Nuclear reactions, solar neutrinos, and the importance of the CNO cycle

522. Wilhelm und Else Heraeus Seminar:

Exploring the neutrino sky and fundamental particle physics on the Megaton scale

Bad Honnef, 23.01.2013

Daniel Bemmerer

Nuclear Astrophysics Virtual Institute

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

The solar abundance problem:

Contradiction between solar abundances and helioseismology

New, 3-dimensional models of the photosphere lead to lower derived elemental abundances:

1D: 2.29% (by mass) of the Sun are "metals" (Li...U)

3D: 1.78% (by mass) of the Sun are "metals" (Li...U)

Mitglied der Helmholtz-Gemeinschaft

Nuclear reactions, solar neutrinos, and the importance of the CNO cycle

- 1. Which nuclear reactions take place in the Sun?
- 2. Can solar neutrinos address the solar abundance problem?
- 3. The nuclear physics of the proton-proton chain (pp chain)
- 4. The nuclear physics of the carbon-nitrogen-oxygen cycle (CNO cycle)
- 5. The science case for new underground accelerators

The proton-proton chain (pp chain) of hydrogen burning

The carbon-nitrogen-oxygen (CNO) cycle of hydrogen burning

Nuclear reactions, solar neutrinos, and the importance of the CNO cycle

- 1. Which nuclear reactions take place in the Sun?
- 2. Can solar neutrinos address the solar abundance problem?
- 3. The nuclear physics of the proton-proton chain (pp chain)
- 4. The nuclear physics of the carbon-nitrogen-oxygen cycle (CNO cycle)
- 5. The science case for new underground accelerators

Solar neutrino fluxes: Data and model predictions

Daniel Bemmerer | Nuclear reactions and solar

Neutrino Energy in MeV

What drives the uncertainties in the predicted fluxes?

Uncertainty contributed to neutrino flux, in percent

Antonelli et al., 1208.1356

Nuclear reaction rates are the largest contributor to the uncertainty!

Using CNO neutrinos to measure the C+N abundance

Flux ratio is mainly sensitive to

- 1. Elemental abundances of C and N
- 2. Nuclear physics S-factors

and insensitive to other elemental abundances, luminosity, opacity, ...

Mitglied der Helmholtz-Gemeinschaft

"Mainstream" recommended cross sections: Adelberger *et al.*, Rev. Mod. Phys. 83, 195 (2011) "Solar Fusion II"

REVIEW OF MODERN PHYSICS, VOLUME 83, JANUARY-MARCH 2011

Solar fusion cross sections. II. The *pp* chain and CNO cycles

E.G. Adelberger, A. García, R.G. Hamish Robertson, and K.A. Snover

Department of Physics and Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA

A. B. Balantekin, K. Heeger, and M. J. Ramsey-Musolf

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA

D. Bemmerer and A. Junghans

Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany

C.A. Bertulani

Large community involvement

 Recommended cross section factors and uncertainties

Mitglied der Helmholtz-Gemeinschaft

Workshop at INT Seattle (2009)

Department of P	hysics and Astronomy	Toyas A&M	Iniversity										
Commerce, Tex	TABLE I. The Solar Fusion II recommended values for $S(0)$, its derivatives, and related quantities, and for the resulting uncertainties on $S(E)$ in the region of the solar Gamow peak—the most probable reaction energy—defined for a temperature of 1.55×10^7 K characteristic of												
JW. Chen	the Sun's center. See the text for detailed discussions of the range of validity for each $S(E)$. Also see Sec. VIII for recommended values of												
Department of I	CNO electron-capture rates, Sec. XI.B for other CNO S factors, and Sec. X for the ⁸ B neutrino spectral shape. Quoted uncertainties are 1σ .												
and Particle Asi			S(0)	S'(0)	<i>S''</i> (0)	Gamow peak							
H. Costantini a	Reaction	Section	(keV b)	(b)	(b/keV)	uncertainty (%)							
Università di Ge	$p(p, e^+ \nu_e)d$	III	$(4.01 \pm 0.04) \times 10^{-22}$	$(4.49 \pm 0.05) \times 10^{-24}$		± 0.9							
	$d(p, \gamma)^3$ He	IV	$(2.14^{+0.17}_{-0.16}) imes 10^{-4}$	$(5.56^{+0.18}_{-0.20}) \times 10^{-6}$	$(9.3^{+3.9}_{-3.4}) imes 10^{-9}$	±7.1 ^a							
M. Couder, E.	${}^{3}\text{He}({}^{3}\text{He}, 2n)^{4}\text{He}$	V	$(5.21 \pm 0.27) \times 10^3$	-4.9 ± 3.2	$(2.2 \pm 1.7) \times 10^{-2}$	±4.3 ^a							
Department of I	3 He(4 He, γ) 7 Be	VI	0.56 ± 0.03	$(-3.6 \pm 0.2) \times 10^{-4}$ b	$(0.151 \pm 0.008) \times 10^{-6}$ ^c	±5.1							
Notre Dame, In	${}^{3}\text{He}(p, e^{+}\nu_{e}){}^{4}\text{He}$	VII	$(8.6 \pm 2.6) \times 10^{-20}$			±30							
B Cyburt	$^{7}\text{Be}(e^{-}, \nu_{e})^{7}\text{Li}$	VIII	See Eq. (40)			± 2.0							
III. Oyburt	$p(pe^{-}, \nu_{a})d$	VIII	See Eq. (46)	• • •	•••	± 1.0 ^d							
East Lansing, N	$^{7}\mathrm{Be}(p,\gamma)^{8}\mathrm{B}$	IX	$(2.08 \pm 0.16) \times 10^{-2} e$	$(-3.1 \pm 0.3) \times 10^{-5}$	$(2.3 \pm 0.8) \times 10^{-7}$	±7.5							
0,	$^{14}N(p, \gamma)^{15}O$	XI.A	1.66 ± 0.12	$(-3.3 \pm 0.2) \times 10^{-3}$ b	$(4.4 \pm 0.3) \times 10^{-5}$ c	±7.2							
B. Davids	τ.(p, γ) σ												
TRIUMF, 4004 Wesbrook Mall, Vancouver, British C													
			$+ {}^{12}C(p, \gamma){}^{13}N$	¹⁶ O(p,y) ¹⁷ F	concept								

S.J. Freedman

Nuclear reactions, solar neutrinos, and the importance of the CNO cycle

- 1. Which nuclear reactions take place in the Sun?
- 2. Can solar neutrinos address the solar abundance problem?
- 3. The nuclear physics of the proton-proton chain (pp chain)
- 4. The nuclear physics of the carbon-nitrogen-oxygen cycle (CNO cycle)
- 5. The science case for new underground accelerators

⁷Be and ⁸B neutrinos and the proton-proton chain: $S_{34} = {}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$

Daniel Bemmerer | Nuclear reactions and solar neutrinos | Bad Honnef, 23.01.2013 | http://www.hzdr.de

Nuclear reaction cross section σ for low-energy charged particles

Daniel Bemmerer | Nuclear reactions and solar neutrinos | Bad Honnef, 23.01.2013 | http://www.hzdr.de

At which energies do the reactions take place in a plasma?

