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  Motivating 6d effective theories 

➡ Six-dimensional theories are ideal to probe concepts of string theory
‣ chiral representations for spinors:  strong constraints from anomalies
‣ supersymmetric theories

- (1,0)  - eight supercharges
⇒   gauge theory:  spontaneous compactification + susy breaking:  
       N=1, 4d  string phenomenology

- (2,0)  - sixteen supercharges 
⇒  tensor theory:  two forms with self-dual field strength 
      non-Abelian version mysterious since discovery in ’96

‣ Two main examples: 

3

[Witten]

F-theory on elliptically fibered 
Calabi-Yau threefolds

world-volume theory 
of multiple M5-branes

F-theory on elliptically fibered 
Calabi-Yau threefolds

world-volume theory 
of multiple M5-branes

analog “heterotic string”

analog “Type IIB string”
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  Goals of this talk:

➡ Part I:      Discuss 6d effective theories arising in F-theory compactifications 
                 using M-theory  

‣ 6d pseudo-action and anomalies
‣ 6d Chern-Simons terms and landscape analysis
‣        - corrections 

➡ Part II:      Study vacua of 6d gauged supergravity theories from F-theory
‣ G-fluxes and SU(3) structure geometry
‣ spontaneous compactification:  6d  →  4d
‣ supersymmetry breaking: 8 supercharges  →  4 supercharges

➡ Message:   F-theory via M-theory is ideal to study 6d theories with both 
applications:  6d non-Abelian tensor theories,   4d N=1 phenomenology
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 Formulating six-dimensional 
effective theories
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  F-theory compactifications 

➡ Type IIB has non-perturbative                  symmetry rotating 
⇒ interpret       as complex structure of a two-torus (2 auxiliary dimensions)

➡ minimally supersymmetric F-theory compactifications:

‣ Part I:    F-theory on torus fibered Calabi-Yau threefold   
⇒     6d (1,0) supergravity theory 
⇒     base         is a Kähler manifold

‣ Part II:        SU(3)-structure threefold
            but       remains Kähler  ⇒  6d (1,0) sugra with gauged shift symmetries 

➡ singularities of the fibration are crucial to encode 7-brane physics
 ⇒  pinching torus indicates presence of 7-branes magn. charged under 
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  F-theory / M-theory geometries

➡ F-theory geometries can be constructed and analyzed 
‣ singularities of elliptic fibration induce non-Abelian gauge symmetry
‣ singularity resolution:

(resolution at each codimension)

➡ Unification of brane and bulk 
physics on resolved CY manifold

➡ M-theory to F-theory limit:   M-theory on      

(1) A-cycle:   if small than M-theory becomes Type IIA
(2) B-cycle:  T-duality  ⇒  Type IIA becomes Type IIB
(3) grow extra dimension:   send       - volume T-dual ⇒ B-cycle becomes large 

       ⇒   M-theory to F-theory limit connects 6d and 5d effective theories
7
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  F-theory via M-theory

➡ F-theory viewed as auxiliary `12 dim.’ theory  (torus volume unphysical)  

➡ F-theory effective actions has to be studied via M-theory 
Consider M-theory on space      

(1) A-cycle:   if small than M-theory becomes Type IIA
(2) B-cycle:  T-duality  ⇒  Type IIA becomes Type IIB,     is indeed dilaton-axion
(3) grow extra dimension:   send                  than T-dual  B-cycle becomes large 

➡ can be generalized for singular       fibrations:  e.g.  Taub-NUT ➝ D6 ➝ D7 
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Computing the 4d N = 1 e�ective action I

• need a framework to work with varying � : from M-theory to F-theory (on one slide)

• Basic idea: consider M-theory one T 2 with metric

ds2
11 =

v

Im�

�
(dx + Re �dy)2 + (Im�)2dy2

⇥
+ ds2
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� is the complex structure modulus of the T 2, v volume of T 2
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a) consider A cycle: if small ⇥ M-theory becomes Type IIA strings

b) consider B cycle: T-duality ⇥ Type IIA becomes Type IIB strings

c) grow an extra dimension: send v ⇥ 0 since then T-dual B cycle becomes large

• Claim: the F-theory lift perform steps fiberwise for Y4 is T 2 fibration over B3

M-theory on Y4 (three-dim.) with v ⇥ 0 ⇥ F-theory on Y4 (four-dim.)

v ! 0

F-theory limit:

⌧

T 2
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  M-theory on resolved CY manifolds

➡ physical interpretation of resolution only possible in M-theory
‣ moving branes apart on the B-circle:  

