XXV. Workshop Beyond The Standard Model

Superstring Tree Amplitudes

Recycling Field Theory Structures

Oliver Schlotterer (AEI Potsdam & DAMTP Cambridge) 1106.2645, 1106.2646: C. Mafra, OS, St. Stieberger

Work in progress: J. Brödel, OS, St. Stieberger

19.03.2013

1

I. Basics of tree amplitudes in string and field theory

II. Open string tree amplitude

III. From field theory structures to string corrections

I. Basics of tree amplitudes in string and field theory

- Open strings encompass gauge theory, closed strings encompass gravity.
- Regge slope $\alpha' \equiv \ell_{\text{string}}^2$ controls mass of additional vibration modes.
- String interactions enconded in worldsheet (generalizing worldlines)

I. Basics of tree amplitudes in string and field theory

- Open strings encompass gauge theory, closed strings encompass gravity.
- Regge slope $\alpha' \equiv \ell_{\text{string}}^2$ controls mass of additional vibration modes.
- String interactions enconded in worldsheet (generalizing worldlines)

I. Basics of tree amplitudes in string and field theory

- Open strings encompass gauge theory, closed strings encompass gravity.
- Regge slope $\alpha' \equiv \ell_{\text{string}}^2$ controls mass of additional vibration modes.
- String interactions enconded in worldsheet (generalizing worldlines)

• Perturbative loop expansion controlled by worldsheet topology

• In this talk: tree level (genus zero) interplay string- versus field theory

I. 1 Color decomposition

Open string tree amplitudes from cyclically inequivalent disk orderings

$$\mathcal{M}_{N}^{\text{open}} = \sum_{\sigma \in S_{N-1}/\mathbb{Z}_{2}} \underbrace{\operatorname{Tr}\left\{T^{1} T^{\sigma(2)} \dots T^{\sigma(N)}\right\}}_{\text{gauge group generators}} \underbrace{\mathcal{A}^{\text{open}}\left(1, \sigma(2), \dots, \sigma(N)\right)}_{\text{color stripped subamplitude}}$$
Cyclic & gauge invariant subamplitudes depend on kinematic d.o.f.

(polarizations ξ^{μ}, u^{α} ; momenta k^{μ}), NOT on color, e.g. $i \equiv (k_i^{\mu}, \xi_i^{\mu})$.

I. 1 Color decomposition

Open string & YM trees from cyclically inequivalent disk orderings

$$\mathcal{M}_{N}^{\left\{ \substack{\text{VM}\\\text{open}} \right\}} = \sum_{\sigma \in S_{N-1}/\mathbb{Z}_{2}} \underbrace{\operatorname{Tr}\left\{ T^{1} T^{\sigma(2)} \dots T^{\sigma(N)} \right\}}_{\text{gauge group generators}} \underbrace{\mathcal{A}^{\left\{ \substack{\text{VM}\\\text{open}} \left(1, \sigma(2), \dots, \sigma(N)\right)}}_{\text{color stripped subamplitude}}$$
Cyclic & gauge invariant subamplitudes depend on kinematic d.o.f.

(polarizations ξ^{μ}, u^{α} ; momenta k^{μ}), NOT on color, e.g. $i \equiv (k_i^{\mu}, \xi_i^{\mu})$.

Alternative color basis compared to YM Feynman rules $[T^a, T^b] = i f^{abc} T^c$.

