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Different sources of theoretical uncertainties

“observable = theoretical expression”

1. theoretical expression is only approximate

I often obtained by expansion in small parameter
e.g. in coupling constant → perturbation theory
 estimate size of uncalculated/neglected terms

I for some situations/aspects do not have systematic theory
must use models
 may estimate uncertainty by comparing different models
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Different sources of theoretical uncertainties

“observable = theoretical expression”

2. input parameters from standard model, e.g.
αs, mc,b, mt, mW,Z ,mH , CKM matrix elements

note: running αs(µ) depends implicitly on quark masses

3. nonperturbative QCD parameters or functions
I most prominently: parton distributions (PDFs)

note: PDFs depend on αs(µ) via evolution
I other examples: decay constants, wave functions

(e.g. for B → D`ν, B → πK)

quantities in points 2. and 3. may be obtained from
I comparison “measured observable = theor. expression”
I nonperturbative calculation (e.g. in lattice QCD)
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Some parameters and their uncertainties

from: Review of Particles Physics 2012

Phys. Rev. D86 (2012) 010001, http://hepdata.cedar.ac.uk/lbl

relative uncertainty

mW = 80.385± 0.015 GeV 1.9× 10−4

mZ = 91.1876± 0.0021 GeV 2.3× 10−5

mτ = 1.77682± 0.00016 GeV 9.0× 10−5

mb = 4.18± 0.03 GeV 0.72%

mt = 160+5
−4 GeV +3.1%

−2.5%

1/αem = 137.035999074(44) 3.2× 10−9

αs(mZ) = 0.1184± 0.0007 0.59%

= 0.1183± 0.0012 (without lattice QCD) 1.0%

masses and couplings often appear raised to some power → larger uncertainties

mb and mt are MS masses at scales mb(mb), mt(mt)
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Coupling constants and their running

I due to quantum effects (loop corrections)
coupling constants depend on renormalization scale µ
set by “typical momentum scale” of physical process

I electroweak interactions: αem(0) ≈ 0.00730
generally quick convergence of pert. series

I strong interactions:
αs(mZ) ≈ 0.118, αs(mτ ) ≈ 0.33

higher order corrections often
very important (easily factors of 2)

coupling grows with decreasing µ
 expansion in αs not useful at low µ

figure: Rev. Part. Phys. 2012

I not everything can be expanded in coupling (e.g. e−const/α)
non-perturbative effects most ubiquitous in strong interactions

will concentrate on uncertainties due to strong interactions

M. Diehl Systematic Uncertainties in Theory 6



Types of uncertainties Perturbation theory and beyond Parton density fits Summary

Factorization: a cornerstone of calculations in QCD

I confinement: quarks and gluons do not exist as free particles;
only hadrons are observed
 even at very high energies pp (and ep) collisions involve
dynamics at scales ∼ 1 GeV and below

I idea: separate physics at high and low momentum scales
I at high scales use expansion in αs
I at low scales:

determine non-perturbative quantities (e.g. parton densities)
from experiment, theory or models
once they are determined, we have predictive power
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Example: p+ p→ H +X (X = anything)

Ht

g + g → H + g

hard scattering

parton density

parton density
p

p

I factorization formula: parton densities
and hard-scattering subprocesses gg → H, gg → H + g, . . .
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Example: p+ p→ H +X (X = anything)

Ht

g + g → H + g

hard scattering

parton density

parton density
p

p

I actual physics more complicated: soft gluon exchange

I outside domain of perturbation theory  must model
I does not affect sufficiently inclusive observables
I but does matter for details of final state  “underlying event”
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Example: p+ p→ H +X (X = anything)

Ht

g + g → H + g

hard scattering

parton density

parton density
p

p

I if additional interactions hard  “multiparton interactions”
suppressed in sufficiently inclusive observables
no systematic theory yet  must model
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Factorization formulae
schematic structure for pp collisions

dσ

d(variables)
= f1(µF )⊗

x1

1

Qn
C
nµF
Q
,
µR
Q
,αs(µR), . . .

o
⊗
x2
f2(µF )

+O
“ 1

Qn+1
or

1

Qn+2

”
I f1, f2 = parton densities, C = hard-scattering coefficient

I Q = hard momentum scale (e.g. Higgs mass, jet ET )
x1, x2 = dimensionless variables constructed from kinematics

I convolution f ⊗
x
g =

∫ 1

x

dz

z
f
(x
z

)
g(z)

I in C(. . .) possible dependence on mt,mH etc.

