MASSIVE TENSOR TOWERS AND EFFECTIVE ACTIONS

Federico Bonetti

Max Planck Institute for Physics, Munich

18 March, 2013 XXV Workshop Beyond the Standard Model, Bad Honnef

based on FB, T. W. Grimm, S. Hohenegger [1209.3017, 1302.2918, 1303.2661]

Introduction

• Main subject of the talk:

5d action for 6d self-dual tensors

- Some motivations:
 - 1. F-theory effective actions
 - no 12d effective action, we need duality with M-theory
 - > 6d F-theory action = lift of 5d M-theory action on CY_3
 - natural transdimensional treatment of 6d tensors
 - 2. (2,0) theories
 - superconformal theories with 16 supersymmetries
 - non-Abelian gauge group but no vectors in the spectrum
 - various 5d proposals to decode 6d dynamics
 - (e.g. Douglas, Lambert et al., Ho et al.)

6d self-dual tensor on a circle

Compactify on a circle: $x^5 \sim x^5 + 2\pi R$. Kaluza-Klein expansion of \hat{B} :

$$\hat{B}_{\mu\nu} = \sum_{n \in \mathbb{Z}} e^{inx^5/R} B_{\mu\nu}^{(n)} \qquad \hat{B}_{\mu5} = R^{-1} \sum_{n \in \mathbb{Z}} e^{inx^5/R} A_{\mu}^{(n)}$$

6d gauge transformation $\delta \hat{B} = d\hat{\Lambda}$ 5d gauge transformation $\delta B^{(n)} = d\Lambda^{(n)} \quad \delta A^{(n)} = d\lambda^{(n)} - in\Lambda^{(n)}$

6d self-duality $d\hat{B} = \hat{*}d\hat{B}$ 5d duality between zeromodes $R * dB^{(0)} = dA^{(0)}$

• Stückelberg mechanism: $B^{(n)}$ eats $A^{(n)}$ for $n \neq 0$

• $B^{(0)}$ and $A^{(0)}$ describe the same d.o.f.'s

5d action for massive tensor tower

Action for the massless vector $A^{(0)}$ and the tower of massive tensors $B^{(n)}$

$$S = \int -\frac{1}{2g^2} F^{(0)} \wedge *F^{(0)} + \sum_{n=1}^{\infty} \left[i\overline{B}^{(n)} \wedge dB^{(n)} - m_n \overline{B}^{(n)} \wedge *B^{(n)} \right]$$

$$\begin{bmatrix} 5d \text{ gauge} \\ \text{coupling} \\ g^2 = R \end{bmatrix}$$

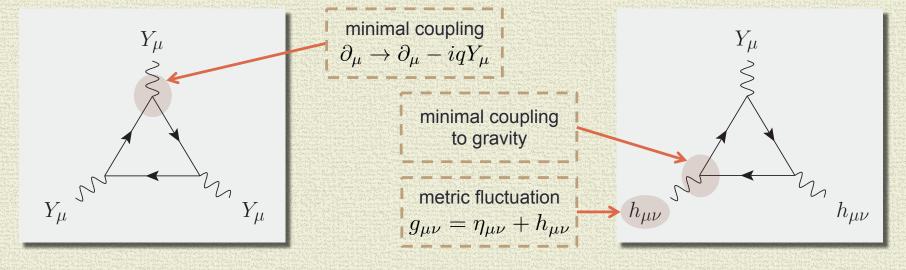
$$\begin{bmatrix} \text{KK mass} \\ m_n = nR^{-1} \\ \text{main structure} \\ \text{Kinetic term} \end{bmatrix}$$

Parity-violating massive fields

$\begin{array}{llllllllllllllllllllllllllllllllllll$					
SO(4) rep	6d field	5d field	5d EOM		
$(1/2, 0) \\ (0, 1/2)$	spin-1/2 symplectic Majorana-Weyl fermion	spin-1/2 Dirac fermion	$(i\gamma^{\mu}\partial_{\mu}\pm m)\psi=0$		
(1/2, 1) (1, 1/2)	spin-3/2 symplectic Majorana-Weyl fermion	spin-3/2 Dirac fermion	$(i\gamma^{\rho\mu\nu}\partial_{\mu}\pm m\gamma^{\rho\nu})\psi_{\nu}=0$		
$(1,0) \\ (0,1)$	(anti)self-dual tensor	complex tensor	$(i*d\pm m)B=0$		
6d chirality					

