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Main stream Cosmology

Assume FLRW = homogeneous and isotropic metric.
Implicit averaging

Modeling the energy momentum tensor as a perfect

fluid.

Pert. give rise to structure, highly non-linear at some
scale. Background unchanged.

Implicitly neglected the possibility of backreaction.



Importance of averaging
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The evolution of an

inhomogeneous spacetime after

averaging differs from the
evolution of its averaged
spacetime.

Few questions:

e Can smoothing of structure contribute to
an acceleration term (DE)?

Is there an effect from small scales to large
scales 7

= Nice way out of the coincidence
problem? (T. Buchert)

e Consequences on cosmological
parameters? (C. Clarkson, J. Larena)
Negligible for a physical reason?

e What is the scale of homogeneity in the
Universe? 100Mpc?

e Fitting Problem : What is the best-fit
FLRW model to a given lumpy Universe?

e How Einstein field equations transform
after a coarse-graining procedure? How do
we average vectors and tensors?



Prelude




Perturbations at Low Redshift

O  Measurements of SNIa = Mostly neglected, naively argued as
irrelevant ~ 101

O The concordance model of cosmology:

~13% of the critical energy density is not accounted for by known
matter, dark matter or curvature.




Universe Composition Today
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0O  CC/DE becomes relevant only at z~ 1, Coincidence
Problem?

O Based on CMB, LSS and SNIa observations.




Outline

Gauge invariant light-cone (LC) averaging formalism

Application: luminosity-distance (d;) redshift (z) relation for a
perturbed FLRW Universe.

Ingredients: FLRW + subhorizon pert., properly averaged and
calculate the d;-z relation in CDM, LCDM and for different

functions of d;
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LC Averaging

Hyper-surfaces using meaningful
physical quantities: Redshift,
temperature etc.

Observations are made on the
light-cone. : V = VO

Light travels on geodesics.

Past attempts: Coley 0905.2442; A=A0
Rasanen 1107.1176, 0912.3370 ' :




nght Cone Averaging 1104.1167

O A-priori - the averaging is a geometric procedure, does not
assume a specific energy momentum tensor.

I(S: Vo, Ag: —) = / d*x /=g (Vo — V)3(A — Ad)|9, V" AlS(X)

k,=0,V I(S; Vo, Ao; —)

S0 = 1TV, Ao )

The prescription is gauge inv., {field reparam. A>A'(A), V->V'(V)}
and invariant under general coordinate transformation. A(x) is
a time-like scalar, V(x) is null.

This gives a procedure for general space-times.



GLC Metric and Averages

dsZ; o = T2dw? — 2V dwdr + Yap(dh* — Udw)(df® — Ulduw).
O Ideal Observational Cosmology - Ellis et al.

O  Evaluating scalars at a constant redshift for a geodetic observer.




GLC Metric

O  FLRW
w =1+, T =1, T =alt), e — 0.
Yabd0*d0° = a®(t)r*(d6? + sin® Gdp?),

O T can be identified as the time coordinate in the
synchronous gauge of arbitrary space-time.
dXH
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Average d; on the past LC at constant
redshift

V

/

2-sphere embedded
in the light cone

A

/
/N

A= redshift, V= light-cone coordinate

0




Averaged dr at Constant Redshift

O  Novelty: In principle, exact treatment of the geodesic equations
and the averaging hypersurface for any spacetime and any DE
model, as long as the geodesic equation is unchanged.

O Previous attempts are limited to perturbations about FLRW and
had to solve order by order: Vanderveld et al - post Newtonian,

Barausse et al. 2005, Kolb et al. 2006 - SG superhorizon, Pyne at
alg?005..:

O Rebuttal : Hirata et al., Geshnizjani et al.

O We work up to 2™ order in perturbation theory in the Poisson
Gauge.



Averaged dr at Constant Redshift

O Ethrington’s Reciprocity Law, for any spacetime:
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Functions of d;

O  Overbars and {...} denote ensemble average, <..> denote

LC average.
{FS})=F{S})

O Averages of different functions of scalars receive
different contributions.

D ~ ({d;7}) = @) + £ (D]
Hd,. ) =d7 " 1+ f,(=)]




The Optimal Observable -
Flux

0O LC average of flux for any space-time amounts to the
area of the 2-sphere!

L) (wo, 2) = 1/ 455 dQ) -4 @ _ g Am
(d ") (wo, 26) = (1424)" [ds =tz T =+ an 2
Alwo, z5) = / HV
Y(w,,2)
Jr=p's
Y =p"sin6
ds =p= Ealm (WO,ZS )Ylm 6,)
l.m
d29 )/ c. d28p2 SlnH s a 2 2 a2
Im 00
l,m

Anisotropies always “mimic” acceleration!



The Perturbed Quantities

O We work up to 2" order in perturbation
theory in the Poisson Gauge.

