Non-perturbative investigation of current correlators in twisted mass lattice QCD RADUIERTEN KOLLEG

Motivation

Twisted mass lattice QCD (tmLQCD) allows for the calculation of 2-point current correlators from first principles. We study them in detail to extract the hadronic leading order muon anomalous magnetic moment, $a_\mu^{
m hlo}$, the charm quark mass and QCD coupling, m_c and $lpha_s$. By virtue of the 3σ discrepancy between theory and experiment a_{μ}^{hlo} is a gold-plated candidate in the search for physics beyond the standard model. m_c enters the latter as well via fits of CKM matrix elements and α_s is relevant for virtually any perturbative calculation of QCD matrix elements at small distances.

Methods

tmLQCD is a non-perturbative regularization of QCD on a discrete and finite space-time lattice with a chirally rotated quark mass matrix, leading to the automatic $\mathcal{O}(a)$ improvement of physical observables. Via the path-integral approach observables become statistical estimators based on ensembles of gauge field configurations generated by the ETMC. Covering a range of quark masses, lattice volumes and lattice spacings, they allow us to investigate all relevant systematic errors. For $a_{\mu}^{\rm hlo}$ this work for the first time includes non-perturbative estimates of quark-disconnected diagrams.

Some details

(I) Starting from the current correlators in Euclidean space

Masse-Spektrum-Symmetrie

to $\Pi(q^2)$ for $q^2 < (2\pi/L)^2$ and in particular to $\Pi(0)$.

(II) Using the charm vector current $J^c_{\mu} = \bar{c} \, \gamma_{\mu} \, c$, perturbative

$$\int d^4x \, \langle J_\mu(x) \, J_\nu(0) \rangle \, \mathrm{e}^{iqx} = (q_\mu q_\nu - \delta_{\mu\nu} \, q^2) \, \Pi(q^2) \tag{1}$$

with e.g. the electromagnetic current $J_{\mu} = +2/3 \, \bar{u} \, \gamma_{\mu} \, u - 1/3 \, d \, \gamma_{\mu} \, d$ in the light quark sector, we extract the polarization function $\Pi(q^2)$. The finite lattice extension L restricts knowledge of Π to a discrete set of momenta above $2\pi/L$. A smooth parametrization gives access Based on that we estimate a_{μ}^{hlo} from the integral relation

$$a_{\mu}^{\text{hlo}} = 4 \,\alpha_{\text{QED}}^2 \, \int_0^\infty \frac{dq^2}{q^2} \, w(q^2/m_{\mu}^2) \, \left[\Pi(q^2) - \Pi(0)\right] \tag{2}$$

with a weight function $w(q^2)$ known from leading order QED perturbation theory.

QCD (pQCD) provides expansions of derivatives of Π at $q^2 = 0$ $\frac{d^n \Pi}{d q^{2n}} \bigg|_{q^2=0} = \sum_n \alpha_s^n C_n(m_c) \propto \sum_{t, \vec{x}} t^{2n+2} \langle J_i(t, \vec{x}) J_i(0) \rangle .$ (3)

Matching results for $d\Pi/dq^{2n}$ from lattice temporal moments of the current correlator to continuum pQCD then allows for estimates of α_s and m_c .

Recent Results

(I) Based on vector meson dominance we proposed a family of parametrizations for Π valid in the complete momentum regime $2\pi/L \leq \sqrt{q^2} \lesssim \pi/a$. We introduced a generalized class of estimators for a_{μ}^{hlo} (lattice units indicated by a hat),

$$a_{\bar{\mu}}^{\text{hlo}} = 4 \, \alpha_{\text{QED}}^2 \, \int_0^\infty \frac{d\hat{q}^2}{\hat{q}^2} \, w(\hat{q}^2/m_{\mu}^2 \cdot H^2/\hat{H}^2) \, \left[\Pi(\hat{q}^2) - \Pi(0)\right] \quad \textbf{(4)}$$

labeled by a lattice scale function H. An optimized choice of Hleads to a better controllable dependence on the pion mass and even allows for a linear extrapolation in m_{π}^2 . Existing methods are generalized to yield estimates of a_l^{hlo} using $H = m_{\rho}$ for all three standard model leptons, which are in agreement with our phenomenological estimates for 2 quark flavors.