Coulomb branch of the lower-dimensional 
gauge theory:

➡ Massive states from M2 branes on geometric 2-cycles:
‣ M2-branes on resolution          over generic points of  S

                                                       ⇒  massive `W-bosons’ of G-breaking 
‣ M2-branes on resolution          over intersection        

                                                       ⇒  massive matter multiplets 
‣ M2-branes on the elliptic fiber  ⇒  massive Kaluza-Klein modes

➡ All massive states have to be integrated out to determine Wilsonian
effective action  ⇒  in circle compactification also KK-modes are crucial!!
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  6d F-theory effective actions via M-theory

➡ effective actions can be computed via M-theory / 11-dimensional 
supergravity on the resolved Calabi-Yau threefolds 

➡ explicit: (1,0) characteristic data           
determining the action                          
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F-theory on singular M-theory on resolved 

5d, N=2 effective theory with
only abelian gauge symmetries

6d, (1,0) effective theory with
non-Abelian gauge symmetry G

circle compactification

5d, N=2 effective theory pushed
to 5d Coulomb branch:

            6d/5d:  [Ferrara,Minasian,Sagnotti], 
                            [Antoniadis,Ferrara,Minasian,Narain]
                            [Bonetti,TG] [Bonetti,TG,Hohenegger] 

gauged sugra:  [TG,Pugh]

U(1)rkG
compare

Y3 Ỹ3
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Part I:  Systematics for six-dimensional 
theories 
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  Classical geometric data
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➡ general form of N=1 pseudo-action

(anti-) self-duality has to be imposed on the level of e.o.m.

➡ reduce on circle and move to 5d Coulomb branch:
‣ (1) comparison with M-theory:   determine const.                         geometrically 

‣ (2) crucial knowledge of Kaluza-Klein action of tensor tower (and other fields) 
‣ (3) integrate out massive Coulomb branch / Kaluza-Klein modes

S =

Z
1
2g�⇥ G

� ^ ⇤G⇥ + g�⇥ dj
� ^ ⇤dj⇥ + j���⇥

�
a⇥tr(R ^ ⇤R) + b⇥Atr(F

A ^ ⇤FA)
�

+B�
2 ��⇥ ^

�
a⇥tr(R ^R) + b⇥Atr(F

A ^ FA)
�
+ hypers

canonical class of B2c1(B2) = �a↵!↵e.g.

a↵, b↵A, ⌦↵�

intersection numbers on B2⌦↵� =

Z

B2

!↵ ^ !�

[Bonetti,TG]  
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  Higher curvature terms /     - corrections

➡ determine       - corrections to 6d F-theory effective action by dimensionally 
reducing known higher-curvature correction to 11d supergravity

 

➡ 5d volume correction / higher curvature terms from               on 

  ⇒  corrections survive partly in the F-theory limit →  6d        - corrections
  ⇒  non-surviving corrections correspond to 1-loop terms in 5d!

➡ volume corrections in 4d N=1 Kähler potential → volume D7 ! O7- curve
12
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On α
′ corrections in N = 1 F-theory compactifications

Thomas W. Grimm, Raffaele Savelli and Matthias Weißenbacher
Max-Planck-Institut für Physik, Munich, Germany

We consider N = 1 F-theory and Type IIB orientifold compactifications and derive new α
′

corrections to the four-dimensional effective action. They originate from higher derivative corrections
to eleven-dimensional supergravity and survive the M-theory to F-theory limit. We find a correction
to the Kähler potential depending on the volume of a non-trivial intersection curve of seven-branes.
At weak string coupling this correction arises from the intersection of D7-branes with the O7-plane.
We also analyze a four-dimensional higher curvature correction.

I. INTRODUCTION

F-theory is a formulation of Type IIB string theory
with seven-branes at varying string coupling [1]. It cap-
tures string coupling dependent corrections in the geome-
try of an elliptically fibered higher-dimensional manifold.
The general effective actions of F-theory compactifica-
tions have been studied using the duality with M-theory
[2, 3]. M-theory is accessed through its long wave-length
limit provided by eleven-dimensional supergravity. This
implies that the F-theory effective actions are pertur-
bative in the string tension α′. Starting with the two-
derivative supergravity action one derives the classical
F-theory effective action. Studying α′ corrections to this
action is of crucial importance for many questions both
at the conceptual and phenomenological level. In partic-
ular, a central task is the analysis of moduli stabilization
in four-dimensional (4d), N = 1 F-theory compactifica-
tions [2].
In this work we study a set of α′ corrections to 4d,