I higher-order corrections (1st line) → next slides
power corrections (2nd line) → not discussed here
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Factorization formulae
schematic structure for pp collisions

dσ

d(variables)
= f1(µF )⊗

x1

1

Qn
C
nµF
Q
,
µR
Q
,αs(µR), . . .

o
⊗
x2
f2(µF )

+O
“ 1

Qn+1
or

1

Qn+2

”
I have αs expansions for C and for df/dµF

I µR = renormalization scale
separates physics at scale Q from physics at much higher scales
(ultraviolet region)
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Factorization formulae
schematic structure for pp collisions

dσ

d(variables)
= f1(µF )⊗

x1

1

Qn
C
nµF
Q
,
µR
Q
,αs(µR), . . .

o
⊗
x2
f2(µF )

+O
“ 1

Qn+1
or

1

Qn+2

”
I have αs expansions for C and for df/dµF

I µF = factorization scale
separates physics at scale Q from physics at lower scales

Ht

g + g → H + g

hard scattering

parton density

parton density
p

p
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Renormalization scale dependence

on next slides write µ instead of µR for brevity

I renormalization group equation

d

d logµ2
αs(µ) = β

(
αs(µ)

)
with β(αs) = −α2

s

(
b
nf
0 + b

nf
1 αs + b

nf
2 α2

s + b
nf
3 α3

s + . . .
)

I in practice: truncate series of β(αs) and solve RGE
numerically or analytically (possibly approximate)

I higher coefficients in αs expansion of hard-scattering
coefficient are µ dependent

C = αms (µ)C0 + αm+1
s (µ)C1

(
Q
µ

)
+ αm+2

s (µ)C2

(
Q
µ

)
+ . . .

but C is independent of µ to any given accuracy in αs:

d

d logµ2
C(µ) = 0
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see how this works:

I set µ = Q in expansion:

C = αms (µ)C0 + αm+1
s (µ)C1

`
Q
µ

´
+ αm+2

s (µ)C2

`
Q
µ

´
+ . . .

= αms (Q)C0 + αm+1
s (Q)C1(1) + αm+2

s (Q)C2(1) + . . .

I expand αs(Q) = αs(µ) + a1

`
Q
µ

´
α2
s(µ) + a2

`
Q
µ

´
α3
s(µ) +O(α4

s)

d

d logQ2
(l.h.s.) = β

`
αs(Q)

´
= −b0α2

s(Q)− b1α3
s(Q) +O(α4

s)

= −b0α2
s(µ)− 2a1b0α

3
s(µ)− b1α3

s(µ) +O(α4
s)

d

d logQ2
(r.h.s.) =

da1

d logQ2
α2
s(µ) +

da2

d logQ2
α3
s(µ) +O(α4

s)

I compare coefficients of αns (µ):

da1

d logQ2
= −b0 ⇒ a1

`
Q
µ

´
= −b0 log Q2

µ2

da2

d logQ2
= −2a1b0 − b1 ⇒ a2

`
Q
µ

´
= +b20 log2 Q2

µ2 − b1 log Q2

µ2
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I inserting

αs(Q) = αs(µ)
h
1−αs(µ) b0 log Q2

µ2 +α2
s(µ)

“
b20 log2 Q2

µ2 −b1 log Q2

µ2

”
+. . .

i
into C = αms (Q)

h
C0 + αs(Q)C1(1) + α2

s(Q)C2(1) + . . .
i

get

C = αms (µ)