O Both the area distance and the measure
of integration are expressed in terms of
the gravitational potential and its
derivatives. Vector and tensor pert. do
not contribute.

d, =d[1+d"(W,0¥..)+d”(W,0W..)+..]
[d?6\y = [dQ[1+u®(W,0%..)+u> (¥,09..) +..]




Statistical Properties

O In principle, we can now calculate <di>(z) to
first order in the gravitational potential = void

model. T =0, U2 #£0

O In order not to resort to a specific realization we
need LC+statistical/ensemble average. If
perturbations come from primordial Gaussian
fluc. (inflation)

{<dL>}=d<0> 1+ {Cu )} {2}

(Var FLRW {<(d<”) >}
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Interpretation & Analysis

O d, is a stochastic observable - mean, dispersion, skewness...

~ o~ 1 [®dk (kN
fo(z) = [11.1(3)+f2(3)J/ (A- <Hc> P(k),
0 : )

In the flux - The dominant contribution are Doppler terms ~ k?

O

Any other function of d; gets also k’ contributions - lensing
contribution, dominates at large redshift, z>0.3

Linear treatment k<0.1-1 Mpc'! and non-linear treatment k<21
Mpc!

No Divergences!



(k) [h® Mpc 2]

L,NL
v

kP

10—13

107"

K Ph(l)

(k)

} :(;l.l —t ::::::i
k [h Mpc™]

100



Interpretation & Analysis

0O  Superhorizon scales are subdominant.

O At small enough scales, the transfer function wins.

O At intermediate scales, the phase space factor competes
with the initial small amplitude.

O In the non-linear regime we use a fit from simulations.
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Fractional Corrections
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Results and Lessons

Unlike volume averages: No divergences

The contribution from inhomogeneities is several
orders of magnitude larger than the naive
expectations due to the large phase space factor.

The size of the contribution (f;fg) is strongly
dependent on the quantity whose average is
considered.

Our approach is useful whenever dealing with
information carried by lightlike signals travelling
along our past light-cone.



Conclusions

O Flux is the optimal observable. Different bias or
“subtraction” mechanisms, in order to extract
cosmological parameters.

O Irreducible Scatter - The dispersion is large =~ 2-10%
A\ CDM, of the critical density depending on the
spectrum. Scatter is mostly from the LC average. It gives
theoretical explanation to the intrinsic scatter of SN
measurements.

O The effect is too SMALL AND has the WRONG z

dependence to simulate observable CC!



Open Issues/Future Prospects

Using the lensing dispersion to constrain the power spectrum.
Matching the effect to other probes: CMB, LSS

Applying LC averaging to cosmic shear, BAO, kSZ, strong
lensing etc.

Other applications, averaging of EFE ....Many open theoretical
and pheno. problems.




k_..=0.1 Mpc!, CDM
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Prescription Properties

O Dynamical properties: Generalization of Buchert-Ehlers
commutation rule:

(i) - If * (_) »S‘ v * 111; - v * /1-' -
- (S)Ivo,40 — < = > + < — P > - < . > (S)o,40
(,)A‘l() /1' . (,)‘_1 Vo,Ao /1‘ . ()4‘1 Vo,AQ /1' . () ‘_1 Vo, Ao (

O For actual physical calculations, use EFE/ energy momentum
tensor for evaluation. Example: which gravitational potential
to use in evaluating the di-z relation.

O Averages of different functions give different outcome

(F($))= (5
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Results

O  From z=0.03 correlated term gives a contribution of 1 part in

10000 to the mean of d;

However it is still 6 orders of magnitude bigger than the naive
expectation.

O The dispersion is very large ™ 10% of the critical density.
Scatter is mostly from angular average.

O The lensing term squared also appears in the 2* order term
of the mean, the term exists independently of the averaging
prescription. Barring cancellations, this term will dominate
over the correlated contribution d;?, (d;)??



Work In Progress

O Calculation of the averaged d; and variance to second order
in perturbation theory - LCDM+ tensors and vectors

O  Actually measuring flux! The area distance is factored out!
Unique! Any other power of d; will have significant
deviations.
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>nce, only the
variance does => Similar results!



Summary & Conclusions

Application of light cone averaging formalism to the d; -z relation.

INHOMOGENEITIES CANNOT FAKE
DARK ENERGY AT THE OBSERVABLE
[P -

The effect of averaging can, in principle, be distinguished from the
homogeneous contribution of CC/DE.

ala—1)7—r
— U5,

b

(A JEFRY)Y — a{d, JdETR7 ) =1 — o+

Variance gives theoretical explanation to the intrinsic scatter of SN
measurements.



Open Issues/Future Prospects

Estimates of the non-linear regime, especially 0.1 Mpc!<k< 1
Mpcl.

Cosmological parameter analysis.
Matching the effect to other probes: CMB, LSS

Applying LC averaging to BAO, kSZ and many more.

Other applications, averaging of EFE ....Many open theoretical
and pheno. problems.




