

Motivation

- pseudoscalar decay constants are a benchmark of QCD in the Standard Model
- estimation of the CKM-matrix element V_{us} possible
- clarification of former inconsistencies between theory and experiment (former *f_D*,-puzzle: CLEO-c: $f_{D_s} = (259.7 \pm 8.5) MeV$ (2009) HPQCD & UKQCD : $f_{D_s} = (241.0 \pm 3.0) MeV$ (2007)
- \rightarrow corresponds to a $\approx 2.5\sigma$ discrepancy)
- first L-QCD determination of pseudoscalar decay constant of D and D_s meson with up, down, strange and charm quark

Simulation Parameters / Tuning

- three different β values \rightarrow three lattice spacings
- four to six light quark masses per β corresponding to Pion masses $\approx 250 MeV - 510 MeV$
- tuning $\kappa \to \kappa^{crit}$ for O(a) improvement
- tuning of μ_{σ} and μ_{δ} via Kaon and D-meson mass

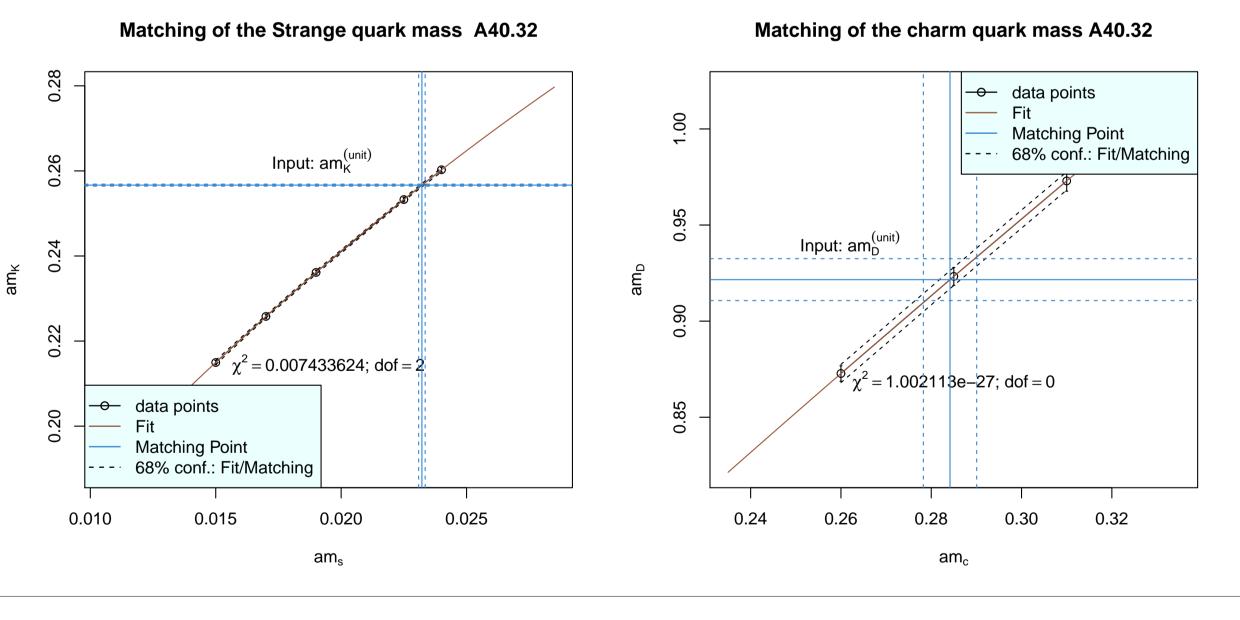
First results for pseudoscalar decay constants of D-mesons from **Twisted-Mass Lattice-QCD with** $N_f = 2 + 1 + 1$ **dynamical quark** flavours

Simulation Setup

- simulation of four dynamical Quark flavours (Up, Down, Strange and Charm)
- Up and Down quarks: mass-degenerated twisted-mass fermion doublet:

most ensembles fulfill our criterion: m^{pcac} ____< 0*.*1

 μ_l


- Strange and Charm quarks twisted-mass fermion doublet with mass-splitting $S_{h}^{f} = a^{4} \sum_{X} \bar{\chi}^{h} \left[D_{W} + m_{0} + i\mu_{\sigma}\gamma_{5}\tau^{1} + \tau^{3}\mu_{\delta} \right] \chi^{h}$
- strange and charm quark mass is related to μ_{σ} and μ_{δ} : $m_{S,C}^{R} = \frac{1}{7} \mu_{\sigma} \mp \frac{1}{7} \mu_{\delta}$

