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Main stream Cosmology 
!   Assume FLRW = homogeneous and isotropic metric. 

⇒  Implicit averaging 

!   Modeling the energy momentum tensor as a perfect 
fluid. 

!   Pert. give rise to structure, highly non-linear at some 
scale. Background unchanged. 

⇒  Implicitly neglected the possibility of backreaction. 





Prelude 

2.73 K 

SDSS 



Perturbations at Low Redshift 

!   Measurements of SNIa è Mostly neglected, naively argued as 
irrelevant ~10-10 

!   The concordance model of cosmology: 

~73% of the critical energy density is not accounted for by known 
matter, dark matter or curvature. 

 



!   CC/DE becomes relevant only at z~1, Coincidence 
Problem? 

!   Based on CMB, LSS and SNIa observations.  
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!   Gauge invariant light-cone (LC) averaging formalism 

!   Application: luminosity-distance (dL) redshift (z) relation for a 
perturbed FLRW Universe. 

!   Ingredients: FLRW + subhorizon pert., properly averaged and 
calculate the dL-z relation in CDM, LCDM and for different 
functions of dL  

 

 

Outline 



LC Averaging 

!   Hyper-surfaces using meaningful 
physical quantities: Redshift, 
temperature etc. 

!   Observations are made on the 
light-cone. 

!   Light travels on geodesics. 

!   Past attempts: Coley 0905.2442; 
Rasanen 1107.1176, 0912.3370 

 



Light Cone Averaging 1104.1167 

!   A-priori - the averaging is a geometric procedure, does not 
assume a specific energy momentum tensor. 

 

 

 

The prescription is gauge inv., {field reparam. A->A’(A), V->V’(V)} 
and invariant under general coordinate transformation. A(x) is 
a time-like scalar, V(x) is null. 

This gives a procedure for general space-times.  

 



GLC Metric and Averages 

!   Ideal Observational Cosmology – Ellis et al. 

!   Evaluating scalars at a constant redshift for a geodetic observer. 
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!   FLRW 

 

 

!   τ can be identified as the time coordinate in the 
synchronous gauge of arbitrary space-time. 

 

IBD et al. ’12 

 

GLC Metric 



Average dL on the past LC at constant 
redshift 

A= redshift, V= light-cone coordinate 



Averaged dL at Constant Redshift 

!   Novelty: In principle, exact treatment of the geodesic equations 
and the averaging hyper-surface for any spacetime and any DE 
model, as long as the geodesic equation is unchanged. 

! Previous attempts are limited to perturbations about FLRW and 
had to solve order by order: Vanderveld et al. – post Newtonian, 
Barausse et al. 2005, Kolb et al. 2006 – SG superhorizon, Pyne at 
al 2005…  

!   Rebuttal : Hirata et al., Geshnizjani et al. 

!   We work up to 2nd order in perturbation theory in the Poisson 
Gauge. 



! Ethrington’s Reciprocity Law, for any spacetime: 

 

Averaged dL at Constant Redshift 

Φ =
L

4πdL
2 ; dL (z) = (1+ z)

2dS; dS
2 ≡

dS
dΩO

=
γ

sin θ



! Overbars and {…} denote ensemble average, <..> denote 
LC average. 

!   Averages of different functions of scalars receive 
different contributions. 

Functions of dL 

Φ ~ dL
−2{ } = (dL

FLRW )−2[1+ fΦ(z)]

dL{ } = dL
FLRW [1+ fd (z)]

F(S){ } ≠ F S{ }



!   LC average of flux for any space-time amounts to the 
area of the 2-sphere! 

 

 

 

 

 

Anisotropies always “mimic” acceleration! 

The Optimal Observable - 
Flux 

γ = ρ2 sinθ

ds ≡ ρ = alm (w0, zs )Ylm (θ,ϕ )
l,m
∑

d 2θ∫ γ = d 2θ∫ ρ2 sinθ = alm (w0, zs )
2

l,m
∑ > a200



The Perturbed Quantities 
!   We work up to 2nd order in perturbation 

theory in the Poisson Gauge. 

!   Both the area distance and the measure 
of integration are expressed in terms of 
the gravitational potential and its 
derivatives. Vector and tensor pert. do 
not contribute. 

dL = dL
(0)[1+ dL

(1)(Ψ,∂Ψ...)+ dL
(2)(Ψ,∂Ψ...)+...]

d 2 θ γ∫ = dΩ∫ [1+µ (1)(Ψ,∂Ψ...)+µ (2)(Ψ,∂Ψ...)+...]



