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Notation 
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g(⇥y|⇥�, M)

is understood as a probability density. I.e., the probability that 

�y is in the interval �y � �y + d�y

given the model M and the parameter values specified by       . ⇥�

e.g., if we are considering the decay of a unstable particle, we would 
have 

Probability density of decay occurring at time t 
for single particle, assuming constant 
probability per unit time.  

g(t|�) � e�t/�



How we learn 
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Figure 1: Paradigm for data analysis. Knowledge is gained from a comparison of model
predictions with data. Intermediate steps may be necessary, e.g., to model experimental
conditions.

the experiment many times under identical conditions. This is possible be-
cause the model is a mathematical construction which allows the calculation
(or simulation) of frequencies of outcomes. The predictions from the model
cannot usually be directly compared to experimental results. An additional
step is needed, either to modify the predictions to allow for the experimental
effects, or to undo the experimental effects from the data. Obviously, an ac-
curate description of the experimental effects is necessary to produce reliable
conclusions.

The function g(!y|!λ, M) gives the relative frequency of getting result !y
assuming the model M and parameters !λ. It should satisfy:

g(!y|!λ, M) ≥ 0 (1)

and
∑

i

g(yi|!λ, M) = 1 or

∫

g(!y|!λ, M) d!y = 1 (2)

depending on whether discrete or continuous values are measured. In the
following, we will write formulae for the continuous case; the modification
for the discrete case will be clear. Note that the normalization requirement
is often discarded when only relative probabilities of outcomes are needed.
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How we Learn 
We learn by comparing measured data with distributions for predicted 
results assuming a theory, parameters, and a modeling of the 
experimental process. 
 
What we typically want to know: 
•  Is the theory reasonable ?  I.e., is the observed data a likely result from 
this theory (+ experiment). 

•  If we have more than one potential explanation, then we want to be 
able to quantify which theory is more likely to be correct given the 
observations 

•  Assuming we have a reasonable theory, we want to estimate the most 
probable values of the parameters, and their uncertainties.  This includes 
setting limits (>< some value at XX% probability).  
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Logical Basis 
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Model building and making predictions from models follows deductive 
reasoning: 
 
Given AèB  (major premise) 
Given BèC  (major premise) 
Then, given A you can conclude that C is true 
 
etc. 
 
Everything is clear, we can make frequency distributions of possible 
outcomes within the model, etc.  This is math, so it is correct … 
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Logical Basis 
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However, in physics what we want to know is the validity of the model 
given the data.  i.e., logic of the form: 
 
Given AèC 
Measure C, what can we say about A ? 
 
Well, maybe A1èC, A2èC, … 
 
We now need inductive logic.  We can never say anything absolutely 
conclusive about A unless we can guarantee a complete set of 
alternatives Ai and only one of them can give outcome C.  This does not 
happen in science, so we can never say we found the true model. 
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Logical basis 
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Instead of truth, we consider knowledge 
 
Knowledge = justified true belief 
 
Justification comes from the data.  Make predictions from your model, 
and see if they are correct.  If yes, your belief increases … 
 
Starting point: prior knowledge or maybe plain belief 
 
Do the experiment 
 
Data analysis gives updated knowledge.  Experimental results in line 
with model predictions give justification for believing our model.  
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Elements of Data Analysis 

Probability of the data (Likelihood) 
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P (D|�, M) = L(�|D)

P (n|�) =
e���n

n!
� fixed

L(�|n) =
e���n

n!
n fixed

e.g., Poisson process 

In a Bayesian analysis, also need the prior probability P0(�|M)

P (�|M, D) =
P (D|�, M)P0(�|M)

P (D|M)
Then use 

All that is 
used in 
frequentist 
or classical 
approach 

Z = P (D|M) =
�

d�P (D|�, M)P0(�|M) “evidence”  
often not needed 



Poisson Example 
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Bayesians and Frequentists 
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Frequentists make statements of the kind: 
 
‘Assuming the model is correct, this result will occur in XX% of the 
experiments’ 
 
The model is assumed true, and estimators for the true parameters in the 
model are produced from the data. 
 
In the ‘classical’ approach, this is then converted to ‘assuming the model, 
the bounds [a,b] will contain the true value in XX% of experiments 
performed’ (confidence levels). Does not imply that the true value is in 
the range [a,b] with probability XX ! 
 
The decision on whether to then believe the model/parameters is left to 
the individual (subjective).  The inductive part of the reasoning is left out 
of the analysis. 
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Bayesians and Frequentists 
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Bayesians make statements of the kind: 
 
‘the degree-of-belief in model A is XX (between 0,1)’ 
 
Given the new data, the degree-of-belief is updated using the frequencies 
of possible outcomes in the context of the models (full set) 
 
Credible regions are then defined: with XX% credibility, the parameter is 
in the interval [a,b]. Note – very different from a CL. 
 