Mixed Action Setup

Idea: use valence quark action **without** isospin breaking

$$S_{h,\text{valence}}^{F} = \alpha^{4} \sum_{x} \overline{\chi}^{\text{val}}(x) \left[D_{W} + m_{0} \right] \chi^{\text{val}}(x) + \alpha^{4} \sum_{x} \overline{\chi}^{\text{val}}(x) i\gamma_{5} \begin{pmatrix} \mu_{s} & 0 \\ 0 & -\mu_{c} \end{pmatrix} \chi^{\text{val}}(x)$$

- no mixing of strange and charm quarks by definition \rightarrow no mixing of Kaon and *D*-meson
- strange and charm quark masses (in practice limited range)
- straightforward calculation of f_{D_s} (no mixing and no disconnected diagrams) • extraction of Kaon, D- and D_s-meson masses and decay constants for arbitrary \rightarrow partially quenched analysis
- \rightarrow evaluation of quantities at physical strange and charm quark masses possible by matching with the experimental Kaon and D-meson mass

Fit Strategy

- find formula describing strange, charm and light quark mass dependence of f_{D_s} • extrapolate to the physical point defined by m_{π} , m_{K} and m_{D}
- SU(2)-HM χ PT:

$$\Phi_{D_s} = f_{D_s} \sqrt{m_{D_s}} = D_1 \left[1 + D_2 \xi_{ll} + (D_a + D_{as} \xi_{ss}) a^2 + D_{ah} a^2 m_{D_s}^2 \right] + \frac{D_3}{m_{D_s}}$$
(1)
$$D_i = D_{i,0} + \xi_{ss} D_{i,m} \quad i = 1, 2; \quad \xi_{ii} = \frac{m_{ij}^2}{2}$$
(2)

$$\bar{f}_{s} = D_{1} \left[1 + D_{2} \xi_{ll} + (D_{a} + D_{as} \xi_{ss}) a^{2} + D_{ah} a^{2} m_{D_{s}}^{2} \right] + \frac{D_{3}}{m_{D_{s}}}$$
(1)
$$D_{i} = D_{i,0} + \xi_{ss} D_{i,m} \quad i = 1, 2; \quad \xi_{ij} = \frac{m_{ij}^{2}}{(4\pi f_{0})^{2}}$$
(2)

 $S_l^f = a^4 \sum_{\mathcal{X}} \bar{\chi}^l \left[D_W + m_0 + i\mu_l \gamma_5 \tau^3 \right] \chi^l$

Lattice Gluon Action: Iwasaki gauge ac Features of the $N_f = 2 + 1 + 1$ twisted

- automatic $O(\alpha)$ -improvement if $\kappa \rightarrow$
- computationally cheap (similar to W)
- strictly positive fermion determinant
- explicit breaking of parity and flavor
- restored in continuum limit
- mixing of scalar/pseudoscalar state

Preliminary Results

Fit Result:

 $D_{1,0} = 1.67(7)$ $D_{1,m} = 0.75(7)$ $D_a = 0.31(44)$ $D_{as} = -3.8(1.5)$ Value extrapolated to the physical

 $f_{D_s} = 256(2)^{stat}M$

 \rightarrow very good agreement with experime

Conclusion and Outlook

- try different fit strategies/formulas ferre
- estimation of physical Kaon and D-m

Publications

[1] "Light hadrons from Nf=2+1+1 tice2010, ETM Collaboration, 2010

[2] "A first look at Quasi-Monte Car lems", Conference on Computational P A. Griewank, M. Müller-Preußker

Selected Talks

- "A Preconditioning Technique for the tor", ETMC Meeting Autumn 2010
- "Pseudoscalar decay constants from namical quark flavours", GK-Blockku
- "Chiral symmetry, pseudoscalar dee the lattice", PhD Seminar, Summer

Contact

PhD Student / Author: Andreas PhD Advisors: Karl Janse ¹ Humboldt Universät zu Berlin, ² DES

ction mass approach: κ ^{crit.} (tuning to maximal twist)
/ilson-fermions)
t r symmetry at <i>Ο</i> (α ²)
es and strange/charm (Kaon/D-meson)
) $D_{2,0} = 0.07(12)$ $D_{2,m} = 0.45(34)$) $D_{ah} = 0.055(21)$ $D_3 = -2.85(23)$ I point
$1 eV, \chi^2 / dof = 291 / 407$ (3)
ental results
for estimation of systematic errors neson mass \rightarrow less experimental input
dynamical twisted mass fermions", Lat-
rlo methods for lattice field theory prob- Physics 2012, K. Jansen, H. Leovey, A. Nube,
e Wilson(-Twisted-Mass) and Overlap Opera-
n Wtm-Lattice-QCD with $N_f = 2 + 1 + 1$ dy- urs Autumn 2011 ecay constants and their determination on 2012
Nube ^{1,2} en ² , Michael Müller-Preußker ¹ SY, Standort Zeuthen

Supported by

