

Cross section measurement of $pp \rightarrow \gamma^*/Z^0 \rightarrow \tau^+\tau^- \rightarrow e\mu+4\nu$ with the ATLAS detector

Motivation

- The cross section times branching fraction measurement of pp $\rightarrow \gamma^*/Z^0+X \rightarrow \tau^+\tau^-+X \rightarrow e\mu+4\nu+X$ is a good test of Standard Model predictions by comparison with theoretical calculations.
- Most important, the decay is an irreducible and dominant background in Higgs boson searches in the $\tau^+\tau^-$ decay channel. >Its differential mass spectrum and normalisation have to be known precisely.
- The decay is well suited to test the various techniques of $m_{\tau\tau}$

mass reconstructions, to check their stability against systematics and their reproduction in MC simulation.

Data analysed: recorded in 2010

Background processes

- QCD multijets:
- processes producing quarks or gluons
- real leptons from heavy flavour quark decay
- fake leptons from charged hadrons being misinterpreted as lepton candidates
- γ*/Z⁰ → ee, μμ + jets:
 - additional jets are being misinterpreted as lepton candidate or contain real ones
 - in particular the low mass range mimics the signal
- $W^{\pm} \rightarrow e^{\pm}v, \mu^{\pm}v, \tau^{\pm}v$ Additional jets may be misidentified as leptons + jets:
 - T channel may decay leptonically or hadronically (misidentified as leptons)
 - fake rate of jets for electrons is higher than for muons, which makes $W^{\pm} \rightarrow \mu^{\pm} v$ more important background
 - Fully leptonic decay is a main background source.
 - In other decays jets are misinterpreted as leptons or contain real leptons.

• tt:

 Z^0/γ^*

Event Selection

Object Selection

•Electron: p_>16 GeV, detector centrality

•Muon: p₁>10 GeV, detector centrality

•Jets: anti-kt algorithm with distance parameter dR<0.4, p₋>20 GeV,

Event Selection

 Exactly one eµ pair with opposite charge $\Sigma \cos \Delta \phi = \cos[\phi(I) - \phi(E_{\tau}^{\text{miss}})] + \cos[\phi(\tau) - \phi(E_{\tau}^{\text{miss}})]$ >-0.15 •Σ(jets,e, μ)+E^{miss} <150 GeV Invariant lepton-lepton mass 25 GeV<m_</p>

Background Estimation of Electroweak Processes

Procedure for EW processes:

Control region is selected, in which electroweak processes are enriched:

- exactly one eµ pair with object selection
- one lepton is isolated
- Σ (jets,e, μ)+ E_{τ}^{miss} <150 GeV
- $m_{\tau} = (2p_{\tau}(I) \cdot E_{\tau}^{\text{miss}})^{1/2} \cdot (1 \cos\varphi(I, E_{\tau}^{\text{miss}}))$ 60 GeV<m_<100 GeV

Shape and normalisation is checked with recorded data.

QCD multijet background estimated via the ABCD method

Result:

Cross sections and branching ratios used agree well with data. Proves correctness of Monte Carlo simulations.

Procedure for QCD multijets ABCD method: two variables are selected, spanning a 2-D plane, OS Signal region segmented into four regions, A, B, C, D. Only one region contains signal $_{\rm SS}$ $|_{\rm EW \, bkg,}^{\rm B}$ events. The variables need to be

 $q_{e} \times q_{\mu}$

 $t\bar{t}$, QCD dominated isolated non-isolated isolation

dominated

 \mathbf{C}

D

QCD

QCD

$$\frac{N_{QCD}^A}{N_{QCD}^B} = \frac{N_{QCD}^C}{N_{QCD}^D} \left| N_{QCD}^i = N_{Data}^i - N_{EW_bkg}^i - N_{t\bar{t}}^i \right|$$

Results:

uncorrelated.

Expected and observed number of events for an integrated luminosity of 36 pb⁻¹.

	$ au_e au_\mu$
$\gamma^*/Z \to \ell \ell$	1.9 ± 0.1
$W \to \ell \nu$	0.7 ± 0.2
$W \to \tau \nu$	< 0.2
$t\bar{t}$	0.15 ± 0.03
Diboson	0.48 ± 0.03
Multijet	6 ± 4
$\gamma^*/Z \to \tau \tau$	73 ± 1
Total expected events	82 ± 4
$N_{\rm obs}$	85

Results

Mass distribution of lepton pair:

Mass distribution after the full selection except for the cut on the invariant lepton-lepton mass. Shows a good agreement between data and Monte Carlo simulation \rightarrow differential mass spectrum and normalisation are verified for further Higgs studies.

$$\sigma(pp \rightarrow \gamma^*/Z^0 + X) \times BR(Z^0 \rightarrow \tau^+ \tau^-) = \frac{N_{obs} - N_{bkg}}{L \cdot A_z \cdot C_z \cdot B(\tau^+ \tau^- \rightarrow e\mu + 4\nu)}$$

N_{obs}... Number of observed events N_{bkg}... Number of events from background processes A₂... geometrical and kinemtic acceptance

- C_{2} ... selection efficiency
- B ... Branching ratio of $(\tau^+\tau^- \rightarrow e\mu + 4\nu)$

	$ au_e au_\mu$
$N_{\rm obs}$	85
$N_{\rm obs} - N_{\rm bkg}$	$76\pm10\pm1$
A_Z	0.114 ± 0.003
C_Z	0.29 ± 0.02
В	0.0620 ± 0.0002
\mathcal{L}	$35.5 \pm 1.2 \text{ pb}^{-1}$

$\sigma(pp \rightarrow \gamma^*/Z^0 + X) \times BR(Z^0 \rightarrow \tau^+ \tau^-) =$ $(1.06 \pm 0.14 \pm 0.08 \pm 0.04)$ nb

→All results show agreement within their uncertainties. •Knowledge of the normalisation of the $\gamma^*/Z^0 \rightarrow \tau^+\tau^$ background for Higgs searches is verified.

Publications

[1] ATLAS Collaboration, G.Aad et al., *First Observation of the process* $Z \rightarrow \tau \tau \rightarrow emu + 4nu$ with the ATLAS Detector, ATLAS-CONF-2011-045

[2] ATLAS Collaboration, G.Aad et al., *Measurement of the Z* \rightarrow $\tau\tau$ Cross Section with the ATLAS Detector, Physical Review D 84 (2011) 112006, arxiv:1108:2016 [hep-ex].

Contact Details

Kathrin Kormoll (TUD), Kathrin.Kormoll@.tu-dresden.de PhD Student: PhD Advisors: Prof. M. Kobel, Prof. D. Stöckinger

Gain from the Graduiertenkolleg

- Possibility to attend special seminars in block courses
- Possibility to attend GK courses
- Financial support for conferences and international schools
- Contact to theoretical colleagues within the GK

01/16/13