The inductive part of the reasoning is built in to the analysis, and the 
connection between prior beliefs and posterior beliefs is made clear.  
 
Subjective, but the subjective element is made explicit. 
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Bayesians and Frequentists 
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In both approaches, work with models and frequencies of outcomes 
within the model. 
 
Many elements are the same: calculating the frequencies of possible 
outcomes given the model AND the experimental conditions; picking the 
most sensitive variables to test the theory, … 
 
There is no right and wrong approach, but you have to understand what 
you get out of each type of analysis.  E.g., don’t confuse confidence 
levels with probabilities, p-values with support for a model, … 
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Why isn’t everyone a Bayesian ? 
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There is the worry about stating prior beliefs – doesn’t this make the 
result subjective ? 
 
Answer – all statements concerning the ‘truth’ or ‘correctness’ of a 
model are subjective.  In the Bayesian approach, the connection between 
prior belief and posterior belief is made explicit. 
 
 
But doesn’t the answer depend strongly on your priors ? 
 
Answer – it depends how good your data is.  If the data is strong, then 
the answer depends only weakly on the priors. 



Learning with Gaussian Distributions 
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The Bayes’ formula has built in the learning feature.  Example with 
Gaussian probability distribution:  start with very different priors.  
Sample from a Gaussian distribution centered at 0.75 (width 0.1). 
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Before/after 100 
events 

Before/after 100 
events 

Moral: prior not important if you have informative data. 



Why isn’t everyone a Bayesian ? 
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My suspicion: it is because most people do not understand the frequentist 
approach. Frequentist statements and Bayesian statements are thought to 
be about the same logical concept, and the frequentist statement does not 
require a prior, so … 
 
 
A. L. Read, Presentation of search results: the CLS technique, J. Phys. G: Nucl. Part. Phys. 28 
(2002) 2693-2704. 
nearly all physicists tend to misinterpret frequentist results as statements 
about the theory given the data. 
 
 
Frequentist statements are not statements about the model – only about 
the data in the context of the model.  



Why isn’t everyone a Bayesian ? 
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G. D’Agostini, Probably a discovery: Bad mathematics means rough scientific communication, 
arXiv:1112.3620v2 [physics.data-an] 

Quoting a Discovery article:  
It is what is known as a ``three-
sigma event,” and this refers to the 
statistical certainty of a given result. 
In this case, this result has a 99.7 
percent chance of being correct (and 
a 0.3 percent chance of being 
wrong).” 
 

This is nonsense ! 

1� P (D|H0) = P (H1|D)



The Higgs announcement 
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Gemeinsame Presseerklärung des  
Komitee für Elementarteilchenphysik KET 
Forschungsschwerpunkt ATLAS (BMBF-FSP 101 ATLAS) 
Forschungsschwerpunkt CMS (BMBF-FSP 102 CMS) 
Deutsches Elektronen-Synchrotron DESY 
Max-Planck-Institut für Physik  
Helmholtz-Allianz „Physik an der Teraskala“ 
 
Der Nachweis eines neuen Teilchens wird in der Teilchenphysik klassischerweise auf zwei Stufen 
gestellt: Die Messungen, die die Wissenschaftler an ihren Experimenten durchführen, beruhen auf 
Statistik. Sie geben daher zu jedem ihrer Ergebnisse die Sicherheit als so genannte Signifikanz 
an. Die Einheit, die sie dafür verwenden ist sigma, dargestellt durch den griechischen Buchstaben 
σ. Die erste Stufe eines Teilchenfunds („evidence“) ist erreicht, wenn sich das Signal des 
Teilchens mit einer Deutlichkeit zeigt, dass die Physiker mit 99,75 Prozent Sicherheit von seiner 
Echtheit ausgehen. Dies entspricht einer Signifikanz von 3σ. Von einer „Entdeckung“ und damit 
der zweiten Stufe sprechen die Forscher bei einer Signifikanz von 5σ, das entspricht einer 
Fehlerwahrscheinlichkeit von 0,000057%. 
 
Translation - Probability of error is 0,000057%          
Error on what ????? That the Higgs is found  - not correct 
 



What happened 
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equated 

Probability of observing the 
data or something more 
extreme given the background 
only hypothesis 

Probability that the Higgs 
exists 

                                  This is logical nonsense … 

1� P (D|H0) = P (H1|D)
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Modeling and Data 
We imagine flipping a coin, or rolling dice, or picking a lottery number.  
The initial conditions are not known, so we assume symmetry and say 
every outcome is equally likely (Laplace): 
 
- coin, heads or tails each have equal chance, probability of each is ½ 

- - rolling dice - each number on each die equally likely: each pair (6x6) 
equally likely.  E.g., (1,1) (3,4)… 

-  i.e., we make a model for the physical process.  The model contains 
assumptions (e.g., each outcome equally likely).   
 