Daniel Bemmerer | Nuclear reactions and solar neutrinos | Bad Honnef, 23.01.2013 | http://www.hzdr.de

YES, direct measurements are possible! LUNA 0.05 MV accelerator, 1992-2001

- 50 kV accelerator deep underground
- Direct experimental data ruled out a possible nuclear solution for the solar neutrino problem
- Solar Gamow peak covered with data

³He(³He,2p)⁴He cross section, at the branch between pp-chains I and II

Daniel Bemmerer | Nuclear reactions and solar neutrinos | Bad Honnef, 23.01.2013 | http://www.hzdr.de

LUNA laboratory at Gran Sasso / Italy today

~1400 m rock $10^6 \mu$ -reduction $10^3 n$ -reduction

The LUNA 0.4 MV accelerator deep underground

LUNA = Laboratory Underground for Nuclear Astrophysics

- Italy
- Germany (Bochum, Dresden)
- Hungary
- · UK

LUNA approach: Measure nuclear reaction cross sections at or near the relevant energies (= Gamow peak), using

- high beam intensity
- low background
- great patience

Daniel Bemmerer | Nuclear reac

³He(α,γ)⁷Be experiment at LUNA (activation and prompt- γ technique)

³He(α,γ)⁷Be at LUNA, ⁷Be activation spectra

³He(α , γ)⁷Be at LUNA, systematic uncertainty

Mitglied der Helmholtz-Gemeinschaft

1.8%

1.5%

1.5%

0.7%

3.0%

3.6%

³He(α , γ)⁷Be reaction, S-factor results from LUNA and others

Further improvements require a comprehensive data set covering both low and high energies with one technique.

Byproduct: The Spite abundance plateau and the lithium problem(s)

- ⁷Li production mainly by ³He(α , γ)⁷Be \rightarrow ⁷Li LUNA data rules out a nuclear solution for the ⁷Li problem.
- ⁶Li production mainly by the ²H(α,γ)⁶Li reaction ...under study at LUNA.

Nuclear reactions, solar neutrinos, and the importance of the CNO cycle

- 1. Which nuclear reactions take place in the Sun?
- 2. Can solar neutrinos address the solar abundance problem?
- 3. The nuclear physics of the proton-proton chain (pp chain)
- 4. The nuclear physics of the carbon-nitrogen-oxygen cycle (CNO cycle)
- 5. The science case for new underground accelerators

The CNO cycle of hydrogen burning and its neutrinos

$^{14}N(p,\gamma)^{15}O$, bottleneck of the CNO cycle, and ^{15}O neutrinos

Mitglied der Helmholtz-Gemeinschaft

LUNA divided the ${}^{14}N(p,\gamma){}^{15}O$ cross section by 2!

Outlook on new experimental data on ${}^{14}N(p,\gamma){}^{15}O$

- The S-factor is the sum of several components with very different energy dependence.
- New cross section data between 0.4 and 2.0 MeV are needed!
- This requires a high-intensity, low background accelerator with a few MeV energy range.

Mitglied der Helmholtz-Gemeinschaft

Experiment on the CNO cycle at the 3.3 MV Tandetron, HZDR

Phys. Rev. C 81, 055807 (2010): Resonance strengths

Louis Wagner et al., new experiment (January 2013): Off-resonance cross section

	Literature [23, 49]		Present			Literature
Reaction	$E_{\rm p}~[{\rm keV}]$	$\Gamma_{\rm lab}~[{\rm keV}]$	$\omega \gamma_i / \omega \gamma_{278}$		$\omega\gamma ~[{\rm eV}]$	$\omega\gamma ~[{ m eV}]$
$^{14}\mathrm{N}(\mathrm{p}{,}\gamma)^{15}\mathrm{O}$	278	1.0	! =1		Reference	$0.0131 \pm 0.0006 \ [21]^a$
$^{14}\mathrm{N}(\mathrm{p}{,}\gamma)^{15}\mathrm{O}$	1058	3.9^{b}	$27.5 {\pm} 0.9$		$0.360 {\pm} 0.020$	$0.31{\pm}0.04$ [22]
$^{15}\mathrm{N}(\mathrm{p},\!\alpha\gamma)^{12}\mathrm{C}$	897	1.57	$(2.77 \pm 0.11) \cdot 10$	1	362 ± 22	$293{\pm}38$ [59]
$^{15}\mathrm{N}(\mathrm{p},\alpha\gamma)^{12}\mathrm{C}$	430	0.1	$(1.73 \pm 0.08) \cdot 10$	3	22.7 ± 1.5	$21.1{\pm}1.4$ [44]
	-			DRE	ESDEN	1708

concept

Lifetime of the 6.792 MeV level in ¹⁵O studied at AGATA demonstrator

DRESDEN

- Subthreshold level populated in ¹⁴N(d,n)¹⁵O reaction
- Upper limit for lifetime in the fs range
- C. Michelagnoli, R. Depalo et al. (INFN Padua)

