Systematic Uncertainties in Theory

M. Diehl

Deutsches Elektronen-Synchroton DESY

Hamburg, 21 March 2013

1. Types of uncertainties

- 2. Perturbation theory and beyond
- 3. Uncertainties in parton density fits
- 4. Summary

Different sources of theoretical uncertainties

"observable = theoretical expression"

- 1. theoretical expression is only approximate
 - ▶ often obtained by expansion in small parameter e.g. in coupling constant → perturbation theory → estimate size of uncalculated/neglected terms
 - for some situations/aspects do not have systematic theory must use models

 \rightsquigarrow may estimate uncertainty by comparing different models

Different sources of theoretical uncertainties

"observable = theoretical expression"

- 2. input parameters from standard model, e.g. α_s , $m_{c,b}$, m_t , $m_{W,Z}$, m_H , CKM matrix elements note: running $\alpha_s(\mu)$ depends implicitly on quark masses
- 3. nonperturbative QCD parameters or functions
 - most prominently: parton distributions (PDFs) note: PDFs depend on α_s(μ) via evolution
 - other examples: decay constants, wave functions (e.g. for $B \rightarrow D\ell\nu$, $B \rightarrow \pi K$)

quantities in points 2. and 3. may be obtained from

- comparison "measured observable = theor. expression"
- nonperturbative calculation (e.g. in lattice QCD)

Some parameters and their uncertainties

from: Review of Particles Physics 2012

Phys. Rev. D86 (2012) 010001, http://hepdata.cedar.ac.uk/lbl

relative uncertainty 1.9×10^{-4} $m_W = 80.385 \pm 0.015 \,\mathrm{GeV}$ 2.3×10^{-5} $m_Z = 91.1876 \pm 0.0021 \, \text{GeV}$ 9.0×10^{-5} $m_{\tau} = 1.77682 \pm 0.00016 \, \text{GeV}$ $m_b = 4.18 \pm 0.03 \, \text{GeV}$ 0.72%+3.1% $m_t = 160^{+5}_{-4} \, \text{GeV}$ -2.5% 3.2×10^{-9} $1/\alpha_{em} = 137.035999074(44)$ $\alpha_s(m_Z) = 0.1184 \pm 0.0007$ 0.59% $= 0.1183 \pm 0.0012$ (without lattice QCD) 1.0%

masses and couplings often appear raised to some power \rightarrow larger uncertainties m_b and m_t are $\overline{\rm MS}$ masses at scales $m_b(m_b)$, $m_t(m_t)$

Perturbation theory and beyond •••••••••• Parton density fits

Summary

Coupling constants and their running

- due to quantum effects (loop corrections) coupling constants depend on renormalization scale µ set by "typical momentum scale" of physical process
- ▶ electroweak interactions: \(\alpha_{em}(0) \approx 0.00730\) generally quick convergence of pert. series \(\mathbf{a}\)
- ▶ strong interactions: $\alpha_s(m_Z) \approx 0.118$, $\alpha_s(m_\tau) \approx 0.33$ higher order corrections often very important (easily factors of 2) coupling grows with decreasing μ \rightarrow expansion in α_s not useful at low μ

figure: Rev. Part. Phys. 2012

▶ not everything can be expanded in coupling (e.g. e^{-const/α}) non-perturbative effects most ubiquitous in strong interactions

will concentrate on uncertainties due to strong interactions

Factorization: a cornerstone of calculations in QCD

 confinement: quarks and gluons do not exist as free particles; only hadrons are observed
 veven at very high energies pp (and ep) collisions involve

dynamics at scales $\sim 1\,{
m GeV}$ and below

- idea: separate physics at high and low momentum scales
 - \blacktriangleright at high scales use expansion in α_s
 - at low scales:

determine non-perturbative quantities (e.g. parton densities) from experiment, theory or models once they are determined, we have predictive power

▶ factorization formula: parton densities and hard-scattering subprocesses gg → H, gg → H + g, ...

Example: $p + p \rightarrow H + X$ (X = anything)

- actual physics more complicated: soft gluon exchange
 - \blacktriangleright outside domain of perturbation theory \rightsquigarrow must model
 - does not affect sufficiently inclusive observables
 - ▶ but does matter for details of final state ~→ "underlying event"

Example: $p + p \rightarrow H + X$ (X = anything)

► if additional interactions hard ~> "multiparton interactions" suppressed in sufficiently inclusive observables no systematic theory yet ~> must model

Factorization formulae schematic structure for pp collisions

$$\begin{aligned} \frac{d\sigma}{d(\mathsf{variables})} &= f_1(\mu_F) \underset{x_1}{\otimes} \frac{1}{Q^n} C\Big\{\frac{\mu_F}{Q}, \frac{\mu_R}{Q}, \alpha_s(\mu_R), \dots\Big\} \underset{x_2}{\otimes} f_2(\mu_F) \\ &+ \mathcal{O}\Big(\frac{1}{Q^{n+1}} \text{ or } \frac{1}{Q^{n+2}}\Big) \end{aligned}$$

- $f_1, f_2 = parton densities, \quad C = hard-scattering coefficient$
- ▶ Q = hard momentum scale (e.g. Higgs mass, jet E_T) x₁, x₂ = dimensionless variables constructed from kinematics

• convolution
$$f \bigotimes_{x} g = \int_{x}^{1} \frac{dz}{z} f\left(\frac{x}{z}\right) g(z)$$

- ▶ in C(...) possible dependence on m_t, m_H etc.
- ▶ higher-order corrections (1st line) → next slides power corrections (2nd line) → not discussed here

Factorization formulae schematic structure for pp collisions

$$\begin{aligned} \frac{d\sigma}{d(\text{variables})} &= f_1(\mu_F) \underset{x_1}{\otimes} \frac{1}{Q^n} C\Big\{\frac{\mu_F}{Q}, \frac{\mu_R}{Q}, \alpha_s(\mu_R), \dots\Big\} \underset{x_2}{\otimes} f_2(\mu_F) \\ &+ \mathcal{O}\Big(\frac{1}{Q^{n+1}} \text{ or } \frac{1}{Q^{n+2}}\Big) \end{aligned}$$

• have
$$\alpha_s$$
 expansions for C and for $df/d\mu_F$

• μ_R = renormalization scale

separates physics at scale ${\cal Q}$ from physics at much higher scales (ultraviolet region)

Factorization formulae schematic structure for pp collisions

ы.

$$\begin{aligned} \frac{d\sigma}{d(\mathsf{variables})} &= f_1(\mu_F) \underset{x_1}{\otimes} \frac{1}{Q^n} C\Big\{\frac{\mu_F}{Q}, \frac{\mu_R}{Q}, \alpha_s(\mu_R), \dots\Big\} \underset{x_2}{\otimes} f_2(\mu_F) \\ &+ \mathcal{O}\Big(\frac{1}{Q^{n+1}} \text{ or } \frac{1}{Q^{n+2}}\Big) \end{aligned}$$

▶ have α_s expansions for C and for $df/d\mu_F$

$\blacktriangleright \mu_F =$ factorization scale

separates physics at scale Q from physics at lower scales

Systematic Uncertainties in Theory

Renormalization scale dependence

on next slides write μ instead of μ_R for brevity

renormalization group equation

$$\frac{d}{d\log\mu^2}\alpha_s(\mu) = \beta\left(\alpha_s(\mu)\right)$$

with $\beta(\alpha_s) = -\alpha_s^2\left(b_0^{n_f} + b_1^{n_f}\alpha_s + b_2^{n_f}\alpha_s^2 + b_3^{n_f}\alpha_s^3 + \dots\right)$

- in practice: truncate series of β(α_s) and solve RGE numerically or analytically (possibly approximate)
- ▶ higher coefficients in α_s expansion of hard-scattering coefficient are µ dependent

$$C = \alpha_s^m(\mu) C_0 + \alpha_s^{m+1}(\mu) C_1\left(\frac{Q}{\mu}\right) + \alpha_s^{m+2}(\mu) C_2\left(\frac{Q}{\mu}\right) + \dots$$

but C is independent of μ to any given accuracy in α_s :

$$\frac{d}{d\log\mu^2}C(\mu) = 0$$

see how this works:

▶ set $\mu = Q$ in expansion:

$$C = \alpha_s^m(\mu) C_0 + \alpha_s^{m+1}(\mu) C_1(\frac{Q}{\mu}) + \alpha_s^{m+2}(\mu) C_2(\frac{Q}{\mu}) + \dots$$

= $\alpha_s^m(Q) C_0 + \alpha_s^{m+1}(Q) C_1(1) + \alpha_s^{m+2}(Q) C_2(1) + \dots$

• expand $\alpha_s(Q) = \alpha_s(\mu) + a_1\left(\frac{Q}{\mu}\right)\alpha_s^2(\mu) + a_2\left(\frac{Q}{\mu}\right)\alpha_s^3(\mu) + \mathcal{O}(\alpha_s^4)$

$$\frac{d}{d\log Q^2} (\mathsf{l.h.s.}) = \beta \left(\alpha_s(Q) \right) = -b_0 \alpha_s^2(Q) - b_1 \alpha_s^3(Q) + \mathcal{O}(\alpha_s^4)$$
$$= -b_0 \alpha_s^2(\mu) - 2a_1 b_0 \alpha_s^3(\mu) - b_1 \alpha_s^3(\mu) + \mathcal{O}(\alpha_s^4)$$
$$\frac{d}{d\log Q^2} (\mathsf{r.h.s.}) = \frac{da_1}{d\log Q^2} \alpha_s^2(\mu) + \frac{da_2}{d\log Q^2} \alpha_s^3(\mu) + \mathcal{O}(\alpha_s^4)$$

• compare coefficients of $\alpha_s^n(\mu)$:

$$\frac{da_1}{d\log Q^2} = -b_0 \qquad \Rightarrow \qquad a_1\left(\frac{Q}{\mu}\right) = -b_0\log\frac{Q^2}{\mu^2}$$
$$\frac{da_2}{d\log Q^2} = -2a_1b_0 - b_1 \qquad \Rightarrow \qquad a_2\left(\frac{Q}{\mu}\right) = +b_0^2\log^2\frac{Q^2}{\mu^2} - b_1\log\frac{Q^2}{\mu^2}$$

inserting

$$\begin{aligned} \alpha_s(Q) &= \alpha_s(\mu) \Big[1 - \alpha_s(\mu) \, b_0 \log \frac{Q^2}{\mu^2} + \alpha_s^2(\mu) \Big(b_0^2 \log^2 \frac{Q^2}{\mu^2} - b_1 \log \frac{Q^2}{\mu^2} \Big) + \dots \Big] \\ \text{into} \quad C &= \alpha_s^m(Q) \left[C_0 + \alpha_s(Q) \, C_1(1) + \alpha_s^2(Q) \, C_2(1) + \dots \right] \quad \text{get} \end{aligned}$$

$$C = \alpha_s^m(\mu)$$

$$\times \left[1 - \alpha_s(\mu) \, mb_0 \log \frac{Q^2}{\mu^2} + \alpha_s^2(\mu) \left(\frac{m(m+1)}{2} \, b_0^2 \log^2 \frac{Q^2}{\mu^2} - mb_1 \log \frac{Q^2}{\mu^2} \right) \right]$$

$$\times \left[C_0 + \alpha_s(\mu) \, C_1(1) + \alpha_s^2(\mu) \left(C_2(1) - C_1(1) \, b_0 \log \frac{Q^2}{\mu^2} \right) \right] + \mathcal{O}(\alpha_s^{m+3})$$

• in $C = \alpha_s^m(\mu) C_0 + \alpha_s^{m+1}(\mu) C_1\left(\frac{Q}{\mu}\right) + \alpha_s^{m+2}(\mu) C_2\left(\frac{Q}{\mu}\right) + \dots$ have coefficients

$$C_1\left(\frac{Q}{\mu}\right) = C_1(1) - mb_0C_0\log\frac{Q^2}{\mu^2}$$

$$C_2\left(\frac{Q}{\mu}\right) = C_2(1) - \left[(m+1)b_0C_1(1) + mb_1C_0\right]\log\frac{Q^2}{\mu^2} + \frac{m(m+1)}{2}b_0^2C_0\log^2\frac{Q^2}{\mu^2}$$

• check (exercise):
$$\frac{d}{d \log \mu^2} C(\frac{Q}{\mu}, \alpha_s(\mu)) = \left[\frac{\partial}{\partial \log \mu^2} + \beta \frac{\partial}{\partial \alpha_s}\right] C = 0$$

have

$$C = \alpha_s^m(\mu) C_0 + \alpha_s^{m+1}(\mu) C_1\left(\frac{Q}{\mu}\right) + \alpha_s^{m+2}(\mu) C_2\left(\frac{Q}{\mu}\right) + \dots$$

with

$$C_1\left(\frac{Q}{\mu}\right) = C_1(1) - mb_0 C_0 \log \frac{Q^2}{\mu^2}$$

$$C_2\left(\frac{Q}{\mu}\right) = C_2(1) - \left[(m+1)b_0 C_1(1) + mb_1 C_0\right] \log \frac{Q^2}{\mu^2} + \frac{m(m+1)}{2} b_0^2 C_0 \log^2 \frac{Q^2}{\mu^2}$$

- ▶ calculating C₀ (LO) get also terms \$\alpha_s^{m+1} \log \frac{Q^2}{\mu^2}\$, \$\alpha_s^{m+2} \log^2 \frac{Q^2}{\mu^2}\$, ...
 calculating C₁(1) (NLO) get also terms \$\alpha_s^{m+2} \log \frac{Q^2}{\mu^2}\$, \$\alpha_s^{m+3} \log^2 \frac{Q^2}{\mu^2}\$, ...
 \$\sim \$ recover logarithmic terms at higher orders, but not coefficients \$C_n(1)\$
- ▶ varying μ in NⁿLO result get variation at Nⁿ⁺¹LO corresponding to $\alpha_s^{n+1} \sum_{i=1}^{n+1-m} (\text{known coeff.}) \times \log^i \frac{\mu^2}{Q^2} + \mathcal{O}(\alpha_s^{n+2})$ orders in $\alpha_s^n L^i$ but no information on $\alpha_s^{n+1} C_{n+1}(1)$

Renormalization scale dependence

▶ varying μ in NⁿLO result get variation at Nⁿ⁺¹LO corresponding to $\alpha_s^{n+1} \sum_{i=1}^{n+1-m} (\text{known coeff.}) \times \log^i \frac{\mu^2}{Q^2} + \mathcal{O}(\alpha_s^{n+2})$ but no information on $\alpha_s^{n+1}C_{n+1}(1)$

consequences:

- when calculate higher orders expect that scale dependence decreases
- scale variation in NⁿLO result estimates size of certain higher-order terms, but not of all
 - uncalculated higher orders often estimated by varying µ between 1/2 and 2 times some central value is a conventional choice
 - but what to take for central value?

Renormalization scale choice

 prescriptions for scale choice aiming to minimizing size of higher-order terms

take NLO calc. of $C(\mu)=\alpha_s^m C_0+\alpha_s^{m+1}C_1(\mu)+\mathcal{O}(\alpha_s^{m+2})$

- µ = typical virtuality in hard-scattering graphs useful guidance, but obviously not a well-defined quantity
- principle of minimal sensitivity (PMS): $\frac{d}{d\mu^2} \sum_{i=0}^{1} \alpha_s^{m+i} C_i(\mu) = 0$
- fastest apparent convergence (FAC): $C_1(\mu) = 0$
- Brodsky-Mackenzie-Lepage (BLM): more complicated
- how much these reduce higher orders depends on process cannot "predict" higher orders without calculating them

Renormalization scale dependence

- example: inclusive hadronic decay of Higgs boson via top quark loop (i.e. without direct coupling to bb)
- ▶ in perturbation theory: $H \rightarrow 2g$, $H \rightarrow 3g$, ... known to N³LO Baikov, Chetyrkin, hep-ph/0604194

plot for $m_H = 125 \,\mathrm{GeV}$

Systematic Uncertainties in Theory

Factorization scale dependence

scale dependence of PDF given by DGLAP equation:

$$\frac{d}{d\log\mu_F^2}\mathsf{PDF}(x,\mu_F) = \mathsf{PDF}(\mu_F) \underset{x}{\otimes} P\big(\alpha_s(\mu_F)\big)$$

evolution kernels have perturbative expansion in α_s :

$$P(z,\alpha_s(\mu_F)) = \alpha_s(\mu_F)P_0(z) + \alpha_s^2(\mu_F)P_1(z) + \mathcal{O}(\alpha_s^3)$$

- choose approx. of evolution kernel (LO, NLO, NNLO)
- solve DGLAP equations numerically \Rightarrow obtain PDF(μ_1) from PDF(μ_0)
- ▶ hard-scattering coefficient contains powers of $\log(\mu_F/Q)$ μ_F independence of PDF $(\mu_F) \otimes C(\mu_F)$ implies

$$\frac{d}{d\log\mu_F^2}C\big(x,\mu_F,\mu_R,\alpha_s(\mu_R)\big) = -P\big(\alpha_s(\mu_F)\big) \underset{x}{\otimes} C\big(\mu_F,\mu_R,\alpha_s(\mu_R)\big)$$

Factorization scale dependence

$$\frac{d}{d\log\mu_F^2}C\big(x,\mu_F,\alpha_s(\mu_R),\ldots\big) = -P\big(\alpha_s(\mu_F)\big) \bigotimes_x C\big(\mu_F,\mu_R,\alpha_s(\mu_R)\big)$$

using renormalization group equation can rewrite

$$\alpha_s(\mu_R) = \alpha_s(\mu_F) + \sum_{i>1} c_i(\mu_R/\mu_F) \alpha_s^i(\mu_F)$$

with expansions

$$C(\mu_F, \alpha_s(\mu_F), \mu_R) = C_0(\mu_R) + \alpha_s(\mu_F)C_1(\mu_F, \mu_R) + \mathcal{O}(\alpha_s^2)$$
$$P(\alpha_s(\mu_F)) = \alpha_s(\mu_F)P_0 + \alpha_s^2(\mu_F)P_1 + \mathcal{O}(\alpha_s^3)$$

can match coefficients order by order

$$\Rightarrow \quad C_1(\mu_F, \mu_R) = C_1(Q, \mu_R) - C_0(\mu_R) \otimes P_0 \log \frac{\mu_F^2}{Q^2} \quad \text{etc.}$$

Factorization scale dependence

- \blacktriangleright try to chose μ_F such as to avoid large higher-order coefficients
- ▶ with C calculated to NⁿLO have μ_F dependence of order Nⁿ⁺¹LO in convolution PDF $\otimes C$

if evolve PDFs with DGLAP kernels up to $\alpha_s^n P_{n-1}$ or higher

- ▶ as for μ_R may estimate certain higher-order terms by varying μ_F between e.g. 1/2 and 2 times some central value
- ▶ as for μ_R no general solution for finding μ_F that minimizes higher orders
- ▶ often set µ_F = µ_R (and vary them) together but can also set and vary them separately

Scale dependence

examples: rapidity distributions in Z/γ^* and in Higgs production

Anastasiou, Dixon, Melnikov, Petriello, hep-ph/0312266

Anastasiou, Melnikov, Petriello, hep-ph/0501130

 $\mu_F = \mu_R = \mu$ varied within factor 1/2 to 2

Parton density fits

LO, NLO, and higher

- instead of varying scale(s) may estimate higher orders by comparing NⁿLO result with Nⁿ⁻¹LO
- caveat: comparison NLO vs. LO may not be representative for situation at higher orders

often have especially large step from LO to NLO

- certain types of contribution may first appear at NLO e.g. terms with gluon density g(x) in DIS, $pp \rightarrow W + X$, etc.
- ► final state at LO may be too restrictive e.g. in $\frac{d\sigma}{dE_{T1} dE_{T2}}$ for dijet production

Multi-scale problems

- scale choice even less obvious when have several hard scales
 e.g. Q and p_T, Q and m_c, p_T and m_W, ...
 may try to identify typical virtualities in graphs
- For small/large ratios of hard scales (or small/large values of scaling variables, e.g. x → 0 or x → 1) then have large logarithms in C for any choice of µ_R, µ_F

Multi-scale problems

- ▶ for certain cases can resum large logarithms to all orders e.g. aⁿ_s logⁿ⁺ⁱ for all n with given i = 0, 1, ...
 - \blacktriangleright transverse-momentum logs: $\log \frac{p_T}{Q}$ for $p_T \ll Q ~~ \rightsquigarrow~$ Sudakov factors
 - ► threshold logs: $\log \frac{M^2}{\hat{s}}$ for $\hat{s} \to M^2$ for production of mass M with partonic collision energy $\sqrt{\hat{s}}$ $\sigma(pp) \sim \int dz_1 dz_2 \operatorname{PDF}(z_1) \operatorname{PDF}(z_2) C(\hat{s} = z_1 z_2 s)$
 - ▶ high-energy logs: $\log \frac{Q^2}{s}$ for $s \gg Q^2 \quad \rightsquigarrow \quad \mathsf{BFKL}$ equation
- ► resummation procedure may have its own uncertainties e.g. from integrals of type $\int_{0}^{Q} d\mu \operatorname{fct.}(\alpha_{s}(\mu)) \quad \rightsquigarrow \quad \text{Landau pole}$

Jet production

- fundamental problem: factorization formulae are for prod'n of high-p_T partons, not high-p_T hadrons
- \blacktriangleright parton \rightarrow hadron transition non-perturbative \rightsquigarrow need model
- to minimize theory uncertainties:
 - define hadronic jets using an algorithm that is not sensitive to collinear and soft radiation (beyond perturbative control)

- apply algorithm to partons in computation and to hadrons in measurement
- ► hadronization corrections should then be moderate and typically decrease with jet E_T

Monte Carlo generators e.g. HERWIG, PYTHIA, SHERPA

- build on structure of factorization formulae
- but compute fully exclusive final states (no unspecified "+X")

ingredients:

- parton densities and hard-scattering matrix elements
- parton showers: small-angle radiation from partons in initial and final state in perturbative region
- models for hadronization, underlying event, multiparton int's

Parton density fits

Principle of PDF determinations:

- compare data with factorization formulae for selected processes and kinematics
- ► specify PDF at reference scale µ₀ use DGLAP eqs. to evolve to scales µ used in fact. formulae
- conventional determinations parameterize PDFs at μ₀ and determine parameters by χ² fit to data

NNPDF collab. uses neural networks, avoids choice of function claims "unbiased" representation of PDFs

Recent PDF sets

PDF set	order	fitted PDF	μ_0^2	Q^2_{min}	$\alpha_s(m_Z$)
		parameters	$[GeV^2]$	$[GeV^2]$		
JR09	NNLO	20	0.55	2	0.1124(20)	fitted
ABKM09	NNLO	21	9	2.5	0.1135(14)	fitted
MSTW08	LO	28	1	2	0.139	
	NLO				0.120	
	NNLO				0.117	
HERAPDF1.0	NLO	10	1.9	3.5	0.1176	
CT10	NLO	26	1.69	4	0.118	
NNPDF2.1	LO	259	2	3	0.119, 0.130	
	NLO				0.119	
	NNLO				0.119	