N = 1 F-theory effective actions arising from known
higher-derivative terms in the 11d supergravity action.
More precisely, we find all corrections induced by a
classical Kaluza-Klein reduction of the purely gravita-
tional M-theory R4-terms investigated in [4–9] on ellip-
tically fibered Calabi-Yau fourfolds. We implement the
F-theory limit decompactifying the 3d M-theory reduc-
tion to four space-time dimensions and interpret the re-
sulting corrections in F-theory. Two α′2 corrections are
shown to survive the limit. We find a correction to the
volume of the Calabi-Yau fourfold base appearing in the
Kähler potential and an R2-term in the 4d effective ac-
tion. Both only depend on the Kähler moduli of the
N = 1 reduction. The presence of a volume correction
in the M-theory reduction on Calabi-Yau fourfolds has
already been stressed in [10, 11]. Moreover, it was found
in [12] that a general M-theory reduction on a Calabi-
Yau fourfold also includes a warp factor. In this work we
will neglect warping effects. There is no warp factor in
six dimensions and we comment on the α′2 corrections in
Calabi-Yau threefold reductions of F-theory.
To give an independent interpretation of these two

α′2 corrections we take the Type IIB weak string cou-
pling limit [13]. The F-theory volume correction is pro-
portional to the volume of the intersection curve of the
D7-branes with the O7-plane. It arises from tree-level

string amplitudes involving oriented open strings with
the topology of a disk, and non-orientable closed strings
with the topology of a projective plane. The 4d higher
curvature correction is argued to arise from a higher cur-
vature modification of the Dirac-Born-Infeld actions of
D7-branes and O7-planes. Different α′ corrections to F-
theory effective actions and their weak coupling interpre-
tations have been found in [14, 15].

II. M-THEORY REDUCTION

Our starting point is the long wave-length limit of M-
theory given by 11d supergravity. In particular, we fo-
cus on a well-known higher derivative correction to the
Einstein-Hilbert term of the form [4–9]

S(11) ⊃
1

(2π)8l9M

∫

∗111 {R(11)
sc +

π2l6M
32211

J0} , (1)

where ∗D1 = dDX
√
−G(D) is the D-dimensional volume

element, R(D)
sc is the D-dimensional Ricci scalar, and lM

is the 11d Planck length. The correction is given by a
Lorentz invariant combination of four powers of the Rie-
mann tensor R(11) of the schematic form

J0 = t8t8(R
(11))4 − 1

4!
ε11ε11(R

(11))4 , (2)

where the precise form of the individual terms is given in
(A5) and (A6). In this work we follow the conventions of
[9]. In these conventions the metric is dimensionless and
only the space-time coordinates have dimensions.
If we now compactify this theory on a Calabi-Yau four-

fold Y4, the resulting 3d effective action will include the
curvature terms (before Weyl rescaling) of the form

S(3) ⊃
1

(2π)8lM

∫

∗31
{

Ṽ4R
(3)
sc + l2M Ṽ2|R(3)|2

}

, (3)

where R(D) = 1
2R

(D)
µν dxµ ∧dxν is the curvature two-form

in D dimensions, and one has

|R(3)|2 ∗3 1 = Tr (R(3) ∧ ∗3R(3)) . (4)

[TG,Weissenbacher,Savelli]   →  R. Savelli’s talk

I0 = ✏11(Tr(R(11) 4)� 1
4Tr(R

(11) 2)2)

J0, I0

S(11)
curv =

1

l9M

Z
⇤1
�
R(11)

sc + l6MJ0) + l6MC3 ^ I0

S(5)
curv =

Z
⇤1

�
Ṽ3 R(5)

sc + Ṽ2 Tr(R(5) ^ ⇤R(5))) + c⌃ A⌃ ^ Tr(R(5) ^R(5)))

Ṽ3 = 1
3!