Statistical Properties 

!   In principle, we can now calculate <dL>(z) to 
first order in the gravitational potential ~ void 
model. 

!   In order not to resort to a specific realization we 
need LC+statistical/ensemble average. If 
perturbations come from primordial Gaussian 
fluc. (inflation)  

dL{ }= dL(0) 1+ µ (1)dL
(1){ }+ dL

(2){ }+...!
"

#
$

(Var dL
dL
FLRW ) = (dL

(1) )2{ }





! dL is a stochastic observable – mean, dispersion, skewness... 

 

In the flux - The dominant contribution are Doppler terms ~k2 

!   Any other function of dL  gets also k3 contributions – lensing 
contribution, dominates at large redshift, z>0.3 

!   Linear treatment k<0.1-1 Mpc-1 and non-linear treatment k<21 
Mpc-1 

 

 

Interpretation & Analysis 





! Superhorizon scales are subdominant. 

!   At small enough scales, the transfer function wins. 

!   At intermediate scales, the phase space factor competes 
with the initial small amplitude. 

!   In the non-linear regime we use a fit from simulations. 

Interpretation & Analysis 
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Lensing Dispersion 
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!   Unlike volume averages: No divergences 

!   The contribution from inhomogeneities is several 
orders of magnitude larger than the naïve 
expectations due to the large phase space factor. 

!   The size of the contribution (fd,fΦ) is strongly 
dependent on the quantity whose average is 
considered.  

!   Our approach is useful whenever dealing with 
information carried by light-like signals travelling 
along our past light-cone. 

Results and Lessons 



!   Flux is the optimal observable. Different bias or 
“subtraction” mechanisms, in order to extract 
cosmological parameters. 

!   Irreducible Scatter - The dispersion is large ~ 2-10% 
ΛCDM, of the critical density depending on the 
spectrum. Scatter is mostly from the LC average. It gives 
theoretical explanation to the intrinsic scatter of SN 
measurements. 

!   The effect is too SMALL AND has the WRONG  z 
dependence to simulate observable CC! 

Conclusions 



1.  Using the lensing dispersion to constrain the power spectrum.  

2.  Matching the effect to other probes: CMB, LSS 

3.  Applying LC averaging to cosmic shear, BAO, kSZ, strong 
lensing etc. 

4.  Other applications, averaging of EFE ….Many open theoretical 
and pheno. problems. 

Open Issues/Future Prospects 
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Prescription Properties 
!   Dynamical properties: Generalization of Buchert-Ehlers 

commutation rule: 

 

!   For actual physical calculations, use  EFE/ energy momentum 
tensor for evaluation. Example: which gravitational potential 
to use in evaluating the dL-z relation. 

!   Averages of different functions give different outcome 

F(S) ≠ F S



kmax=1 Mpc-1 



Results 

!   From z=0.03 correlated term gives a contribution of 1 part in 
10000 to the mean of dL  

However it is still 6 orders of magnitude bigger than the naive 
expectation. 

!   The dispersion is very large~ 10% of the critical density. 
Scatter is mostly from angular average. 

!   The lensing term squared also appears in the 2nd order term 
of the mean, the term exists independently of the averaging 
prescription. Barring cancellations, this term will dominate 
over the correlated contribution  dL

(2), (dL
(1))2?  

 



Work In Progress 

!   Calculation of the averaged dL and variance to second order 
in perturbation theory – LCDM+ tensors and vectors 

!   Actually measuring flux!  The area distance is factored out! 
Unique! Any other power of dL will have significant 
deviations. 

!   The avg. hyper-surface doesn’t see the convergence, only the 
variance does => Similar results! 



Summary & Conclusions 

!   Application of light cone averaging formalism to the dL-z relation. 

!   INHOMOGENEITIES CANNOT FAKE 
DARK ENERGY AT THE OBSERVABLE 
LEVEL! 

!   The effect of averaging can, in principle, be distinguished from the 
homogeneous contribution of CC/DE. 

!   Variance gives theoretical explanation to the intrinsic scatter of SN 
measurements. 

 

 



Open Issues/Future Prospects 

1.  Estimates of the non-linear regime, especially 0.1 Mpc-1<k< 1 
Mpc-1. 

2.  Cosmological parameter analysis. 

3.  Matching the effect to other probes: CMB, LSS 

4.  Applying LC averaging to BAO, kSZ and many more. 

5.  Other applications, averaging of EFE ….Many open theoretical 
and pheno. problems. 



GLC Metric 
!   FLRW 

!   τ can be identified as the time coordinate in the synchronous gauge 
of arbitrary space-time. 

