Chiral Condensate and Topological Susceptibility for twisted mass fermion at maximally twisted mass

(6)

(8)

(9)

(10)

10/12

06/12

01/12

Motivation

RADUIERTEN

Masse-Spektrum-Symmetrie

OLLEG

1 Very important properties of QCD are the **chiral symmetry and its spontaneous breaking**, which is manifested by a non zero value of the chiral condensate, the order parameter of chiral symmetry. In order to study the low energy properties of QCD, such as chiral symmetry breaking, we need a non perturbative regularization. In our case we use Lattice QCD which is characterized by the path integral representation of Green functions in a Euclidean space time discretized lattice. Thus an observable is represented by:

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int DA_{\mu} D\psi D\bar{\psi} \mathcal{O} e^{-S_{\text{gauge}} + S_{\text{ferm}}}$$
(1)

2 The **Banks-Casher relation** connects the chiral condensate Σ with the density of eigenmodes at the origin of the spectrum and thus with the infrared properties of the Dirac operator.

$$\frac{2}{\pi} = \lim_{\lambda \to 0} \lim_{m \to 0} \lim_{V \to \infty} \rho(\lambda, m)$$
(2)
$$-\lim_{m \to 0} \lim_{V \to \infty} \langle \bar{u}u \rangle, \qquad \rho(\lambda, m) = \frac{1}{V} \sum_{k \to \infty} \langle \delta(\lambda - \lambda_k) \rangle$$
(3)

Spectral Projector method

1 A new method was introduced by [Giusti & Lüscher, 2009] to compute $\nu(M, m)$ decreasing considerably the computational effort required.

$$\nu(M, m_q) = \langle \operatorname{Tr}\{\mathbb{P}_M\} \rangle$$

In this way $\nu(M,m)$ can be defined as the trace of \mathbb{P}_M which can be approximated by a rational function of $D^{\dagger}D$.

Specifically an approximation to \mathbb{P}_M can be given by the function $h(\mathbb{X})$ which approximates the step function $\theta(-x)$ in the interval [-1,1] as $\mathbb{P}_M \approx h(\mathbb{X})^4$

$$h(x) = \frac{1}{2} \{1 - xP(x^2)\}, \qquad \mathbb{X} = 1 - \frac{2M_{\star}^2}{D_m^{\dagger}D_m + M_{\star}^2}$$

2 We introduce a set of pseudo-fermions fields η_k which is generated randomly for each

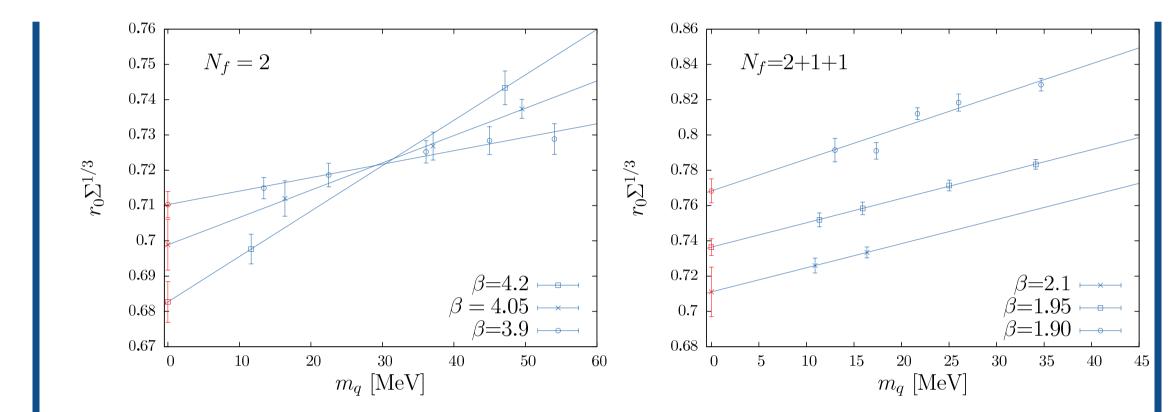
Only when the eigenvalue density $\rho(\lambda, m)$ is non-zero at the origin, the chiral condensate does not vanish and hence the infrared properties of the Dirac operator are directly related to the mechanism of chiral symmetry breaking.

3 We calculate the **chiral condensate through the study of the mode number** ν , a more convenient quantity to compute and directly related to the spectral density. $u \rightsquigarrow \text{average number of eigenmodes of } D^{\dagger}_{m}D_{m} \text{ with } \lambda \leq M^{2}.$ $\nu(M,m) = V \int_{-\Lambda}^{\Lambda} d\lambda \rho(\lambda,m), \qquad \Lambda = \sqrt{M^{2} - m^{2}}$

configuration.

 $\nu(M, m_q) = \langle \mathcal{O}_N \rangle, \quad \mathcal{O}_N = \frac{1}{N} \sum_{k=1}^N (\eta_k, \mathbb{P}_M \eta_k)$

3 Finally we apply the following equation to extract the chiral condensate.


$$\Sigma_R = \frac{\pi}{2V} \sqrt{1 - \left(\frac{m_R}{M_R}\right)^2} \frac{\partial}{\partial M_R} \nu_R(M_R, m_R)$$

which is chosen to match the chiral condensate to leading order of chiral perturbation theory.

