

Improving predictions of non-minimal supersymmetric models

Motivation

Softly broken supersymmetric models are attractive extensions of the Standard Model: They can provide gauge coupling unification, incorporation of gravity, cancellation of quadratic divergences and a solution of the hierarchy problem. However, the minimal supersymmetric extension of the Standard Model (MSSM) is not the theoretically and experimentally most favored. Therefore, non-minimal supersymmetric models as the NMSSM, CE_6SSM , USSM are often more attractive and hence have to be studied in detail.

- The aim of my Ph.D. thesis is to
- improve the precision of the mass spectrum prediction
- calculate observables to set limits on the parameter space
- of various non-minimal supersymmetric models.

Methods

To improve the precision of the predictions of the various non-minimal supersymmetric models the following things are done:

- Calculate threshold corrections to renormalization group running of the gauge and Yukawa couplings in the E_6SSM and implement them into a CE_6SSM spectrum generator.
- Calculate observables (m_h , $m_{\tilde{q}_i}$, $m_{\tilde{\chi}_i^0}$, etc.) in well motivated CE₆SSM scenarios and compare with experimental data.
- Write a general spectrum generator for non-minimal supersymmetric models.
- Calculate $h \rightarrow \gamma \gamma$ in the E₆SSM to set limits on the allowed parameter space.

Calculate the renormalization of $\delta v_i / v_i$ in a general spontaneously broken gauge theory. This will complete the list of β functions for all parameters in these theories. The result can be used to calculate the RGE of tan β in susy models with extended gauge groups.

Recent Results

Threshold corrections in the E₆SSM

The calculation of threshold corrections to renormalization group running of the gauge and the Yukawa couplings in the E_6SSM led to a strongly improved precision of the CE_6SSM mass spectrum.

Study of the CE₆SSM parameter space

Observables as functions of CE_6SSM model parameters in well

By applying the latest LHC limits on supersymmetric particles to the CE_6SSM it was possible to exclude large parts of the parameter space.

Spectrum generator for non-minimal susy models

Working example: CMSSM with $m_0 = 125 \text{ GeV}$, $M_{1/2} = 500 \text{ GeV}$, $A_0 = 0$, $\tan \beta = 10$, $\operatorname{sign} \mu = +1$

motivated scenarios were calculated.

- The spectrum generator for non-minimal supersymmetric models is still under heavy development. Basic idea:
- 1. User specifies models and boundary conditions via an extended SARAH interface
- 2. Meta code calculates RGEs, particle mixing and generates C++ model classes
- 3. RG solvers try to find a numerical solution. Available algorithms:
- Standard iterative "two scale" method
 Lattice method (Jae-hyeon Park)

Publications

Selected Talks

- Peter Athron, Dominik Stöckinger, Alexander Voigt: Threshold Corrections in the Exceptional Supersymmetric Standard Model, Phys.Rev. D86 (2012) 095012
- Dominik Dannheim, Alexander Voigt, Karl-Johan Grahn, Peter Speckmayer, Tancredi Carli: PDE-Foam: A probability density estimation method using self-adapting phase-space binning, Nucl.Instrum.Meth. A606 (2009) 717-727

Collaborations

- Writing a NMSSM spectrum generator based on SOFTSUSY together with the theory group at CoEPP, University of Adelaide and Ben Allanach, University of Cambridge
- Calculating $H \rightarrow \gamma \gamma$ in the CE₆SSM with the theory group SHEP, Southampton University

Profit from the GK

$\begin{array}{c} 1000 \\ -500 \\ -1000 \\ 10^{0} \\ 10^{2} \\ 10^{4} \\ 10^{6} \\ 10^{8} \\ 10^{10} \\ 10^{12} \\ 10^{14} \\ 10^{16} \\ 10^{18} \\ renormalization scale / GeV \end{array}$

29.02.2012, DPG Frühjahrstagung Göttingen: "Phenomenology of the CE₆SSM"
 01.12.2010, Helmholtz Alliance Workshop Dresden: "Improved precision in the constrained Exceptional Supersymmetric Standard Model (CE₆SSM)"

■ 15.03.2010, DPG Frühjahrstagung Bonn: "Calculation of threshold corrections in the CE₆SSM"

I attended two lectures at HU Berlin: "Stringtheorie", "Pfadintegrale"

Useful advanced lectures at the block courses.

Easy to come into contact with students and professors from the other HEP groups in the GK.

Contact Details and further Information

PhD student: Alexander Voigt, Alexander.Voigt@physik.tu-dresden.de **PhD advisors:** Prof. Dominik Stöckinger, Jun.-Prof. Arno Straessner **WWW:** http://iktp.tu-dresden.de/~avoigt/

DRESDEN concept

January 7, 2013