Z
J3 + �(Y3) Ṽ2 =

Z
c2(Y3) ^ J c⌃ =

Z
c2(Y3) ^ !⌃
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  5d perspective on tensor actions 
➡ action for Kaluza-Klein tensor tower

➡ proposal for non-Abelian generalization
‣ zero modes become non-Abelian gauge potentials, e.g. YM
‣ massive tensor modes are gauged

‣ proposed 5d, N=2 superconformal action for KK-spectrum of (2,0) theory
⇒  How can we test the correctness of this proposal?
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Let us now put the pseudoaction (2) on a circle, by
means of the Kaluza-Klein ansatz for the metric,

dŝ2(x, y) = ds2(x) + r2(x)[dy +A0(x)]2 . (3)

In this relation, x are the non-compact D − 1 coordi-
nates, y ∼ y + 2π is the coordinate along the circle, r is
the compactification radius, and A0 is the Kaluza-Klein
vector, with field strength F 0 = dA0.
We expand the D-dimensional p-form B̂ in Kaluza-

Klein modes according to

B̂ =
∑

n∈Z

einy
[

Bn +An ∧ (dy +A0)
]

, (4)

where Bn, An are (D−1)-dimensional p-forms and (p−1)-
forms, respectively, and only depend on the non-compact
coordinates x. Our formalism requires p > 0, and hence
is not applicable to chiral scalars in two dimensions. Note
that Kaluza-Klein modes are subject to a reality condi-
tion, e.g. B̄n ≡ (Bn)∗ = B−n.
Dimensional reduction of the higher-dimensional field

strength Ĥ is conveniently described in terms of the
lower-dimensional field strengths

Hn = DBn −An ∧ F 0 , Fn = DAn + inBn , (5)

where we have introduced the covariant exterior deriva-
tiveD = d−inA0 acting on the nth mode. Note in partic-
ular the Stückelberg-like coupling in the second equation,
which ensures invariance under

δBn = DΛn , δAn = −inΛn . (6)

A straightforward computation shows that the pseu-
doaction (2) is reduced to the sum

∑

n S̃n, where

S̃n =

∫

− 1
4r H̄n ∧ ∗Hn − 1

4r
−1F̄n ∧ ∗Fn . (7)

Finally, the self-duality constraint (1) yields a constraint
for each Kaluza-Klein level, r ∗Hn = cFn. In the follow-
ing, we implement these constraints at the level of the
lower-dimensional action. To this end, zero-modes and
excited modes are treated differently.
For the sake of simplicity, we will henceforth drop the

Kaluza-Klein subscript on zero-modes, B ≡ B0, A ≡ A0.
As we can see from (6), the shift symmetry of the the-
ory acts trivially on the zero-mode A. Because of the
self-duality constraint, B and A thus furnish a redun-
dant description of the same degrees of freedom, and
no gauge-fixing condition can eliminate this redundancy.
Therefore, either A or B has to be eliminated by hand
from the action. In the following, we choose to remove
B and construct an action in terms of A only.
To achieve this goal, we modify S̃0 given in (7) adding

∆S̃0 =

∫

1
2cH ∧ F + 1

2c A
0 ∧ F ∧ F . (8)

This term is a total derivative as a functional of A,B,A0,
and is such that the sum S̃0 +∆S̃0 can be written as a

functional of A,H, A0. Moreover, (8) is engineered to get
the duality constraint r ∗ H = cF upon variation with
respect to H, which appears only algebraically. We are
thus able to integrate out H to get a proper (D − 1)-
dimensional action depending on A,A0 only. It reads

S0 =

∫

− 1
2r

−1F ∧ ∗F + 1
2c A

0 ∧ F ∧ F . (9)

Note that (5) implies F = dA for n = 0.
Let us now turn to the discussion of the self-duality

condition for the nth excited modes Bn, An. For n &=
0, the shift symmetry (6) acts non-trivially on An. As
a result, the redundancy of the formalism is simply a
manifestation of gauge invariance. Both Bn and An are
thus allowed to enter the action in the gauge-invariant
combination Fn given in (5).
The distinctive feature of the n &= 0 case is the identity

DFn = inHn, which is immediately derived from (5). It
allows us to modify S̃n in (7) by adding

∆S̃n =

∫

1
4c H̄n ∧ Fn + i

4nc F̄n ∧DFn + c.c. (10)

Indeed, this quantity is a total derivative as a functional
of An, Bn, A0. However, the total action S̃n +∆S̃n can
be seen as a functional of Fn,Hn, A0, in which Hn en-
ters only algebraically. As in the discussion of the zero-
modes, the duality constraint r ∗ Hn = cFn is imple-
mented through integrating out Hn. We are thus left
with the proper action

Sn =

∫

− 1
2r

−1F̄n ∧ ∗Fn + i
2nc F̄n ∧DFn , (11)

where An, Bn only appear through Fn.
We are now in a position to write down the total action

in D − 1 dimensions. It reads

S =

∫

− 1
2r

−1F ∧ ∗F + 1
2c A

0 ∧F ∧ F

+
∞
∑

n=1

∫

−r−1F̄n ∧ ∗Fn + i
nc F̄n ∧DFn . (12)