-  given the model, we can make predictions and compare these to the 
data. 
-  from the comparison, we decide if the model is reasonable. 
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Probability of the data 
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The expected distribution (density) of the data assuming a model M and 
parameters     is written as                       where     is a possible realization 
of the data.  There is usually no unique definition of the ‘probability of 
the data.’  Different choices incorporate different information. 
 
Imagine we flip a coin 10 times, and get the following result: 
 
  
 

⇥� �x

 
   T H T H H T H T T H 

 
We now repeat the process with a different coin and get 
 

   T T T T T T T T T T 
 
 
Which outcome has higher probability ? 

22 

P (⇥x|⇥�, M)
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Take a model where H, T are equally likely.  Then, 
 

 outcome 1  
And 

 outcome 2 

prob = (1/2)10

prob = (1/2)10

Something seem wrong with this result ?  This is because (in our head) 
we evaluate many probabilities at once.  The result above is the 
probability for any sequence of ten flips of a fair coin.  Given a fair coin, 
we could also calculate the chance of getting n times H: 

�
10
n

⇥ �
1
2

⇥10

23 
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And we find the following result: 

n p
0 1·2�10

1 10·2�10

2 45·2�10

3 120·2�10

4 210 ·2�10

5 252 ·2�10

6 210 ·2�10

7 120 ·2�10

8 45 ·2�10

9 10 ·2�10

10 1 ·2�10

There are many more ways to get 5 H 
than 0, so this is why the first result 
somehow looks more probable, even 
if each sequence has exactly the same 
probability in the model. 
 
Maybe the model is wrong  and one 
coin is not fair ?  How would we test 
this ? 

24 
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The message: there are usually many ways to define the probability for 
your data.  Which is better, or whether to use several, depends on what 
you are trying to do. 
 
E.g., have measured times in exponential decay.  Can define the 
probability density as 

P (⇥t|�) =
N�

i=1

1
�

e�ti/�

Or you can count events in a time interval and compare to expectations 

P (⇤t|⇥) =
M�

j=1

e��j �
nj

j

nj !
�j = expected events in bin j
nj = observed events in bin j

25 



Probability of the data 
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Which probability (ies) of the data you want to use depend on what you 
are trying to extract. 
 
E.g., unbinned likelihood can give the best information on the parameter 
value, but 
 
Unbinned likelihood can contain no information on goodness-of-fit.  
Each new problem has to be analyzed in detail. 



p-values and Goodness-of-fit 
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p-values and Goodness-of-fit 
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Why do we reject the small p-values if all are equally likely ? 



Comment on reasoning behind p-values 
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Reasoning behind p-values 
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Pitfalls of p-values 
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p-values depend critically on how you have chosen the test statistic (or 
discrepancy variable).  The same data set can have hugely varying p-
values resulting from different choices of the test quantity. 
 
E.g., consider a model where we assume an exponential decay law.  As 
mentioned earlier, we can define the following probabilities of the data: 

P (⇥t|�) =
N�

i=1

1
�

e�ti/�

P (⇤t|⇥) =
M�

j=1

e��j �
nj

j

nj !
�j = expected events in bin j
nj = observed events in bin j

Unbinned 
likelihood 

Binned Poisson 
distribution 



pitfalls 
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pitfalls 
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We take the best fit probability as our test statistic.    For the unbinned fit, 
it is easy to show that  

�� =
1
N

N�

i=1

ti

P (s, x) =
� (s, x)
� (s)

=
� x
0 ts�1e�tdt

�⇥
0 ts�1e�tdt

Regularized incomplete 
gamma function 

p =
�

P
t⇥i>�

dt⇤1

�
dt⇤2 . . . (�⇥)�N e�

P
t⇥i/⇥�

= 1� P (N, N)

Doesn’t depend on the data !  In fact, for large N,  p � 0.5



pitfalls 
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The p-value from the maximum likelihood is about 0.5 ! 
 
The p-value from the binned fit is 0 
 
What happened ?  The maximum likelihood quantity does not know 
anything about the distribution of the events, and the result only depends 
on  
 
 
 
and the p-value only depends on N ! 
 
Lesson: make sure your test statistic is sensitive to what you want to 
test ! 