GLC Metric

O  FLRW

w =17Tr —+ 1, T =1. Y = (l(f) [*a — 0.
A"ab(‘ma(mb = "IQ(T,)"Q(J()Q + sin? Odo? ),

O T can be identified as the time coordinate in the synchronous gauge
of arbitrary space-time.

dXH

9de = {=1.0} = = [0r + Y7100 + U%00)] X" = —u"0, XV = ———.

111/ CL Ul. 4 L




GLC to FLRW NG 1%t Order
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[ C Calculation and LCDM
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Measure of Integration

O The df/(/‘.?g\/r': /(1(.‘)Hi11H(]H(121‘2(1 —2U)

1
HAn

p1 = —2W, + 40y, + 2 (1 - ) J(35'9 0)

For futt

O Subhorizon fluc. Hy<k. Superhorizon fluc. are subdominant.

O No UV (k=»o0) or IR (z =90, k = 0) divergences.



Statistical Properties

(@)} = a1+ {(ud W+ {(a)) +..]

O In principle, we can now calculate <di>(z) to
first order in the gravitational potential = void
model. U =0, 02 #£0

O In order not to resort to a specific realization we
need LC+statistical/ensemble average. If
perturbations come from primordial Gaussian
fluc. (inflation) 1= > _ i o= o

. v d 2 S : i

Jg P

(S)s = d*p = (1) (1 + p). S =SO(1+0),



BR of Statistical and LC Averaging

O The mean of a scalar:

(S/S©)) =1 + (02) + IBRs + (03) + IBR3 + . ..

IBR2 = (p101) — (p1){o1),
IBRs = (u201) — (p2)(o1) + (p102) — (p1)(o2) — (p1)(p1o1) + (p1)(p1)(o1),

=> Effects are second order, but we have the full backreaction of
the inhomogeneities of the metric at this order!

O The variance to leading order:  v;,,15/50)) = (52},




Dominant Terms
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O  Doppler effect due to the perturbation of the geodesic.

O The Lensing Term:

1 [™ n-n iy . 1 [™ n-n
Jo = dn [09 + cot 00 + (sin ) 0| U(n,n0 —1f,0°) = dn AgU
M —1Ts Jy =1 o —Ts Jy =1



Conclusions

O GR + Standard Pert. Theory + Averaging challenge the
concordance model.

O Perturbations cannot be discarded as negligible. Any
explanation of the cosmic acceleration will have to take them
into account.



2011 Nobel Prize in Physics
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CC/ Dark Energy/ Modified Gravity/ Voids

O (Averaging of) perturbations in a consistent way. Does it
have any effects?

O In this work, we are NOT: assuming voids, modifying GR,
adding scalar fields, having a CC....Doh!

O  Application: FLRW + pert. , pure CDM, properly averaged
and calculate the d;-z relation.



GLC to FLRW NG 1t Order
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[ C Calculation and LCDM

O Pure FLRW.:

) | no _ %s d 2
d{‘L»RH (,':S) — (1 — ,:S)(l() / ([‘I] = (J. + ':S) / H( -,)
Ne 0 N

| ~1/2
- + / dz [Z()no 14 2) 1+wn)]

O  Perturbed:

dL (33,90) . dL(~3, ea)

1
— 1= U(ne.mo — 1o, %) + 20, + (1 — T—1Jo.
(1+ z5)aoAn  dFERW () (1320 = 7, 6") a‘+< Hs/_\.n) 2

O Comparing by defining an effective redshift and averaging at constant
redshift and w=wo
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Power Spectrum

O We use the WMAP7 best fit value and the transfer function
of Eisenstein & Hu 1997 for CDM.

O We are interested in the overall magnitude so we neglect the
baryonic oscillations.

kP ., 3\? . ‘ ‘ o\ el
Py (k) = ’\Ilk‘z — <?> A%T(},-)z. A%, — A <_>
)

272 kq

O Only subhorizon fluc. Hy<k. Superhorizon fluc. are
subdominant.

O  No UV (k=®00) or IR (z =90, k = 0) divergences.



“Doppler?” term
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Averaging in Physics

O  Electromagnetism: Maxwell’s equations are linear. Averaging
and solving commute. Microscopic E&M is smoothly averaged

to Macroscopic E&M.

O Fluid Mechanics/Turbulence: Navier-Stokes equation is non-
linear. Averaging and solving do not commute - many open
problems.

O GR is non-inear. Averaging and solving do not commute.

(Newtonian Cosmology treated by Ellis, amounts to a boundary
term => simulations don’t help much)



Non-Trivial Averages

O Off-Center LTB
O Anisotropic Models (Except Kantowski-Sachs)

O  More general metrics.

O Perturbed FLRW

Past attempts: Vanderveld et al. - post Newtonian, Barausse et al., Kolb et al. - SG
superhorizon, Pyne at al.,