×
h
1− αs(µ)mb0 log Q2

µ2 + α2
s(µ)

“
m(m+1)

2
b20 log2 Q2

µ2 −mb1 log Q2

µ2

”i
×
h
C0 + αs(µ)C1(1) + α2

s(µ)
“
C2(1)− C1(1) b0 log Q2

µ2

”i
+O(αm+3

s )

I in C = αms (µ)C0 + αm+1
s (µ)C1

`
Q
µ

´
+ αm+2

s (µ)C2

`
Q
µ

´
+ . . .

have coefficients

C1

`
Q
µ

´
= C1(1)−mb0C0 log Q2

µ2

C2

`
Q
µ

´
= C2(1)−

h
(m+ 1)b0C1(1) +mb1C0

i
log Q2

µ2 + m(m+1)
2

b20C0 log2 Q2

µ2

I check (exercise) : d
d log µ2C

`
Q
µ
, αs(µ)

´
=
h

∂
∂ log µ2 + β ∂

∂αs

i
C = 0
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I have

C = αms (µ)C0 + αm+1
s (µ)C1

`
Q
µ

´
+ αm+2

s (µ)C2

`
Q
µ

´
+ . . .

with

C1

`
Q
µ

´
= C1(1)−mb0C0 log Q2

µ2

C2

`
Q
µ

´
= C2(1)−

h
(m+ 1)b0C1(1) +mb1C0

i
log Q2

µ2 + m(m+1)
2

b20C0 log2 Q2

µ2

I calculating C0 (LO) get also terms αm+1
s log Q2

µ2 , α
m+2
s log2 Q2

µ2 , . . .

calculating C1(1) (NLO) get also terms αm+2
s log Q2

µ2 , α
m+3
s log2 Q2

µ2 , . . .

 recover logarithmic terms at higher orders, but not coefficients Cn(1)

I varying µ in NnLO result get variation at Nn+1LO corresponding to

αn+1
s

n+1−mP
i=1

(known coeff.)× logi µ
2

Q2 +O(αn+2
s )

but no information on αn+1
s Cn+1(1)

0

1

m m+1

i

n

LL

NLL

orders in αn
s Li
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Renormalization scale dependence

I varying µ in NnLO result get variation at Nn+1LO corresponding to

αn+1
s

n+1−mP
i=1

(known coeff.)× logi µ
2

Q2 +O(αn+2
s )

but no information on αn+1
s Cn+1(1)

consequences:

I when calculate higher orders
expect that scale dependence decreases

I scale variation in NnLO result estimates size of certain
higher-order terms, but not of all

I uncalculated higher orders often estimated by varying µ
between 1/2 and 2 times some central value
is a conventional choice

I but what to take for central value?
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Renormalization scale choice

I prescriptions for scale choice aiming to minimizing size of
higher-order terms

take NLO calc. of C(µ) = αms C0 + αm+1
s C1(µ) +O(αm+2

s )
I µ = typical virtuality in hard-scattering graphs

useful guidance, but obviously not a well-defined quantity

I principle of minimal sensitivity (PMS): d
dµ2

1∑
i=0

αm+i
s Ci(µ) = 0

I fastest apparent convergence (FAC): C1(µ) = 0

I Brodsky-Mackenzie-Lepage (BLM): more complicated

I how much these reduce higher orders depends on process
cannot “predict” higher orders without calculating them
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Renormalization scale dependence

I example: inclusive hadronic decay of Higgs boson
via top quark loop (i.e. without direct coupling to bb̄)

I in perturbation theory: H → 2g, H → 3g, . . .
known to N3LO Baikov, Chetyrkin, hep-ph/0604194

 0
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Γ 
[k
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]

µ /MH

LO
NLO

NNLO
NNNLO

plot for mH = 125 GeV
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Factorization scale dependence

I scale dependence of PDF given by DGLAP equation:

d

d logµ2
F

PDF(x, µF ) = PDF(µF )⊗
x
P
(
αs(µF )

)
evolution kernels have perturbative expansion in αs :

