

Study of Neutral MSSM Higgs Decaying to Taus & Observation of a New Boson in the Diphoton Channel with ATLAS

LA BORATOIRE DE L'ACCELERATEUR

Berlin

21.01.2013

Jana Schaarschmidt (LAL)

Standard Model (SM) of Particle Physics

The **Higgs mechanism** is a substantial component of this theory and it was introduced to explain the electroweak symmetry breaking and the mass of the gauge bosons

(Brout & Englert, Higgs, Gouralnik, Hagen & Kibble in the 1960's)

 \rightarrow A new scalar particle (Higgs boson) must exist

Supersymmetry

One possible extension of the SM theory, offering for example:

- Solution to the Fine-tuning problem
- Dark-matter candidates
- Unification of the coupling constants at high energies

It is a symmetry linking bosons and fermions, postulating new heavy partners of the SM particles

So far, no hints of SUSY particles found by ATLAS and CMS! Maybe at higher energies?

Minimal SUSY (MSSM) Higgs sector:

Two Higgs doublets, five detectable Higgs bosons:

h, H, A, H⁺, H⁻

Fixing the SUSY breaking parameters in a specific scenario allows to describe the Higgs sector by just two free parameters:

- Coupling parameter $tan\beta$ ($tan\beta = vev_{up}/vev_{down}$)
- ${\scriptstyle \bullet}$ Mass of the A boson ${\it m}_{_{\rm A}}$

MSSM Higgs

t/b

t/b

In the MSSM: Coupling of down-type fermions enhanced with $tan\beta$

Higgs Production

t/b

00000000

0000000

gluon fusion

b-quark associated production (irrelevant in the SM)

Higgs Decay

MSSM Higgs decay different to that in the SM: Decay to vector bosons is suppressed, decay to fermions is enhanced. Branching fraction to $\tau\tau$ at high tan β : 10%, for m_a=0.1-1 TeV.

Tau Decay

Tau lepton is unstable and decays to either hadronically (h) to pions (and/or kaons) (65%) or leptonically (l) to electron (17.8%) or muon (17.4%)

```
→ Several final states: 2I + 4v
Ih + 3v
hh + 2v (not covered here)
```

down-type

t

 \boldsymbol{u}

d

MSSM h/A/H $\rightarrow \tau\tau$ Mass Reconstruction

Expected h/A/H $\rightarrow \tau \tau$ mass resolution:

10-30% of $m_{_{\rm H}}$ depending on production mode, Higgs mass hypothesis and the final state.

Mass reconstruction is difficult, because there are neutrinos in the final state, they escape detection, They cause an E_{-} imbalance (missing E_{-} , MET).

Tau's are boosted, and so are their decay products

→ Collinear approximation:

 $p_{T}(tau_{i}) = p_{T}(lepton_{i} \text{ or } \pi_{i}) / x_{i}$ (x: scale factor)

MSSM h/A/H $\rightarrow \tau\tau$ Event Selection

Expected backgrounds: Electroweak processes (mostly Z,W, top), QCD

Event selection:

- Trigger on leptons (electrons or muons)
- Good identification of leptons and/or hadronically decaying taus
- Require presence of b-jets
- Cuts on event kinematics: p_{T} of the b-jet, $p_{T}^{\tau\tau}$, MET, $\Delta \phi_{\mu}$, etc. These are m_{A} -dependent.

Expected mass spectrum after selection:

- At low masses, $Z \to \tau \tau$ background is irreducible and dominant
- At higher masses, top-pairs are dominant

In the lepton-hadron channel the W+jet background is also important.

Example for the dilepton channel:

$\textbf{Z} \rightarrow \tau\tau \text{ Background Estimation}$

$\textbf{Z} \rightarrow \mu \mu$ control region selection:

- 1. Select $Z \rightarrow \mu\mu$ events,
- 2. Replace the prompt muon kinematics by that of a muon from a $\tau \to \mu \text{+} 2\nu$ decay
- 3. Recalculate the missing $\mathsf{E}_{_{\!\mathsf{T}}}$

- $Z \to \tau \tau$ background shape estimated from data
- → Reduce MC dependance and systematic uncertainties

MSSM h/A/H $\rightarrow \tau\tau$ Discovery Potential

Expected 5σ discovery limits for 14 TeV based on simulation (2010):

Results include systematic uncertainties and data-driven estimations of all major backgrounds

MSSM h/A/H Limits

ATLAS Data results : (4.8/fb of 7TeV data)

(this was not anymore a part of my PhD work)

Work after my PhD:

 $H \rightarrow \gamma \gamma$

Data analysis

Candidate Event

mγγ = 127 GeV

Dataset:

4.8/fb 2011 data + 13.0 /fb 2012 data

$H \rightarrow \gamma\gamma \text{ Analysis}$

Channel with the best mass resolution (1.6 GeV)

 \rightarrow Expect a sharp mass peak on top of a smoothly falling background

"Inclusive" Event Selection:

- Diphoton trigger
- Select events with two high- $\mathbf{p}_{_{\mathrm{T}}}$ photons
- Tight identifcation and isolation applied
- → Data-driven techniques reveal that 75% of the events are diphotons (not jets)

Background Estimation:

- Background estimated from data with a fit of $m_{\gamma\gamma}$
- Choice of the fit function is crucial, decided by the study of MC samples (eg. 10 billion Diphox events)
- \rightarrow Use either exponentials, 4th order polynomials or exponential of 2nd order polynomials

$H \rightarrow \gamma \gamma$ Categorization

2-jet category:

Enrich subsample with Vector-boson-fusion

9 other categories:

- conversion status
- γ position in the calorimeter
- p_{Tt} value:

$H \rightarrow \gamma \gamma$ Latest Results

Weighted mass spectrum:

Probability of a background fluctuation:

Weight events with expected In(1+S/B) per category

The more sensitive a category, the more weight is given to an event.

 \rightarrow Clear excess at 126.5 GeV

Observed significance: 6.1σ

Best-fit signal strength:

 μ = 1.8 ± 0.4

First Measurements with H $\rightarrow \gamma\gamma$: Spin

The SM Higgs boson is a scalar with even parity $\rightarrow J^{P} = 0^{+}$.

Need to discriminate this from spin-2 hypothesis (Graviton-like particles, $J^{P} = 2_{m}^{+}$).

Information on the spin inferred from the production angle in the diphoton rest frame, θ^* .

14 / 15

Background shape estimated from data from mass sidebands.

Result: The data slightly prefers spin-0 hypothesis over spin-2 hypothesis at the 1σ level.

PhD thesis in Dresden (2007-2010):

Study of Neutral MSSM Higgs bosons decaying to τ -pairs

- Signal-background discrimination
- Data-driven background estimation
- Evaluation of the discovery potential

Post-Doc in Orsay (France) since 2010 on data analysis for $H\to\gamma\gamma$

- Discovery of a new Higgs-like particle with a mass of ~126 GeV
- Several editorships
- Major contributions in the categorization, background estimation and background uncertainties, spin analysis

Supported by the Graduiertenkolleg

Back up

Statistics in a Nutshell

CLs to test signal hypothesis:

Test statistics based on profile likelihood ratio:

$$q_{\mu} = -2\ln\frac{L(\mu, \hat{\hat{\theta}})}{L(\hat{\mu}, \hat{\theta})} - \mu \text{ fixed}$$
 unconditional

$$\tilde{q}_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} > 0, \\ +2\ln\lambda(0) & \hat{\mu} \le 0. \end{cases}$$

p_o to test bkg hypothesis:

Signal strength:

