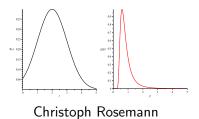
Parameter Estimation 4

A practical summary



DESY

20. March 2013

Parameter estimation

Common task

- Determine from measurements with uncertainties the best values of (physical) parameters
- Estimation is a mathematical procedure (!)
- Any parameter makes sense only within a model
- The model is encoded in the pdf of the parameters
- Wrong models deliver wrong answers!
- Uncertainties must be known: Variances and Covariances
- Distinguish between:
 - Statistical uncertainties
 - Systematic uncertainties

Choice of parametrization is crucial

Track fitting example

One of the most important properties in track parameter estimation:

(Transverse) Momentum p

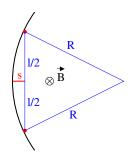
Measurement principle:

- Momentum not a direct observable
- Usually space points with Gaussian pdf are measured
- Magnetic field B needed, Lorentz force puts charged particle on circular track:

$$F_z = F_L \Longrightarrow p = qBR$$

- The radius R is also not directly measured
- Why not use radius?

Why isn't R Gaussian?



Measurement principle

- The deviation from a straight line is measured the sagitta s: $s \approx \frac{l^2}{8R}$ (for l >> s)
- Since the points are distributed Gaussian, the sagitta is as well
- With p = qBR follows $p = \frac{qBl^2}{8s} = K\frac{1}{s}$

Transformation

Assume sagitta Gaussian distributed:

$$f(s) = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left(-\frac{(s-\mu_s)^2}{2\sigma_s^2}\right)$$

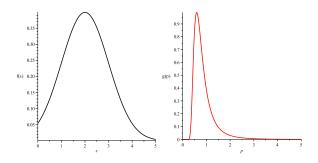
Error propagation:

$$\mu_{p} \approx p(\mu_{s}) = \frac{K}{\mu_{s}}$$

$$\sigma_{p}^{2} \approx \left(\frac{\mathrm{d}p}{\mathrm{d}s}\right)^{2} \sigma_{s}^{2} = \frac{p^{4}}{K^{2}} \sigma_{s}^{2}$$

$$\Rightarrow g(p) = \frac{f(s)}{\left|\frac{\mathrm{d}p}{\mathrm{d}s}\right|} = \frac{1}{\sqrt{2\pi\sigma_{p}^{2}}} \exp\left(-\frac{p^{4}(\frac{1}{s} - \frac{1}{\mu_{s}})^{2}}{2\sigma_{p}^{2}}\right)$$

Take a look at the distributions



- ullet Arbitrary choice for Sagitta distribution $\sigma_{
 m s}=1$, $\mu_{
 m s}=2$
- Notice: values at zero are not unlikely (negative values yield wrong charge sign)
- Result in the momentum distribution is very asymmetric

Ergo: Use parameters that are distributed like Gaussian!

Parameter estimation

Fundamental properties of estimators

Estimators can be characterized as good or bad

The characterization classes are:

Consistency: the true value and the estimated value are equivalent

$$\lim_{n\to\infty} \hat{a} = a$$

• Bias: the expectation value is equivalent to true value

$$\langle \hat{a} \rangle = a$$

Efficiency: small variance

The inherent accuracy of an estimator is limited!

Consistency

- Parameters are estimated from limited samples
- Any sample exhibits statistical fluctuations
- For large samples, the effect of fluctuations lessens
- If the difference between the true value and the estimated value vanishes, the estimator is consistent

Formal definition

An estimator is consistent, if it tends to the true value as the number of data tends to infinity:

$$\lim_{n\to\infty} \hat{a} = a$$

Bias

- For finite amounts of data the estimated parameter is unlikely to have the true value
- A good estimator has the equal chances of over- and underestimation of the true value
- Such an estimator is unbiased
- This can be expressed in terms of the expectation value of the estimator

Formal definition

An estimator is unbiased, if its expectation value is the same as the true value:

$$\langle \hat{a} \rangle = a$$

Efficiency

- The estimated value depends on the given data sample
- The fluctuations of the sample influence the estimator
- An efficient estimator exhibits a small fluctuation or spread
- The spread is measured in terms of the variance of the estimator

Formal definition

An estimator is efficient if its variance is small.

Minimum Variance Bound

(Without proof) There is a lower bound on the variance of an estimator!

- There are different names for this:
 Cramér-Rao bound (or inequality), Fréchet inequality, MVB, CRLB
- ullet It uses the (in the simple/unbiased form) the Likelihood function \mathcal{L} :

$$\sigma_{\hat{\mathsf{a}}}^2 \leq \frac{1}{\langle (d\mathcal{L}/da)^2 \rangle}$$

• An estimator is efficient, if its variance is equal to the MVB

Characterization of Maximum Likelihood

Most important parameter estimation method

- Maximum Likelihood estimators are (usually) consistent
- Maximum Likelihood are biased (!) for small N for large N it becomes unbiased
- It is usually the optimal estimation in terms of the Minimum Variance Bound