�� =
1
N

N�

i=1

ti



Bayesian Parameter Estimation 
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The posterior pdf gives the full probability distribution for all 
parameters, including all correlations – no approximations.  If interested 
in subset of parameters, then marginalize.  E.g., for one parameter: 

P (�i| ⇥D,M) =
�

P (⇥�| ⇥D,M)d⇥�� �=i

Can calculate what you need from the posterior pdf. E.g., 

Mean of �i < �i >=
�

P (�i| ⇥D,M)�id�i

Mode
�imax {P (�i|D,M)}

Median
� �med

�min
P (�i| ⇥D,M)d�i = 0.5

Can also perform uncertainty propagation w/o approximations 

+ probability intervals, … 
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Setting limits is easy – just integrate the posterior pdf.  E.g., 90% upper 
limit: 

0.9 =
� �upper

�min

P (�i| ⇥D,M)d�i

Or calculate contours in higher dimensional spaces 
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Example: Double Beta Decay 
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One of the outstanding questions in Particle Physics is whether the 
neutrino is its own antiparticle (so-called Majorana particle).   

The only practical way which has been found to search for the Majorana 
nature of neutrinos (particle same as antiparticle) is double beta decay 
(because of the light mass of neutrinos, helicity flip is very unlikely 
unless the neutrinos have very low energy). 

For us, what is interesting is that we are looking for a peak at a well-
defined energy in a sparse spectrum. 
 
A. Caldwell, K. Kröninger, Phys. Rev. D 74 (2006) 092003 



Discovery or not ? 

March  2013 Helmholtz Alliance School 38 

Analyze energy spectrum and decide if there is evidence for a signal.  
Counting experiment – Poisson statistics. 



Define the propositions: 
 
  H = The observed spectrum is due to background only 
 

Sparse Spectra 
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€ 

H = The spectrum is due to background + signal (neutrinoless 
double beta decay). 

I.e., we assume backgrounds are known up to normalization and some 
smoothly varying shape, and the only possibility other than known 
background is signal from neutrinoless double beta decay.  

€ 

p(H | spectrum) + p(H | spectrum) =1

€ 

p(H | spectrum) =
p(spectrum |H)p0(H)

p(spectrum |H)p0(H) + p(spectrum |H )p0(H )

p(H | spectrum) =
p(spectrum |H )p0(H )

p(spectrum |H)p0(H) + p(spectrum |H )p0(H )

so 



p0(H): 

The existing limits are T1/2>4 1025 yr; a positive claim for a signal exists 
at the level T1/2=1.2 1025 yr;  my favorite theorist believes strongly that 
neutrinos are Majorana particles, but he wont tell me the neutrino mass; 
the theorist at a neighboring university says that he believes strongly in 
Leptogenesis, and in that context the neutrino is a Majorana particle but 
it must be very light, such that neutrinoless double beta decay is 
unobservable,... 

Double Beta Decay Example 
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We know how to perform all calculations: 

€ 

p(spectrum |H) = p(spectrum |B)p0(B)dB∫

p(spectrum |H ) = p(spectrum | S,B)p0(S)p0(B)dB∫

Where B is the expected number of background events and S is the 
expected number of signal events.  These quantities come with their own 
priors.   

€ 

ni =   observed number of events in bin i
λi =   expected number of events in bin i

λi = S fS (E)dE
ΔEi

∫ + B fB(E)dE
ΔEi

∫

Where fS and fB are the normalized signal and background probability 
densities as functions of energy. 

DBD example 
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then 

€ 

p(spectrum |B) =
λi (0,B)

ni

ni!i=1

N
∏ e−λi (0,B)

p(spectrum | S,B) =
λi (S,B)

ni

ni!i=1

N
∏ e−λi (S,B)

To determine parameter values or set limits, we need 

€ 

p(S,B | spectrum) =
p(spectrum | S,B)p0(S)p0(B)

p(spectrum | S,B)p0(S)p0(B)dSdB∫

and then marginalize
p(S | spectrum) = p(S,B | spectrum)dB∫

e.g., 90% probability upper limit, S90 from solving 

€ 

p(S | spectrum)dS = 0.90
0

S90
∫

DBD example 
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Assumptions for GERDA: 

€ 

p0(H) = p0(H ) =1/2

p0(S) =
1

Smax
0 ≤ S ≤ Smax p0(S) = 0 otherwise

p0(B) =
e
−
(B−µB )

2

2σ B
2

e
−
(B−µB )

2

2σ B
2

dB0
∞∫

B ≥ 0; p0(B) = 0 B < 0

Smax was calculated assuming T1/2=0.5 1025 yr 
µB=B0,   σB=B0/2 

100 keV window analyzed. B0 total background in this window. 

GERDA example 
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Example: 

Strue=16, Btrue=9 
 
 

€ 

p(H | spectrum) = 2.2 ⋅10−12

1000 experiments simulated with 
T1/2=2 1025 yr,  10-3/(kg keV yr) 
Exposure 100 kg-yr 

About 95% chance a discovery 
could be claimed 

Mode=15.96 

discovery 
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The End 
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