Throughout this talk, will use dimensionless Mandelstam variables:

Note the absence of the s_{13}^{-1} propagator in $\mathcal{A}^{\text{YM}}(1,2,3,4)!$

$$A^{\left\{ \substack{\text{YM}\\\text{open}}(1,2,3,4,5)\right\}} \sim \frac{1}{2} \sim \frac{5}{\frac{1}{s_{12}s_{34}}} \left\{ \begin{array}{c} 4\\ + \operatorname{cyc}(1,2,3,4,5) \end{array} \right\}$$

Can expand any YM subamplitude in a (N-3)! element basis

$$\{\mathcal{A}^{\mathrm{YM}}(1,\pi(2),\ldots,\pi(N-2),N-1,N), \pi \in S_{N-3}\}$$

using Kleiss Kuijf relations

 $\mathcal{A}^{\rm YM}(1,3,4,2,5) = -\mathcal{A}^{\rm YM}(1,2,3,4,5) - \mathcal{A}^{\rm YM}(1,3,2,4,5) - \mathcal{A}^{\rm YM}(1,3,4,5,2)$

Can expand any YM subamplitude in a (N-3)! element basis

$$\{ \mathcal{A}^{\mathrm{YM}}(1, \pi(2), \dots, \pi(N-2), N-1, N), \pi \in S_{N-3} \}$$

using Kleiss Kuijf relations and BCJ relations, e.g.

$$\mathcal{A}^{\rm YM}(1,3,4,2,5) = -\mathcal{A}^{\rm YM}(1,2,3,4,5) - \mathcal{A}^{\rm YM}(1,3,2,4,5) - \underline{\mathcal{A}^{\rm YM}(1,3,4,5,2)}$$

$$\underline{s_{25}\mathcal{A}^{\rm YM}(1,3,4,5,2)} = (s_{23} + s_{24})\mathcal{A}^{\rm YM}(1,2,3,4,5) + s_{24}\mathcal{A}^{\rm YM}(1,3,2,4,5)$$

[Bern, Carrasco, Johansson 0805.3993]

Can expand any YM subamplitude in a (N-3)! element basis

$$\{\mathcal{A}^{\mathrm{YM}}(1,\pi(2),\ldots,\pi(N-2),N-1,N), \ \pi \in S_{N-3}\}$$

using Kleiss Kuijf relations and BCJ relations, e.g.

$$\mathcal{A}^{\text{YM}}(1,3,4,2,5) = -\mathcal{A}^{\text{YM}}(1,2,3,4,5) - \mathcal{A}^{\text{YM}}(1,3,2,4,5) - \underline{\mathcal{A}^{\text{YM}}(1,3,4,5,2)}$$

$$\underline{s_{25}\mathcal{A}^{\text{YM}}(1,3,4,5,2)} = (s_{23} + s_{24})\mathcal{A}^{\text{YM}}(1,2,3,4,5) + s_{24}\mathcal{A}^{\text{YM}}(1,3,2,4,5)$$

[Bern, Carrasco, Johansson 0805.3993]

They nicely follow from monodromy relations between string amplitudes via $\alpha' \to 0$ limit $e^{i\pi s} = 1 + i\pi s + \dots$ of the real- and imaginary part.

[Bjerrum-Bohr, Damgaard, Vanhove 0907.1425; Stieberger 0907.2211]

$$0 = \mathcal{A}^{\text{open}}(1, 3, 4, 2, 5) + e^{-i\pi s_{25}} \mathcal{A}^{\text{open}}(1, 3, 4, 5, 2)$$

+ $e^{i\pi s_{24}} \mathcal{A}^{\text{open}}(1,3,2,4,5)$ + $e^{i\pi(s_{23}+s_{24})} \mathcal{A}^{\text{open}}(1,2,3,4,5)$

I. 2 KLT formula for gravity amplitudes

Closed string spectrum is double copy of (colorless) open string spectrum,

e.g. $|\text{graviton}\rangle_{\text{closed}} = |\text{gluon}\rangle_{\text{open}} \otimes |\text{gluon}\rangle_{\text{open}}$

and this has consequences for scattering amplitudes.

$$\leq \sum \sim x \sim x$$

I. 2 KLT formula for gravity amplitudes

Closed string spectrum is double copy of (colorless) open string spectrum,

e.g.
$$|\text{graviton}\rangle_{\text{closed}} = |\text{gluon}\rangle_{\text{open}} \otimes |\text{gluon}\rangle_{\text{open}}$$

and this has consequences for scattering amplitudes.