 $Q_{\min} = \min Q$ for fitted data on deep inelastic scattering updates: ABKM09 \rightarrow ABM10, HERAPDF1.0 \rightarrow 1.5, NNPDF2.1 \rightarrow 2.3

Recent PDF sets

PDF set	m_c	m_b	tolerance T		
	[GeV]	[GeV]	68% CL	90% CL	
JR09	1.3	4.2	4.54		
ABKM09	1.5	4.5	1		
MSTW08	1.4	4.75	$\approx 1~{\rm to}~6.5$	$\approx 2.5 \ {\rm to} \ 11$	
HERAPDF1.0	1.4	4.75	1		
CT10	1.3	4.75		10	
NNPDF2.1	1.414	4.75	-	_	

 m_c and m_b are pole masses T will be explained later

Uncertainties on extracted PDFs

- "systematic theory uncertainties"
 - selection of data sets and kinematics
 - perturbative order of evolution and hard-scattering coefficients
 - ▶ values of α_s and m_c, m_b and possibly other constants if taken as external parameters i.e. not fitted some PDF sets are available for different values of α_s
 - fine details of perturbative calculations
 e.g. treatment of heavy quarks, resummation
 - ▶ power corrections (typically try to avoid by minimal Q in data)
 - corrections for data with nuclear targets

errors on fitted parameters

 reflect errors (stat. and syst.) of fitted data discuss on the following slides

Parametric errors in PDF fits

see e.g. hep-ph/0201195 (CTEQ6), arXiv:0802.0007 (CTEQ6.6) arXiv:0901.0002 (MSTW 2008)

 \blacktriangleright errors obtained in χ^2 fit

simplest version:
$$\chi^2 = \sum_i \frac{\left[D_i - T_i(\boldsymbol{p})\right]^2}{\sigma_{i,\,\text{stat}}^2 + \sigma_{i,\,\text{syst}}^2}$$

 $D_i = \text{data point number } i$ $T_i = \text{corresponding theory prediction}$ $p = \{p_1, \dots, p_k\} = \text{set of fitting parameters}$

more sophisticated treatment for correlated systematic errors, i.e. overall normalization

$$\chi^{2} = \sum_{i} \frac{\left[D_{i} - T_{i}(\boldsymbol{p})\right]^{2}}{\sigma_{i,\,\text{stat}}^{2} + \sigma_{i,\,\text{syst}}^{2}}$$

if assume that errors of ${\cal D}_i$ follow a Gaussian distribution, then

▶ fitted $m{p}$ follow a k-dim. Gaussian dist. around true values $m{p}_0$

► have k-dim.
$$\chi^2$$
 distribution for
 $\Delta \chi^2(\mathbf{p}) = \chi^2(\mathbf{p}) - \chi^2_{\min} = \sum_{ij} (p - p_0)_i H_{ij} (p - p_0)_j$
 $H =$ Hesse matrix = inverse of covariance matrix V

observable $\mathcal{O}(p)$ follows Gaussian dist. with error

$$\Delta \mathcal{O} = T \sqrt{\sum_{ij} \frac{\partial \mathcal{O}}{\partial p_i} H_{ij}^{-1} \frac{\partial \mathcal{O}}{\partial p_j}}$$

with T = 1 for 68% C.L., T = 2.71 for 95% C.L. etc. readily generalizes to several obs. and their correlated errors \rightsquigarrow complicated in practice, would need derivatives $\partial O/\partial p_i$

Parton density fits

$$\Delta \mathcal{O} = T \sqrt{\sum_{ij} \frac{\partial \mathcal{O}}{\partial p_i} H_{ij}^{-1} \frac{\partial \mathcal{O}}{\partial p_j}}$$