Chiral Condensate Σ

 $\Sigma =$

 $\beta = 1.95, a\mu = 0.0085$ spect. proj First of all we need to test our implementation a 40 and the method itself. We $\frac{3}{2}$ 30 should observe a linear be- 🎽 havior in the mode number for the chosen range of M. 2 We can directly compare our result with the result obtained by computing the eigenvalues and counting, a less efficient method but equally valid. In this figure we can see the result

(4)

3 We have computed the chiral condensate for different values of the quark mass, therefore we can extrapolate the value in the **chiral limit** for different values of the lattice spacing a and

for $N_f = 2$ and $N_f = 2 + 1 + 1$ dynamical flavors of maximally twisted mass fermions. 4 Finally we perform the continuum limit. These results that can be compare with other $\frac{R_{e}}{2}$ collaborations and methods ob- $N_f = 2$ taining compatible results. $N_f = 2 + 1 + 1 - *$

> $r_0 \Sigma^{1/3} |_{N_f = 2+1+1} = 0.672(14)$ $r_0 \Sigma^{1/3}|_{N_f=2} = 0.654(12)$

values of M that we chose.

Topological Susceptibility

1 Another application of the spectral projector method is the computation of the **topological susceptibility** χ_{top} . **2** This quantity is very difficult to compute due to the **short** distance singularities

of both methods and the required **linear behavior** for the

 $\chi_{top} = \frac{\langle Q_{top}^2 \rangle}{V} = \int d^4x \langle q(x)q(0) \rangle$ (11)

Over the years different definitions have been proposed, but none of them had a clear and well defined continuum limit or are too expensive to apply for large volumes. Following the work presented in [Rossi et al, 2001] Lüscher proposed in 2004 a definition of the topological susceptibility with a **well defined continuum limit** for chiral fermions which respect chiral symmetry.

3 A generalization of that definition for any kind of fermion was made through the spectral projector method and applied with Wilson fermions in [Lüscher & Palombi, 2010] and in this work we apply it to Twisted Mass fermions.

$$\chi_{top} = \frac{Z_S^2}{Z_P^2} \frac{\langle \operatorname{Tr} \{\gamma 5 \mathbb{P}_M\} \operatorname{Tr} \{\gamma 5 \mathbb{P}_M\} \rangle}{V}$$

We have computed χ_{∞} in the quenched approximation for different values of **4** the lattice spacing a, therefore we can extract the **con**tinuum limit as shown in the figure on the right.

5 This result is compatible with other results, for example [Giusti] et al, 2010] and allow us to test the Witten-Veneziano formula. We will include a fourth ensemble with a smaller lattice spacing in the near future.

Publications

- K. Cichy, V. Drach, E. Garcia Ramos, K. Jansen, C. Michael, K. Ottnad, C. Urbach, F. Zimmermann. "Properties of pseudoscalar flavour-singlet mesons from 2+1+1 twisted mass lattice QCD. ", hep-lat 1211.4497
- K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza, K. Jansen "Overlap valence quarks on a twisted K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza, K. Jansen "Overlap valence quarks on a twisted K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza, K. Jansen "Overlap valence quarks on a twisted K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza, K. Jansen "Overlap valence quarks on a twisted K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza, K. Jansen "Overlap valence quarks on a twisted K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza, K. Jansen "Overlap valence quarks on a twisted K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza, K. Jansen "Overlap valence quarks on a twisted K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza, K. Jansen "Overlap valence quarks on a twisted K. Cichy, K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza, K. Jansen "Overlap valence quarks on a twisted K. Cichy, K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza, K. Jansen "Overlap valence quarks on a twisted K. Cichy, K. Cic mass sea: a case study for mixed action Lattice QCD. ", [hep-lat] 1211.1605 accepted for publication at Nucl.Phys.B
- K. Cichy, V. Drach, E. Garcia-Ramos, K. Jansen "Topological susceptibility and chiral condensate with Nf=2+1+1 dynamical flavors of maximally twisted mass fermions. ",PoS LATTICE2011 (2011) 102

Selected Talks

Seminar at University of Liverpool, UK

(12)

"Chiral condensate and topological susceptibility with maximally twisted mass fermions"

- **Strongnet Summer School**, University of Edinburgh, UK "Women in physics"
- **Seminar at Laboratori Nazionale di Frascati**, INFN, Frascati, Italy "Chiral condensate and topological susceptibility with twisted mass fermions"
- **XXIX International Symposium on Lattice Field Theory**, California, USA 07/11

K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza, K. Jansen "Overlap Valence Quarks on a Twisted Mass Sea.", PoS LATTICE2010 (2010) 077

Collaborations

European Twisted Mass Collaboration **DFG** Sonderforschungsbereich Transregio 9

"Chiral condensate and topological susceptibility with $N_f = 2 + 1 + 1$ dynamical flavors of maximally twisted mass fermion"

Profit from the GK

Informative and enjoyable lectures. Opportunity to meet students from other fields. Travel funding. Soft skills training courses.

Contact Details and further Information

PhD student: Elena García Ramos (associated member), email:elena.garcia.ramos@desy.de

PhD advisors: Dr. Karl Jansen (DESY Zeuthen) and Prof. Dr. Michael Müller-Preusker (HU Berlin) January 7, 2013