KLT formula relates closed string tree amplitude to (open string tree)²

$$\mathcal{M}_{4}^{\text{closed}} = \mathcal{A}^{\text{open}}(1, 2, 3, 4) \sin(\pi s_{12}) \tilde{\mathcal{A}}^{\text{open}}(1, 2, 4, 3)$$

$$\mathcal{M}_{5}^{\text{closed}} = \mathcal{A}^{\text{open}}(1, 2, 3, 4, 5) \sin(\pi s_{12}) \sin(\pi s_{34}) \tilde{\mathcal{A}}^{\text{open}}(2, 1, 4, 3, 5) + (2 \leftrightarrow 3)$$

$$\mathcal{M}_{N}^{\text{closed}} \equiv \sum \mathcal{A}^{\text{open}}(\ldots) \left[\sin(\pi s_{ij}) \right]^{N-3} \tilde{\mathcal{A}}^{\text{open}}(\ldots)$$

[Kawai, Lewellen, Tye 1986]

with $\sin(\pi s_{ij})$ determined by monodromy properties on the worldsheet.

Field theory limit $\mathcal{A}^{\text{open}}(\ldots) \to \mathcal{A}^{\text{YM}}(\ldots)$ and $\sin(\pi s_{ij}) \to \pi s_{ij}$

 \Rightarrow trees of perturbative gravity (coupled to dilaton and *B*-field)

$$\mathcal{M}_{N}^{\text{gravity}} = \sum_{\pi,\rho\in S_{N-3}} \mathcal{A}^{\text{YM}}(1,\pi,N-1,N) S[\pi,\rho]_{1} \tilde{\mathcal{A}}^{\text{YM}}(1,\rho,N,N-1)$$
[Bern, Dixon, Perelstein, Rozowsky 9811140]

 \exists many ways of rewriting, here we use momentum kernel $S[\pi, \rho]_1 \sim s_{ij}^{N-3}$

$$\begin{pmatrix} S[23|23]_1 & S[32|23]_1 \\ S[23|32]_1 & S[32|32]_1 \end{pmatrix} = \begin{pmatrix} s_{12}(s_{13}+s_{23}) & s_{12}s_{13} \\ s_{12}s_{13} & s_{13}(s_{12}+s_{23}) \end{pmatrix}$$

[Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove 1010.3933]

Field theory limit $\mathcal{A}^{\text{open}}(\ldots) \to \mathcal{A}^{\text{YM}}(\ldots)$ and $\sin(\pi s_{ij}) \to \pi s_{ij}$

 \Rightarrow trees of perturbative gravity (coupled to dilaton and *B*-field)

$$\mathcal{M}_{N}^{\text{gravity}} = \sum_{\pi,\rho\in S_{N-3}} \mathcal{A}^{\text{YM}}(1,\pi,N-1,N) S[\pi,\rho]_{1} \tilde{\mathcal{A}}^{\text{YM}}(1,\rho,N,N-1)$$
[Bern, Dixon, Perelstein, Rozowsky 9811140]

 \exists many ways of rewriting, here we use momentum kernel $S[\pi, \rho]_1 \sim s_{ij}^{N-3}$

$$\begin{pmatrix} S[23|23]_1 & S[32|23]_1 \\ S[23|32]_1 & S[32|32]_1 \end{pmatrix} = \begin{pmatrix} s_{12}(s_{13}+s_{23}) & s_{12}s_{13} \\ s_{12}s_{13} & s_{13}(s_{12}+s_{23}) \end{pmatrix}$$

[Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove 1010.3933]

At loop level, squaring relations $(YM)^2 \rightarrow gravity$ act on cubic diagrams [Bern, Carrasco, Johansson 1004.0476]

[Bern, Carrasco, Dixon, Johansson, Roiban 1201.5366]