P
(
z, αs(µF )

)
= αs(µF )P0(z) + α2

s(µF )P1(z) +O(α3
s)

• choose approx. of evolution kernel (LO, NLO, NNLO)
• solve DGLAP equations numerically
⇒ obtain PDF(µ1) from PDF(µ0)

I hard-scattering coefficient contains powers of log(µF /Q)
µF independence of PDF(µF )⊗ C(µF ) implies

d

d logµ2
F

C
(
x, µF , µR, αs(µR)

)
= −P (αs(µF )

)⊗
x
C
(
µF , µR, αs(µR)

)
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Factorization scale dependence

d

d logµ2
F

C
`
x, µF , αs(µR), . . .

´
= −P

`
αs(µF )

´
⊗
x
C
`
µF , µR, αs(µR)

´
using renormalization group equation can rewrite

αs(µR) = αs(µF ) +
P
i>1

ci(µR/µF )αis(µF )

with expansions

C
`
µF , αs(µF ), µR

´
= C0(µR) + αs(µF )C1(µF , µR) +O(α2

s)

P
`
αs(µF )

´
= αs(µF )P0 + α2

s(µF )P1 +O(α3
s)

can match coefficients order by order

⇒ C1(µF , µR) = C1(Q,µR)− C0(µR)⊗ P0 log
µ2
F

Q2
etc.
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Factorization scale dependence

I try to chose µF such as to avoid large higher-order coefficients

I with C calculated to NnLO have µF dependence of order
Nn+1LO in convolution PDF⊗ C

if evolve PDFs with DGLAP kernels up to αns Pn−1 or higher

I as for µR may estimate certain higher-order terms by varying
µF between e.g. 1/2 and 2 times some central value

I as for µR no general solution for finding µF that minimizes
higher orders

I often set µF = µR (and vary them) together
but can also set and vary them separately
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Scale dependence

examples: rapidity distributions in Z/γ∗ and in Higgs production

Anastasiou, Dixon, Melnikov, Petriello, hep-ph/0312266 Anastasiou, Melnikov, Petriello, hep-ph/0501130

µF = µR = µ varied within factor 1/2 to 2

M. Diehl Systematic Uncertainties in Theory 24



Types of uncertainties Perturbation theory and beyond Parton density fits Summary

LO, NLO, and higher

I instead of varying scale(s) may estimate higher orders by
comparing NnLO result with Nn−1LO

I caveat: comparison NLO vs. LO may not be representative for
situation at higher orders

often have especially large step from LO to NLO
I certain types of contribution may first appear at NLO

e.g. terms with gluon density g(x) in DIS, pp→W +X, etc.
I final state at LO may be too restrictive

e.g. in dσ
dET1 dET2

for dijet production

ET1

ET2

ET1

ET2
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Multi-scale problems

I scale choice even less obvious when have several hard scales
e.g. Q and pT , Q and mc, pT and mW , . . .
may try to identify typical virtualities in graphs

I for small/large ratios of hard scales
(or small/large values of scaling variables, e.g. x→ 0 or x→ 1)

then have large logarithms in C for any choice of µR, µF
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Multi-scale problems

I for certain cases can resum large logarithms to all orders
e.g. αns log n+i for all n with given i = 0, 1, . . .

I transverse-momentum logs: log pT

Q for pT � Q  Sudakov
factors

I threshold logs: log M2

ŝ for ŝ→M2

for production of mass M with partonic collision energy
√
ŝ

σ(pp) ∼
R
dz1dz2 PDF(z1) PDF(z2)C(ŝ = z1z2s)

I high-energy logs: log Q2

s for s� Q2  BFKL equation

I resummation procedure may have its own uncertainties

e.g. from integrals of type
Q∫
0

dµ fct.
(
αs(µ)

)
 Landau pole
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Jet production

I fundamental problem: factorization formulae
are for prod’n of high-pT partons, not high-pT hadrons

I parton → hadron transition non-perturbative  need model
I to minimize theory uncertainties:

I define hadronic jets using an algorithm that is not sensitive
to collinear and soft radiation (beyond perturbative control)

Ht

I apply algorithm to partons in computation and to hadrons in
measurement

I hadronization corrections should then be moderate
and typically decrease with jet ET
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Monte Carlo generators e.g. Herwig, Pythia, Sherpa

I build on structure of factorization formulae

I but compute fully exclusive final states (no unspecified “+X”)

Ht

p

p

I ingredients:

I parton densities and hard-scattering matrix elements
I parton showers: small-angle radiation from partons in initial

and final state in perturbative region
I models for hadronization, underlying event, multiparton int’s
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Parton density fits

Principle of PDF determinations:

I compare data with factorization formulae for selected
processes and kinematics

I specify PDF at reference scale µ0

use DGLAP eqs. to evolve to scales µ used in fact. formulae

I conventional determinations parameterize PDFs at µ0 and
determine parameters by χ2 fit to data

NNPDF collab. uses neural networks, avoids choice of function
claims “unbiased” representation of PDFs
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Recent PDF sets

PDF set order fitted PDF µ2
0 Q2

min αs(mZ)

parameters [GeV2] [GeV2]

JR09 NNLO 20 0.55 2 0.1124(20) fitted

ABKM09 NNLO 21 9 2.5 0.1135(14) fitted

MSTW08 LO 28 1 2 0.139

NLO 0.120

NNLO 0.117

HERAPDF1.0 NLO 10 1.9 3.5 0.1176

CT10 NLO 26 1.69 4 0.118

NNPDF2.1 LO 259 2 3 0.119, 0.130

NLO 0.119

NNLO 0.119

Qmin = minimum Q for fitted data on deep inelastic scattering
updates: ABKM09 → ABM10, HERAPDF1.0 → 1.5, NNPDF2.1 → 2.3
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Recent PDF sets

PDF set mc mb tolerance T

[GeV] [GeV] 68% CL 90% CL

JR09 1.3 4.2 4.54

ABKM09 1.5 4.5 1

MSTW08 1.4 4.75 ≈ 1 to 6.5 ≈ 2.5 to 11

HERAPDF1.0 1.4 4.75 1

CT10 1.3 4.75 10

NNPDF2.1 1.414 4.75 − −

mc and mb are pole masses

T will be explained later
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Uncertainties on extracted PDFs

“systematic theory uncertainties”

I selection of data sets and kinematics

I perturbative order of evolution and hard-scattering coefficients

I values of αs and mc,mb and possibly other constants

if taken as external parameters i.e. not fitted
some PDF sets are available for different values of αs

I fine details of perturbative calculations
e.g. treatment of heavy quarks, resummation

I power corrections (typically try to avoid by minimal Q in data)

I corrections for data with nuclear targets

errors on fitted parameters

I reflect errors (stat. and syst.) of fitted data
discuss on the following slides
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Parametric errors in PDF fits
see e.g. hep-ph/0201195 (CTEQ6), arXiv:0802.0007 (CTEQ6.6)

arXiv:0901.0002 (MSTW 2008)

I errors obtained in χ2 fit

simplest version: χ2 =
∑
i

[
Di − Ti(p)

]2
σ2
i, stat + σ2

i, syst

Di = data point number i

Ti = corresponding theory prediction

p = {p1, . . . , pk} = set of fitting parameters

more sophisticated treatment for correlated systematic errors,

i.e. overall normalization
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χ2 =
X
i

ˆ
Di − Ti(p)

˜2
σ2
i, stat + σ2

i, syst

if assume that errors of Di follow a Gaussian distribution, then

I fitted p follow a k-dim. Gaussian dist. around true values p0

I have k-dim. χ2 distribution for

∆χ2(p) = χ2(p)− χ2
min =

∑
ij(p− p0)iHij (p− p0)j

H = Hesse matrix = inverse of covariance matrix V
I observable O(p) follows Gaussian dist. with error