• diagonalize Hesse matrix H and rescale eigenvectors \Rightarrow linear combinations z_i of $(p - p_0)_j$ satisfying

$$\begin{split} \Delta\chi^2 &= \sum_i z_i^2 \\ \Delta\mathcal{O} &= T \sqrt{\sum_i \frac{\partial\mathcal{O}}{\partial z_i} \frac{\partial\mathcal{O}}{\partial z_i}} = \sqrt{\sum_i \left[\frac{\mathcal{O}(S_i^+) - \mathcal{O}(S_i^-)}{2}\right]^2} \end{split}$$

with eigenvector PDF sets S_i^{\pm} corresponding to parameters $z_i = \pm T$ and $z_j = 0$ for $j \neq i$ in last step have linearized \mathcal{O} around z = 0

For large errors Δχ² not quadratic in (p − p₀)_i or z_i
 → linear error propagation not reliable
 → Lagrange multiplier method (not discussed here)
 see e.g. CTEQ, hep-ph/0101051

The tolerance criterion

- if data points D_i follow Gaussian distribution then experiment with N_j data points contributes $\chi^2_{j,\min} \sim N_j$ to global χ^2_{\min}
- not always seen in practice: for some cases
 - $\chi^2_{j,\min}$ significantly below or above N_j
 - $\chi^2_{i,\min}$ much larger than χ^2 minimized separately for experiment

may be due to inconsistent data sets, shortcomings of theory description or of PDF parameterization in such a case standard χ^2 errors misrepresent uncertainty

- modified criterion for T adopted by groups CT, MSTW, JR
 - \blacktriangleright obtained by procedure/algorithm looking at χ^2 from individual experiments
 - may be seen as ad hoc deviation from "standard statistics" but "standard criterion" for T requires that all data points have Gaussian dist. with quoted uncertainties

Parton density fits

The NNPDF approach

- ► to avoid bias due to functional form of PDFs, use very flexible functions (called "neural networks") with large number of free parameters (about 10× more than in standard approach)
- \blacktriangleright standard χ^2 fit then not possible, instead
 - generate Monte Carlo ensemble of replicas of original data (typically $N_{\text{rep}} = 100 \text{ or } 1000$), according to central values and errors of measurement
 - ▶ in each replica divide data into "training" and "validation" set
 - for each replica minimize χ^2 on training set until χ^2 of validation set starts to increase (thus avoiding to fit "noise in the data")
- central values and uncertainties on observable (or on PDFs themselves) given by ensemble average etc.

$$\overline{\mathcal{O}} = \frac{1}{N_{\rm rep}} \sum_{r}^{N_{\rm rep}} \mathcal{O}_r \qquad (\Delta \mathcal{O})^2 = \frac{1}{N_{\rm rep} - 1} \sum_{r}^{N_{\rm rep}} (\mathcal{O}_r - \overline{\mathcal{O}})^2$$

error bands for 68%~CL

- spread between different parameterizations often larger than error bands of single parameterization
- error bands propagate uncertainties of fitted data into PDFs but do not reflect "systematic theory uncertainties" of PDF extraction

error bands for 68%~CL

- spread between different parameterizations often larger than error bands of single parameterization
- error bands propagate uncertainties of fitted data into PDFs but do not reflect "systematic theory uncertainties" of PDF extraction

error bands for $68\%~{\rm CL}$

- spread between different parameterizations often larger than error bands of single parameterization
- error bands propagate uncertainties of fitted data into PDFs but do not reflect "systematic theory uncertainties" of PDF extraction

benchmark NNLO cross sections at $\sqrt{s}=7\,{
m TeV}$ from Alekhin et al., arXiv:1011.6259

- spread between different parameterizations often larger than error bands of single parameterization
- error bands propagate uncertainties of fitted data into PDFs but do not reflect "systematic theory uncertainties" of PDF extraction

Summary

- \blacktriangleright estimating theoretical uncertainties \neq an exact science
- "scale uncertainty" based on renormalization group eq. estimates certain higher-order terms in α_s prescriptions for scale choice = educated guesses
- higher orders in pert. theory not the only source of uncertainty full final state details, hadronization corrections, ... are more difficult to quantify
- errors of PDF fits reflect uncertainties of fitted data (not always a straightforward exercise in textbook statistics) do not include uncertainties of theory used to fit data