Color stripped tree amplitude for scattering N massless open string states

$$\mathcal{A}^{\text{open}}(1, 2, \dots, N) = \sum_{\pi \in S_{N-3}} \mathcal{A}^{\text{YM}}(1, 2_{\pi}, \dots, (N-2)_{\pi}, N-1, N) F^{\pi}$$

[Mafra, OS, Stieberger 1106.2645, 1106.2646]

- decomposes into (N-3)! field theory subamplitudes $\mathcal{A}_{\pi \in S_{N-3}}^{\text{YM}}$
- string effects (α' dependence) from generalized Euler integrals $F^{\pi}(\alpha')$

Color stripped tree amplitude for scattering N massless open string states

$$\mathcal{A}^{\text{open}}(1, 2, \dots, N) = \sum_{\pi \in S_{N-3}} \mathcal{A}^{\text{YM}}(1, 2_{\pi}, \dots, (N-2)_{\pi}, N-1, N) F^{\pi}$$

[Mafra, OS, Stieberger 1106.2645, 1106.2646]

- decomposes into (N-3)! field theory subamplitudes $\mathcal{A}_{\pi \in S_{N-3}}^{\text{YM}}$
- string effects (α' dependence) from generalized Euler integrals $F^{\pi}(\alpha')$
- consistent with field theory limit: $F^{\pi}(\alpha' \to 0) = \delta^{\pi}_{(2,3,\dots,N-2)}$

• valid for states of $\mathcal{N} = 1$ SYM in D = 10 (or $\mathcal{N} = 4$ SYM in D = 4)

• remain valid for the gluon's SUSY multiplet for $\mathcal{N} < 4$ compactification

II. 1 Disk integrals

• totally symmetric Koba-Nielsen factor $\prod_{i < j}^{N} |z_{ij}|^{s_{ij}} = \langle \prod_{j=1}^{N} e^{ik_j \cdot X(z_j)} \rangle$

• $\rho \in S_{N-1}/\mathbb{Z}_2$ cycle of N factors $(z_{ij})^{-1}$ with $z_{ij} := z_i - z_j$

• no subcycles within the z_{ij}^{-1} : They would cause tachyon propagation

In practice, fix three vertex positions $(z_1, z_{N-1}, z_N) = (0, 1, \infty)$

 \Rightarrow mod out by conformal redundancy

$$Z(1,\rho(2,3,\ldots,N)) = \int_{z_i < z_{i+1}} \prod_{k=2}^{N-2} \mathrm{d}z_k \frac{z_{1,N-1} z_{1,N} z_{N-1,N} \prod_{i$$

In the subset $Z(1, \ldots, N-1)$, the Jacobian $z_{1,N-1}z_{1,N}z_{N-1,N}$ cancels

$$Z(1, \rho(2, \dots, N-2, N), N-1) = \int_{z_i < z_{i+1}} \prod_{k=2}^{N-2} \mathrm{d}z_k \frac{\prod_{i$$

II. 2 KLT formula \leftrightarrow open string disk amplitude

Recall KLT formula for gravity trees (momentum kernel $S[\pi, \rho]_1 \sim s_{ij}^{N-3}$)

$$\mathcal{M}_{N}^{\text{gravity}} = \sum_{\pi,\rho\in S_{N-3}} \mathcal{A}^{\text{YM}}(1,\pi,N-1,N) S[\pi,\rho]_{1} \tilde{\mathcal{A}}^{\text{YM}}(1,\rho,N,N-1)$$

II. 2 KLT formula \leftrightarrow open string disk amplitude

Recall KLT formula for gravity trees (momentum kernel $S[\pi, \rho]_1 \sim s_{ij}^{N-3}$)

$$\mathcal{M}_{N}^{\text{gravity}} = \sum_{\pi,\rho\in S_{N-3}} \mathcal{A}^{\text{YM}}(1,\pi,N-1,N) S[\pi,\rho]_{1} \tilde{\mathcal{A}}^{\text{YM}}(1,\rho,N,N-1)$$

