5%

θ
13

9.1° 7%

θ23
45° 10%

Δm2
12

 [eV2] 7.5x10-5 3%

Δm2
23 

[eV2] 2.5x10-3 5%

δ
CP

changed free

ρ
mass

PREM 5%



  

Neutrino beamsNeutrino beams
CERN to Pyhäsalmi (CN2PY) Protvino to Pyhäsalmi (P2PY)

 Based on LBNO EOI

 400 GeV protons

 1x1020 POT / yr
(shared mode)

 Baseline: 2288 km

 Used „official“ 50 GeV 
spectrum and rescaled

 70 GeV protons

 4.01x1020 POT / yr 
→ 450 kW

 Baseline: 1160 km



  

Neutrino mass hierarchy INeutrino mass hierarchy I

CERN to Pyhäsalmi (CN2PY) Protvino to Pyhäsalmi (P2PY)

Simulated: normal mass hierarchy 
Fitted: inverted mass hierarchy

Different scales!



  

Neutrino mass hierarchy IINeutrino mass hierarchy II

CERN to Pyhäsalmi (CN2PY) Protvino to Pyhäsalmi (P2PY)

Simulated: normal mass hierarchy 
Fitted: inverted mass hierarchy

Different scales!



  

CP phase ICP phase I

CERN to Pyhäsalmi (CN2PY) Protvino to Pyhäsalmi (P2PY)

Simulated: different true values of δCP

Fitted: δCP = 0° and δCP = 180°



  

CP phase IICP phase II

CERN to Pyhäsalmi (CN2PY) Protvino to Pyhäsalmi (P2PY)

Simulated: different true values of δCP

Fitted: δCP = 0° and δCP = 180°
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