One-loop Chern-Simons terms

Parity violating massive fields induce Chern-Simons terms at one loop $Y \equiv U(1)$ vector; $\mathcal{R} \equiv$ curvature 2-form

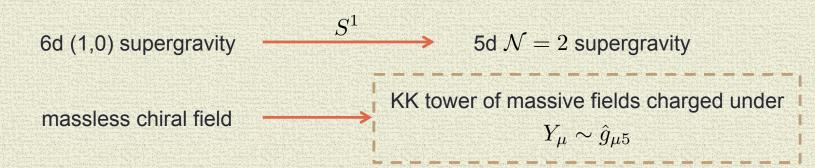


$$-\frac{\operatorname{sgn}(m)q^{3}}{48\pi^{2}} k \int Y \wedge dY \wedge dY$$
$$-\frac{\operatorname{sgn}(m)q}{384\pi^{2}} \kappa \int Y \wedge \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$$

independent of the mass scale!

	spin-1/2 fermion	spin-3/2 fermion	massive tensor
k	1	5	-4
κ	1	-19	8

Example: (1,0) supergravity on a circle



6d spectrum: T tensor multiplets, V vector multiplets, H hypermultiplets 5d loop computation:

$$k_{1-\text{loop}} = \sum_{n=1}^{\infty} n^3 \left[2(V - H - T) + 2 \cdot 5 + (1 - T) \cdot (-4) \right] = \frac{1}{2}(T - 9)$$
spin-1/2 fermions
gravitino

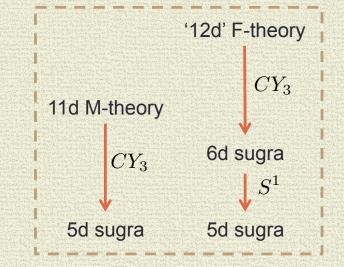
Anomaly cancellation condition H - V = 273 - 29TKK sum regularization $\zeta(-3) = 1/120$

This term cannot arise from classical dimensional reduction: $k_{\text{class}} = 0$

Two applications

1. F-theory/M-theory duality

- F-theory effective action derived via duality with M-theory
- One-loop CS terms are crucial in the match of 5d actions and are related to 6d anomalies



- 2. 6d origins of 5d theory
 - Given a 5d theory, can it come from 6d?
 - Necessary conditions come from comparison between tree-level and one-loop CS terms

Non-Abelian tensor towers - I

Natural non-Abelian extension of the tensor tower action:

$$S = \int -\frac{1}{2g^2} \operatorname{Tr} \left[F^{(0)} \wedge *F^{(0)} \right] + \sum_{n=1}^{\infty} \operatorname{Tr} \left[i\bar{B}^{(n)} \wedge DB^{(n)} - m_n \,\bar{B}^{(n)} \wedge *B^{(n)} \right]$$

$$\operatorname{zeromodes \ are \ promoted \ to}_{\ non-Abelian \ gauge \ fields}$$

$$F^{(0)} = dA^{(0)} + \frac{1}{2} [A^{(0)}, A^{(0)}]$$

$$excited \ modes \ are \ promoted \ to}_{\ adjoint \ matter}$$

$$DB^{(n)} = dB^{(n)} + [A^{(0)}, B^{(n)}]$$

- This system does not admit a straightforward lift to 6d
- Proposal: use non-Abelian tensor towers to study (2,0) theories

Non-Abelian tensor towers - II

- This non-Abelian action can be extended to a 5d action with
 - ✓ 8 real supercharges
 - \checkmark full spectrum expected from circle reduction of a (2,0) theory
 - ✓ all couplings specified by KK level and group theoretical invariants
- Two special cases
 - 1. truncate excited modes: susy enhances to 5d MSYM
 - switch off non-Abelian structure constants: susy enhances to Abelian (2,0) theory on a circle
- Hope: non-Abelian tensor towers can capture some robust quantities of (2,0) theories (e.g. anomalies)

Conclusions

massive tensors at one loop

- 5d massive tensors break parity
- CS terms are induced at one-loop by integrating them out

- Better understanding of F-theory/ M-theory duality in 6d
- Tests for 6d origins of a given 5d theory

non-Abelian massive tensors

- Natural non-Abelian extension
- Supersymmetric models with all d.o.f.'s expected for (2,0) theories on a circle

 5d window on robust features of (2,0) theories? Thank you for your attention.