Translates to open string disk amplitude by replacing $\tilde{\mathcal{A}}^{\text{YM}} \mapsto Z$

$$\mathcal{A}^{\text{open}}(1, 2, \dots, N) = \sum_{\pi, \rho \in S_{N-3}} \mathcal{A}^{\text{YM}}(1, \pi, N-1, N) S[\pi, \rho]_1 Z(1, \rho, N, N-1)$$

Manifests duality of kinematic factors $\tilde{\mathcal{A}}^{\text{YM}}$ to worldsheet integral Z. [Brödel, OS, Stieberger: work in progress] The \mathcal{A}^{YM} and Z obey dual systems of equations

reduction to	$\mathcal{A}^{\mathrm{YM}}(\pi)$	$Z(\pi)$
$\boxed{\frac{1}{2}(N-1)!}$	cyclicity & parity	conformal invariance & no tachyons
(N-2)!	Kleiss Kuijf	partial fraction $\frac{1}{z_{12}z_{23}} - \frac{1}{z_{13}z_{23}} = \frac{1}{z_{12}z_{13}}$
(N-3)!	BCJ	integration by parts: $\sum_{i \neq j} \frac{s_{ij}}{z_{ij}} \equiv 0$

The \mathcal{A}^{YM} and Z obey dual systems of equations

reduction to	$\mathcal{A}^{\mathrm{YM}}(\pi)$	$Z(\pi)$
$\frac{1}{2}(N-1)!$	cyclicity & parity	conformal invariance & no tachyons
(N-2)!	Kleiss Kuijf	partial fraction $\frac{1}{z_{12}z_{23}} - \frac{1}{z_{13}z_{23}} = \frac{1}{z_{12}z_{13}}$
(N-3)!	BCJ	integration by parts: $\sum_{i \neq j} \frac{s_{ij}}{z_{ij}} \equiv 0$

Worldsheet duals of KK relations \equiv partial fraction in the integrand

$$0 = \mathcal{A}^{YM}(1,2,3,4) + \mathcal{A}^{YM}(1,3,2,4) + \mathcal{A}^{YM}(1,2,4,3)$$

$$0 = Z(1,2,3,4) + Z(1,3,2,4) + Z(1,2,4,3)$$

$$\sim \int_{z_i < z_{i+1}} \prod_{i < j}^4 |z_{ij}|^{s_{ij}} \left(\frac{1}{z_{12} z_{23} z_{34} z_{41}} + \frac{1}{z_{12} z_{24} z_{43} z_{31}} + \frac{1}{z_{13} z_{32} z_{24} z_{41}} \right)$$

Worldsheet duals the BCJ relations

$$0 = s_{13} \mathcal{A}^{\rm YM}(1,3,2,5,4) + (s_{13} + s_{23}) \mathcal{A}^{\rm YM}(1,2,3,5,4) - s_{34} \mathcal{A}^{\rm YM}(1,2,5,3,4)$$

is the vanishing of

 $0 \stackrel{!}{=} s_{13} Z(1,3,2,5,4) + (s_{13} + s_{23}) Z(1,2,3,5,4) - s_{34} Z(1,2,5,3,4)$

Worldsheet duals the BCJ relations

$$0 = s_{13} \mathcal{A}^{\rm YM}(1,3,2,5,4) + (s_{13} + s_{23}) \mathcal{A}^{\rm YM}(1,2,3,5,4) - s_{34} \mathcal{A}^{\rm YM}(1,2,5,3,4)$$

is the vanishing of

$$0 = s_{13} Z(1, 3, 2, 5, 4) + (s_{13} + s_{23}) Z(1, 2, 3, 5, 4) - s_{34} Z(1, 2, 5, 3, 4)$$

$$= \int_{z_i < z_{i+1}} dz_3 dz_2 \prod_{i < j}^4 |z_{ij}|^{s_{ij}} \frac{1}{z_{12}} \left(\frac{s_{13}}{z_{13}} + \frac{s_{23}}{z_{23}} + \frac{s_{34}}{z_{43}}\right)$$

$$= \int_{z_i < z_{i+1}} dz_3 dz_2 \frac{d}{dz_3} \left[\frac{1}{z_{21}} \prod_{i < j}^4 |z_{ij}|^{s_{ij}}\right]$$

Total derivatives integrate to zero, regardless of the integration range!