(II) In a benchmark calculation we estimated the temporal moments of the charm vector current correlator for $n = 1, \ldots, 4$. We find good agreement with results from the dispersion relation using experimental data for the hadronic R-ratio $(e^+e^- \rightarrow \text{photon} \rightarrow \text{hadrons})$ and extract the charm quark mass in the MS scheme at $\mu = 3 \,\text{GeV}$.

No.	$f_{\pi} \Pi^{(n) \frac{1}{2n}}(\exp.)$	$f_{\pi} \Pi^{(n) \frac{1}{2n}}$ (theo.)	$ar{m}_c(\mu)/{ m GeV}$
1	0.04107 (32)	0.04170 (25)	0.971(09)(01)
2	0.08792 (48)	0.08810 (52)	0.981(10)(02)
3	0.13081 (60)	0.13059 (68)	0.990(10)(11)
4	0.17106 (70)	0.17098 (82)	1.014(08)(35)

Both projects are presently continued.

Publications

X. Feng, G. Hotzel, K. Jansen, M. Petschlies and D. B. Renner, "Leading-order hadronic contributions to a_{μ} and α_{QED} from $N_f = 2 + 1 + 1$ twisted mass fermions," arXiv:1211.0828 [hep-lat]. D. B. Renner, X. Feng, K. Jansen and M. Petschlies, "Nonperturbative QCD corrections to electroweak observables," PoS(Lattice 2011)022

K. Jansen, M. Petschlies and C. Urbach, "Charm current-current correlators in twisted mass lattice QCD," PoS LATTICE **2011** (2011) 234

X. Feng, K. Jansen, M. Petschlies and D. B. Renner, "Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling," Phys. Rev. Lett. **107** (2011) 081802

Selected Talks

29th Int. Symposium on Lattice Field Theory, Squaw Valley, California USA, 06/2011, "Charm. current-current correlators in twisted mass lattice QCD"

- 15. Arbeitstreffen des SFB/TR9, Berlin, 05/2011, "Moments of charm current-current correlators in twisted mass lattice QCD"
- 28th Int. Symposium on Lattice Field Theory, Sardinia Italy, 06/2010, "Charm current-current correlators in twisted mass lattice QCD"
- DPG Frühjahrstagung, Bonn, 03/2010, "Charm current-current correlators in twisted mass lattice QCD"

D. B. Renner, X. Feng, K. Jansen and M. Petschlies, "Leading-order hadronic contribution to g-2from lattice QCD," PoS ICHEP **2010** (2010) 371 F. Farchioni, G. Herdoiza, K. Jansen, A. Nube, M. Petschlies and C. Urbach, "Pseudoscalar decay constants from $N_f = 2 + 1 + 1$ twisted mass lattice QCD," PoS LATTICE **2010** (2010) 128 D. B. Renner *et al.* [ETM Collaboration], "Leading order hadronic contribution to g-2 from twisted mass QCD," PoS LATTICE **2010** (2010) 155 B. Blossier et al. [ETM Collaboration], "Average up/down, strange and charm quark masses with $N_f = 2$ twisted mass lattice QCD," Phys. Rev. D 82 (2010) 114513

Collaborations

European Twisted Mass Collaboration (ETMC), specifically HUB, DESY/Zeuthen, HISKP (Bonn), JLab (USA) an KEK (Japan) SFB/TR9 "Computational Particle Physics", Project A4

Profit from the GK

 \blacksquare GK block course, HU Berlin, 10/2009, " α_s , m_c and the muon g-2 from lattice QCD" ■ 12. Arbeitstreffen des SFB/TR9, DESY/Zeuthen, 03/2009, "Charm quark mass from moments of correlators"

participation in the block courses 10/2009, 03/2010, 10/2010 and 03/2011

■ attendance of lecture "Physics at the LHC", WS 2009/10

financial support for the participation in the XXVIII. and XXIX. International Symposium on Lattice Field Theory (2010, Villasimius, Sardinia Italy and 2011 Squaw Valley, California USA)

Contact Details and further Information

PhD student: M. Petschlies, m.petschlies@cyi.ac.cy PhD advisors: Dr. K. Jansen, Karl. Jansen@desy.de, Prof. Dr. M. Müller-Preußker, mmp@physik.hu-berlin.de, Prof. Dr. C. Urbach, curbach@gmx.de

WWW: http://www-zeuthen.desy.de/ kjansen/etmc/ (ETMC)

January 7, 2013