Mitglied der Helmholtz-Gemeinschaft

Byproduct: Age determination of very old stars (in globular clusters)

- → Hertzsprung-Russel diagram, turnoff of globular cluster stars from the main sequence
- \rightarrow Lower CNO rate leads to higher derived age for a given globular cluster
- \rightarrow Independent lower limit for the age of the universe of 14±2 Ga

¹³N neutrinos and the ¹²C(p, γ)¹³N and ¹⁴N(p, γ)¹⁵O reactions

Double-peaked source distribution for ¹³N neutrinos

Mitglied der Helmholtz-Gemeinschaft

The ${}^{12}C(p,\gamma){}^{13}N$ reaction, starting point of the CNO cycle

- No experimental data at or near the solar Gamow peak
- Existing data near *E* = 0.1 MeV are from the 1950's
- Adelberger et al. 2011 cites 17% uncertainty
- New data at low and high energy are needed!

Mitglied der Helmholtz-Gemeinschaft

Slide 33

¹⁷F neutrinos and the ¹⁶O(p, γ)¹⁷F reaction (1)

- Q(β⁺, ¹⁷F) = 2.761MeV very close to ¹⁵O Q-value
- Lifetime $\tau(^{16}O) = 2*10^{10} a > age of the Sun$
- ¹⁶O supply is dominated by ¹⁶O pre-existing in the Sun, independent of CNO-1 cycle

17**F**

18**F**

¹⁷F neutrinos and the ¹⁶O(p, γ)¹⁷F reaction (2)

- No experimental data at the solar Gamow peak
- High-energy data are extrapolated using direct-capture model
- Adelberger et al. 2011 cites 8% uncertainty
- Measurable impact only if ¹⁷F and ¹⁵O neutrinos can be separated
- New data at low and medium energy needed!

Nuclear reactions, solar neutrinos, and the importance of the CNO cycle

- 1. Which nuclear reactions take place in the Sun?
- 2. Can solar neutrinos address the solar abundance problem?
- 3. The nuclear physics of the proton-proton chain (pp chain)
- 4. The nuclear physics of the carbon-nitrogen-oxygen cycle (CNO cycle)
- 5. The science case for new underground accelerators

Mitglied der Helmholtz-Gemeinschaft

Motivation for a higher-energy underground accelerator

- Many reactions cannot be studied with a 0.4 MV accelerator alone.
 - Solar fusion reactions
 - Stellar helium and carbon burning
 - Neutron sources for the astrophysical s-process
- A new, higher-energy underground accelerator is needed!

Rock overburdens for new underground accelerators

Gran Sasso / Italy: LUNA-upgrade 3.5 MV accelerator

Mitglied der Helmholtz-Gemeinschaft

In a very low background environment such as LNGS, it is mandatory not to increase the neutron flux above its average value

 $^{13}C(\alpha,n)^{16}O$

a beam intensity: 200 µA Target: ¹³C, 2 10¹⁷at/cm² (99% ¹³C enriched) Beam energy(lab) ≤ 0.8 MeV

 $^{22}Ne(\alpha,n)^{25}Mg$

a beam intensity: 200 µA Target: ²²Ne, 1 10¹⁸at/cm² Beam energy(lab) ≤ 1.0 MeV

from ${}^{12}C(\alpha,\gamma){}^{16}O$ $^{13}C(\alpha, n)^{16}O$

a beam intensity: 200 μ A Target: ¹³C, 1 10¹⁸at/cm² (¹³C/¹²C = 10⁻⁵) Beam energy(lab) \leq 3.5 MeV