III. From field theory structures to string corrections

Complete disk amplitude encoded in (N-3)! monodromy independent

$$\mathcal{A}_{\Sigma}^{\text{open}} \equiv \mathcal{A}^{\text{open}}(1, \Sigma(2, \dots, N-2), N-1, N)$$

Complete disk amplitude encoded in (N-3)! monodromy independent

$$\mathcal{A}_{\Sigma}^{\text{open}} \equiv \mathcal{A}^{\text{open}}(1, \Sigma(2, \dots, N-2), N-1, N)$$

Their string corrections can be aligned into $(N-3)! \times (N-3)!$ matrix

$$F_{\Sigma}^{\pi} = \sum_{\rho \in S_{N-3}} S[\pi | \rho] \underbrace{Z_{\Sigma}(1, \rho(2, \dots, N-2), N, N-1)}_{\text{integrate over } z_{\Sigma(i)} < z_{\Sigma(i+1)}}$$

acting on $\mathcal{A}_{\pi}^{\text{YM}} \equiv \mathcal{A}^{\text{YM}}(1, \pi(2, \dots, N-2), N-1, N)$:
$$\mathcal{A}_{\Sigma}^{\text{open}} = F_{\Sigma}^{\pi} \mathcal{A}_{\pi}^{\text{YM}}$$

Beautiful pattern in α' expansion of F_{Σ}^{π} and multiple zeta values therein. [OS, Stieberger 1205.1516; Brödel, OS, Stieberger: work in progress] [see talk by Johannes Brödel] Compute α' expansion of $F^{\pi} = S[\pi|\rho]_1 Z(1,\rho,N,N-1)$ at the level of

$$Z(1,\rho,N,N-1) = \int_{\substack{z_i < z_{i+1} k = 2}}^{N-2} \mathrm{d}z_k \frac{\prod_{i$$

Main information from Taylor expanding the Koba Nielsen factor

$$|z_{ij}|^{s_{ij}} = \sum_{n=0}^{\infty} \frac{1}{n!} (s_{ij} \ln |z_{ij}|)^n$$

which challenges to compute polylogarithmic integrals

$$\prod_{i=2}^{N-2} \int_{0}^{z_{i+1}} \frac{\mathrm{d}z_{i}}{z_{i}-a_{i}} \prod_{i< j}^{N-1} (\ln|z_{ij}|)^{n_{ij}} , \qquad \begin{cases} n_{ij} \in \mathbb{N} \\ a_{i} \in \{0,1,z_{i+1},\dots,z_{N-2}\} \end{cases}$$

[see talk by Johannes Brödel]

Compute α' expansion of $F^{\pi} = S[\pi|\rho]_1 Z(1,\rho,N,N-1)$ at the level of

$$Z(1,\rho,N,N-1) = \int_{\substack{z_i < z_{i+1} \\ k=2}}^{N-2} \mathrm{d}z_k \frac{\prod_{i$$

Main information from Taylor expanding the Koba Nielsen factor

$$|z_{ij}|^{s_{ij}} = \sum_{n=0}^{\infty} \frac{1}{n!} (s_{ij} \ln |z_{ij}|)^n$$

which challenges to compute polylogarithmic integrals

$$\prod_{i=2}^{N-2} \int_{0}^{z_{i+1}} \frac{\mathrm{d}z_{i}}{z_{i}-a_{i}} \prod_{i< j}^{N-1} (\ln|z_{ij}|)^{n_{ij}} , \qquad \begin{cases} n_{ij} \in \mathbb{N} \\ a_{i} \in \{0,1,z_{i+1},\dots,z_{N-2}\} \end{cases}$$
[see talk by Johannes Brödel]

But: Kinematic poles in Z spoil analyticity in the $s_{ij}!$

 \Rightarrow first subtract poles before Taylor expanding $\prod_{i< j}^{N-1} |z_{ij}|^{s_{ij}}$

III. 1 Pole structure of the Z

Integration ranges $z_i \to z_{i+1}$ give rise to kinematic poles in $Z(\ldots)$.