 

IBD et al. ‘12 

 

 

 



GLC to FLRW NG 1st Order 

Ψ̂(η+,η−,θ
a ) ≡ Ψ(η, r,θ a )

γ̂0
ab(η+,η−,θ

a ) ≡ γ0
ab(η, r,θ a ) = diag(r−2, r−2 sin−2θ )



LC Calculation and LCDM 

!   Pure FLRW: 

!   Transform from the GLC metric to the longitudinal gauge 

!   Perturbed: 



Measure of Integration 

 

!   The deviation from the unperturbed measure: 

 

For future reference: 

! Subhorizon fluc. H0<k. Superhorizon fluc. are subdominant. 

!   No UV (k ∞) or IR (z 0, k  0) divergences. 

 



Statistical Properties 

!   In principle, we can now calculate <dL>(z) to 
first order in the gravitational potential ~ void 
model. 

!   In order not to resort to a specific realization we 
need LC+statistical/ensemble average. If 
perturbations come from primordial Gaussian 
fluc. (inflation)  

dL{ }= dL(0) 1+ µ (1)dL
(1){ }+ dL

(2){ }+...!
"

#
$



BR of Statistical and LC Averaging 
!   The mean of a scalar: 

 

 

=> Effects are second order, but we have the full backreaction of 
the inhomogeneities of the metric at this order! 

!   The variance to leading order:  



Dominant Terms 

 

!   Doppler effect due to the perturbation of the geodesic. 

 

!   The Lensing Term: 

  

€ 

Ir = (  v S −
 v 0) ⋅ ˆ n 



Conclusions 

!   GR + Standard Pert. Theory + Averaging challenge the 
concordance model. 

!   Perturbations cannot be discarded as negligible. Any 
explanation of the cosmic acceleration will have to take them 
into account. 

 



2011 Nobel Prize in Physics 
The 2011 Nobel Prize in Physics is awarded 

"for the discovery of the accelerating expansion of 
the Universe through observations of distant 
supernovae" with one half to Saul Perlmutter 
and the other half jointly to Brian P. Schmidt 
and Adam G. Riess 

 



€ 

l = kΔη

f0,S ≈
η0,S
3



CC/ Dark Energy/ Modified Gravity/ Voids 

!   (Averaging  of) perturbations in a consistent way. Does it 
have any effects? 

!   In this work, we are NOT: assuming voids, modifying GR, 
adding scalar fields, having a CC….Doh! 

!   Application:  FLRW + pert. , pure CDM, properly averaged  
and calculate the dL-z relation.  



GLC to FLRW NG 1st Order 



LC Calculation and LCDM 
!   Pure FLRW: 

!   Perturbed: 

!   Comparing by defining an effective redshift and averaging at constant 
redshift and w=w0  



Power Spectrum 

!   We use the WMAP7 best fit value and the transfer function 
of Eisenstein & Hu 1997 for CDM. 

!   We are interested in the overall magnitude so we neglect the 
baryonic oscillations. 

!   Only subhorizon fluc. H0<k. Superhorizon fluc. are 
subdominant. 

!   No UV (k ∞) or IR (z 0, k  0) divergences. 



“Doppler2” term 
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Lensing2 Term 

!   ↵ ∞ 

1 Mpc-1 
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Averaging in Physics 
!   Electromagnetism:  Maxwell’s equations are linear. Averaging 

and solving commute. Microscopic E&M is smoothly averaged 
to Macroscopic E&M. 

!   Fluid Mechanics/Turbulence: Navier-Stokes equation is non-
linear. Averaging and solving do not commute – many open 
problems. 

!   GR is non-linear. Averaging and solving do not commute.  

(Newtonian Cosmology treated by Ellis, amounts to a boundary 
term => simulations don’t help much) 



Non-Trivial Averages 
!   Off-Center LTB 

!   Anisotropic Models (Except Kantowski-Sachs) 

!   More general metrics. 

!   Perturbed FLRW 

 

Application: calculating the averaged luminosity – distance redshift relation 

 

Past attempts: Vanderveld et al. – post Newtonian, Barausse et al., Kolb et al. – SG 
superhorizon, Pyne at al.,  