Warning

- Maximum Likelihood is (usually) consistent, but biased!
- Maximum Likelihood estimators invariant under parameter transformations!:

$$\widehat{f(a)} = f(\hat{a})$$
 e.g.: $\widehat{\sigma^2} = (\hat{\sigma})^2$

Bias example

Consider a symmetric pdf around a_0 , let \hat{a} be an unbiased estimator

Equal chances that \hat{a} is either 10% too large or too small

• Equally possible:

$$\hat{a} = 1.1a_0$$
 $\hat{a} = 0.9a_0$

• Now consider (non-linear) transformation $y: x \to x^2$, then

$$\hat{a}^2 = 1.21a_0^2$$
 $\hat{a}^2 = 0.81a_0^2$

- Probability content doesn't change, equal chances that \hat{a}^2 is 21% larger or 19% smaller than a_0^2
- In short: the pdf becomes asymmetric and therefore biased

Relation between χ^2 and Likelihood

Likelihood definition

$$\ell(a) = -\ln \mathcal{L}(a) = -\sum_{i}^{n} \ln f(x_{i}; a)$$

Measurements with underlying Gaussian distribution

Estimate the mean value from:

$$f(x_i; a) = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-\frac{(x_i - a)^2}{2\sigma_i^2}}$$

Combine both!

Relation between χ^2 and Likelihood

$$\ell(a) = -\sum_{i}^{n} \ln \frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} e^{-\frac{(x_{i}-a)^{2}}{2\sigma_{i}^{2}}} = -\sum_{i}^{n} \ln \frac{1}{\underbrace{\sqrt{2\pi\sigma_{i}^{2}}}} + \underbrace{\frac{1}{2} \sum_{i}^{n} \left(\frac{x_{i}-a}{\sigma_{i}}\right)^{2}}_{\equiv \chi^{2}}$$

Direct connection between Likelihood and χ^2 function

$$\ell(a) = const + \frac{1}{2}\chi^2(a)$$

Note the factor $\frac{1}{2}$

Explains the different units for uncertainty estimation:

$$\chi^2_{min} + 1$$
 $\ell_{min} + \frac{1}{2}$

Non-linear least squares

What if $f(x; \vec{a})$ isn't linear in a_i ?

Iterative solution is needed; start with first guess \vec{a}_0

• Use gradient:

$$grad_{j}(\vec{a}_{0}) = \frac{\partial \chi^{2}}{\partial a_{j}} \Big|_{\vec{a}} = \sum_{i} -\frac{2}{\sigma_{i}^{2}} [y_{i} - f(x_{i}; \vec{a}_{0})] \frac{\partial f(x_{i}; \vec{a}_{0})}{\partial a_{j}}$$

• Goal: find $\delta \vec{a}$ with:

$$grad_j(\vec{a}_o + \delta \vec{a}) = \left. \frac{\partial \chi^2}{\partial a_j} \right|_{\vec{a} + \delta \vec{a}} = 0 \quad \forall j$$

• Expand the gradient in a Taylor series, omitting higher order terms:

$$grad_{j}(\vec{a}_{0}+\delta\vec{a}) \approx grad_{j}(\vec{a}_{0}) + \sum_{s} \frac{\partial grad_{j}}{\partial a_{s}} \delta a_{s} = grad_{j}(\vec{a}_{0}) + \sum_{s} \frac{\partial \chi^{2}}{\partial a_{j}\partial a_{s}} \delta a_{s}$$

Non-linear least squares cont'd

• This yields an expression to find $\delta \vec{a}$ from iteration, with the matrix equation

$$\delta \vec{a} = -G^{-1}\vec{g}$$

ullet $ec{g}$ is the vector of all gradients and the matrix elements are defined by

$$G_{js} = \frac{\partial \chi^2}{\partial a_j \partial a_s}$$

Solving iterative matrix equations

- Leads to another topic: numerical recipes
- In principle:
 - Start with good guess for \vec{a}_0 ($\sim 90\%$ of all trouble)
 - Construct matrix and invert, if gradient is small enough: solution found
- Can be very tricky business
- Recommendation for all practical purposes: use library

χ^2 or Maximum Likelihood?

Maximum Likelihood pros

- Simple procedure
- For large N optimal
- Easy to use in many dimensions
- Possible to avoid information loss through binning extremely important with small data sets

Maximum Likelihood cons

- Biased (for small N)
- pdf has to be known
- No way to determine the estimation quality

χ^2 pros

- Allows simple and powerful consistency check (if variables are Gaussian distributed)
- Simple way to encode correlations, including systematic errors
- For linear models single step solution

Both: Equivalent method to ML if variables are Gaussian distributed

χ^2 cons

 Needs binning to fit a distribution to data

Many more topics

- Outlier rejection/down weighting with M-estimators
- Constraint fits; e.g. kinematic fits
- Numeric Integration
- Numerical minimization techniques
- Generating random numbers according to arbitrary distributions

Summary

- Parameter Estimation is a well defined mathematical procedure
- The results can still be ill-defined: crap in, crap out
- The two main methods were presented, (usually) clear from context what to use
- The way you formulate the problem influences the quality (and reliability) of the solution