At higher N, have to take care of multiparticle channels, e.g.

$$Z(1,2,3,5,4) = \int_{0}^{1} dz_{3} \int_{0}^{z_{3}} dz_{2} |z_{12}|^{s_{12}-1} |z_{13}|^{s_{13}} |z_{23}|^{s_{23}-1} |z_{24}|^{s_{24}} |z_{34}|^{s_{34}}$$
$$= \frac{1}{s_{12}s_{123}} + \frac{1}{s_{23}s_{123}} + \text{less singular } \mathcal{O}(\alpha'^{2})$$
$$2 \xrightarrow{3}_{s_{12}} |s_{123} \cdots + \underbrace{3}_{2} \xrightarrow{s_{12}} |s_{12} \cdots$$

At higher N, have to take care of multiparticle channels, e.g.

Keep track of poles occurring through the following "rule of thumb"

$$(j - i + 1)$$
 particle pole $s_{i,i+1...j-1,j}$ triggered by
 $j - i$ factors of z_{pq} in the range $i \le p < q \le j$.

Can read off pole content from the permutation $Z(1, \rho, N-1)$.

III. 2 Recursive structure in the residues

Reduce any massless pole residue to regular < N point integrals $\mathcal{O}(\alpha'^{\geq 2})$

$$I_{\{a_i\}}^{\text{reg}} := \underbrace{\prod_{i=2}^{N-2} \int_0^{z_{i+1}} \frac{\mathrm{d}z_i}{z_i - a_i}}_{\text{reflects } \rho \text{ of } Z(\rho)} \underbrace{\prod_{i
$$Z(1, 2, 4, 3) = \frac{1}{s_{12}} + I_0^{\text{reg}}(k_1, k_2, k_3) = \frac{1}{2} \underbrace{4 + \frac{1}{2}}_{3} + \frac{4}{2} \underbrace{4 + \frac{1}{2}}_{3}$$$$

III. 2 Recursive structure in the residues

. . .

Z

Reduce any massless pole residue to regular < N point integrals $\mathcal{O}(\alpha'^{\geq 2})$

Concluding remarks

• Open superstring tree amplitude strongly resembles KLT formula:

Trade $\mathcal{A}^{\mathrm{YM}}(\pi) \mapsto \text{disk integral } Z(\pi)$

• Disk integrals $Z(\pi)$ literally satisfy KK- and BCJ relations of the $\mathcal{A}^{\text{YM}}(\pi)$

 \Rightarrow (N-3)! bases in both sectors

• Pole structure of $Z(\pi)$ can be understood recursively,

 α' expansion from polylogarithmic integrals over $\prod_{i < j} \ln |z_{ij}|^{n_{ij}}$

Concluding remarks

- Open superstring tree amplitude strongly resembles KLT formula: Trade $\mathcal{A}^{\text{YM}}(\pi) \mapsto \text{disk} \text{ integral } Z(\pi)$
- Disk integrals $Z(\pi)$ literally satisfy KK- and BCJ relations of the $\mathcal{A}^{\text{YM}}(\pi)$
 - \Rightarrow (N-3)! bases in both sectors
- Pole structure of $Z(\pi)$ can be understood recursively,
 - α' expansion from polylogarithmic integrals over $\prod_{i < j} \ln |z_{ij}|^{n_{ij}}$

Thank you for your attention !