∆O = T

√∑
ij

∂O
∂pi

H−1
ij

∂O
∂pj

with T = 1 for 68% C.L., T = 2.71 for 95% C.L. etc.
readily generalizes to several obs. and their correlated errors

 complicated in practice, would need derivatives ∂O/∂pi
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∆O = T

sX
ij

∂O
∂pi

H−1
ij

∂O
∂pj

I diagonalize Hesse matrix H and rescale eigenvectors

⇒ linear combinations zi of (p− p0)j satisfying

∆χ2 =
∑

i
z2
i

∆O = T

√∑
i

∂O
∂zi

∂O
∂zi

=

√∑
i

[O(S+
i )−O(S−i )

2

]2
with eigenvector PDF sets S±i
corresponding to parameters zi = ±T and zj = 0 for j 6= i

in last step have linearized O around z = 0

I for large errors ∆χ2 not quadratic in (p− p0)i or zi
 linear error propagation not reliable
 Lagrange multiplier method (not discussed here)

see e.g. CTEQ, hep-ph/0101051
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The tolerance criterion

I if data points Di follow Gaussian distribution then experiment
with Nj data points contributes χ2

j,min ∼ Nj to global χ2
min

I not always seen in practice: for some cases

I χ2
j,min significantly below or above Nj

I χ2
j,min much larger than χ2 minimized separately for experiment

may be due to inconsistent data sets, shortcomings of theory
description or of PDF parameterization
in such a case standard χ2 errors misrepresent uncertainty

I modified criterion for T adopted by groups CT, MSTW, JR

I obtained by procedure/algorithm looking at χ2 from individual
experiments

I may be seen as ad hoc deviation from “standard statistics”
but “standard criterion” for T requires that all data points
have Gaussian dist. with quoted uncertainties
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The NNPDF approach

I to avoid bias due to functional form of PDFs, use very flexible
functions (called “neural networks”) with large number of free
parameters (about 10× more than in standard approach)

I standard χ2 fit then not possible, instead

I generate Monte Carlo ensemble of replicas of original data
(typically Nrep = 100 or 1000), according to central values and
errors of measurement

I in each replica divide data into “training” and “validation” set
I for each replica minimize χ2 on training set until χ2 of

validation set starts to increase (thus avoiding to fit “noise in
the data”)

I central values and uncertainties on observable (or on PDFs
themselves) given by ensemble average etc.

O =
1

Nrep

Nrep∑
r

Or (∆O)2 =
1

Nrep − 1

Nrep∑
r

(Or −O)2
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Illustration of PDF sets and their errors
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error bands for 68% CL

I spread between different parameterizations often larger than error
bands of single parameterization

I error bands propagate uncertainties of fitted data into PDFs
but do not reflect “systematic theory uncertainties” of PDF
extraction
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Illustration of PDF sets and their errors
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I spread between different parameterizations often larger than error
bands of single parameterization

I error bands propagate uncertainties of fitted data into PDFs
but do not reflect “systematic theory uncertainties” of PDF
extraction
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Illustration of PDF sets and their errors
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I spread between different parameterizations often larger than error
bands of single parameterization

I error bands propagate uncertainties of fitted data into PDFs
but do not reflect “systematic theory uncertainties” of PDF
extraction
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Illustration of PDF sets and their errors
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benchmark NNLO cross sections at
√
s = 7 TeV from Alekhin et al., arXiv:1011.6259

I spread between different parameterizations often larger than error
bands of single parameterization

I error bands propagate uncertainties of fitted data into PDFs
but do not reflect “systematic theory uncertainties” of PDF
extraction
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Summary

I estimating theoretical uncertainties 6= an exact science

I “scale uncertainty” based on renormalization group eq.
estimates certain higher-order terms in αs

prescriptions for scale choice = educated guesses

I higher orders in pert. theory not the only source of uncertainty
full final state details, hadronization corrections, . . .
are more difficult to quantify

I errors of PDF fits reflect uncertainties of fitted data
(not always a straightforward exercise in textbook statistics)
do not include uncertainties of theory used to fit data
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