- Maximum neutron production rate : 2000 n/s
- Maximum neutron energy (lab) : 5.6 MeV
- 1m thick borated polyethylene shielding will be added on all sides (also against the rock)
- Additional neutron flux outside LUNA-MV will be <1% of ambient neutron flux

Mitglied der Helmholtz-Gemeinschaft

Dresden, former Felsenkeller brewery

- Existing γ-counting facility
- Additional space available underground
- Background 3 times worse than LUNA
- Great interest by students and the public

- 12-year old, working 5 MV accelerator
- Bought off an insolvent spin-off of York Univ.
- 250 µA upcharge current (double pellet chains)
- Two Cs sputter ion sources: 100 µA H⁻ and C⁻
- Well-suited for low-energy nuclear astrophysics

HZDR (Daniel Bemmerer et al.), TU Dresden (Kai Zuber et al.)

- Solar fusion reactions: CNO cycle
- Carbon burning in type la supernova precursors
- User-driven, applied physics also OK
- Educational tool to teach low-background methods and maintain nuclear competence
- We hope to have it available end of 2013!

Nuclear reactions, solar neutrinos, and the importance of the CNO cycle

- New nuclear reaction data are necessary for pp-chain and CNO-cycle, as a precondition to solve the solar abundance problem
- Precision studies of light, stable-ion nuclear reactions require intensive ion beams in a low-background environment
- Underground Mega-ton neutrino detectors need underground Mega-volt accelerators

Mitalied der Helmholtz-Gemeinschaft

Backup slides

Mitglied der Helmholtz-Gemeinschaft

3D versus 1D model atmospheres: Center to limb variation in intensity

Mitglied der Helmholtz-Gemeinschaft

3-dimensional models of the photosphere lead to lower derived abundances:

1D: 2.29% (by mass) of the Sun are "metals" (Li...U)

3D: 1.78% (by mass) of the Sun are "metals" (Li...U)

³He(α , γ)⁷Be at LUNA, in-beam γ -spectra

Stellar helium burning

- After exhaustion of hydrogen fuel in the core, core helium burning (and shell hydrogen burning) start
- ¹²C produced by ⁸Be(α,γ)¹²C (triple- α reaction)
- ¹²C destroyed by ¹²C(α,γ)¹⁶O (triple- α reaction)
- Main end products ¹²C, ¹⁶O
- Paves the way for the production of neutrons, via ${}^{14}N(\alpha,\gamma){}^{18}F \rightarrow {}^{18}O(\alpha,\gamma){}^{22}Ne \rightarrow {}^{22}Ne(\alpha,n){}^{25}Mg$
- Paves the way for the production of fluorine, via ${}^{15}N(\alpha,\gamma){}^{19}F$

 ${}^{14}N(\alpha,\gamma){}^{18}F \rightarrow {}^{18}O(p,\alpha){}^{15}N \rightarrow {}^{15}N(\alpha,\gamma){}^{19}F$

¹³N

¹²C

The ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction, determining the ${}^{12}C/{}^{16}O$ ratio

Daniel Bemmerer | Nuclear reactions and solar neutrinos | Bad Honnef, 23.01.2013 | http://www.hzdr.de

The two astrophysical neutron source reactions

Mitglied der Helmholtz-Gemeinschaft

Electron capture on CNO nuclides (Stonehill et al. 2004)

Background, in a typical HPGe detector for nuclear astrophysics

- → Felsenkeller: Combination of active veto and 47m rock gives a background close to the deep-underground background at 6-8 MeV.
- Explanation: Environmental (α,n) neutrons dominate the deepunderground background.

T. Szücs et al., Eur. Phys. J. A 48, 8 (2012)

⁴⁰Ca(α , γ)⁴⁴Ti activation experiment, offline spectra from Felsenkeller