Note that we sum (11) over positive n only, thanks to
the reality conditions on An, Bn.
It is worth pointing out that the physical degrees of

freedom of excited modes can be described in terms of a
massive p-form Bn only. In fact, the gauge symmetry (6)
can be fixed imposing the condition An = 0, thus setting
Fn = inBn. As a result, the second line of (12) becomes

∞
∑

n=1

∫

−n2r−1B̄n ∧ ∗Bn + icn B̄n ∧DBn . (13)

The classical mass is mn = (n2r−1)(cn)−1 = cnr−1.
Note that (13) is invariant under local U(1) transfor-

mations of the complex p-form Bn gauged by A0. In [6]
this gauging is absent, and therefore it is possible to in-
tegrate out the real or imaginary part of Bn consistently.

[Bonetti,TG,Hohenegger 1206]
[Townsend etal.]

[Bonetti,TG,Hohenegger 1209] →  F. Bonetti’s talk

A0 Kaluza-Klein vectorSKK

tensor

=

Z
� 1

2

r�1F ^ ⇤F + 1

2

cA0 ^ F ^ F

+
1X

n=1

Z
�r�1B̄n ^ ⇤Bn + i n c B̄n ^DBn

SKK

tensor

=

1X

n=1

Z
�r�1

Tr(

¯Bn ^ ⇤Bn) + i n cTr( ¯Bn ^DBn) + fermions + . . .

DBn = dBn � inA0 ^Bn

DBn = dBn + [A,Bn]� inA0 ^Bn

F = dA+ 1
2 [A,A]
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  6d anomalies and 1-loop Chern-Simons terms

➡ 6d gravitational anomalies

➡ 6d anomalies captured by 5d 1-loop Chern-Simons terms

    is the charge of the field under the U(1)-field     ,                            is 6d chirality
⇒ summation over all Kaluza-Klein modes, zeta-function regularization

14

4

(a) (b)

FIG. 1: Diagrams contributing to 〈A0A0A0〉.

the propagator (19) and the electric vertex, naive power
counting yields a cubic UV divergence in the momentum
cutoff. Explicit computation of the parity violating term,
however, shows that this term only diverges linearly [12].
This linear divergence can be cancelled by adding the two
counter-terms

B̄µ
νB

νρF 0
ρµ , B̄µνF 0

νρB
ρλF 0

λµ , (20)

where the Kaluza-Klein level n has been suppressed on
all Bµν . These couplings introduce new vertices which
modify the contribution from diagrams of type (a) and
introduce new diagrams of type (b) depicted in figure
1. Note that one counterterm is not sufficient since each
of them introduces a cubic divergence into the parity-
violating part of the amplitude. Thus, two parameters
are needed to cancel all divergences.
In order to present the full result of the computation

of the parity-violating part of 〈A0A0A0〉, we introduce
the notation AX

n , where X indicates the type of field run-
ning in the five-dimensional loop at the nth Kaluza-Klein
level. The values of AX

n for tensors, spin-1/2 fermions,
and spin-3/2 fermions are respectively [12]

AB
n = −4cn3 , A1/2

n = c1/2n
3 , A3/2

n = 5c3/2n
3 , (21)

where a common normalization has been fixed and the
coefficients cX = ±1 indicate the chirality. Note that the

mass scale r−1 drops from the computation, so that the
only dependence on the Kaluza-Klein level is contained
in the common dimensionless factor n3.

Summing all contributions (21) from chiral fields in the
spectrum of (1,0) supergravity we get

A(1,0)
n = n3 [−4(1− T ) + 2(V −H − T ) + 10] , (22)

where fermionic contributions receive an extra factor of
2 since they carry an USp(2) index. Precise matching

between
∑

n A
(1,0)
n and kcs requires a suitable regular-

ization of the divergent sum
∑

n3. Independent of this
normalization issue, if the first relation in (17) is imposed

in (22), A(1,0)
n is proportional to 9− T .

Note that the counterterms (20) have mass dimension
greater than five and are suppressed by the compact-
ification mass scale r−1. Similarly to get (22), diver-
gences of the fermionic diagrams have been cancelled us-
ing r−1-suppressed counterterms. Thus this renormaliza-
tion scheme is suitable for Kaluza-Klein reductions.
Finally, let us also briefly discuss the analog situation

in a (2, 0) theory. In this case, the gravity multiplet com-
prises two gravitinos and five self-dual tensors, and each
of the T tensor multiplets includes one anti-self-dual ten-
sor and one USp(4) right-handed spin-1/2 fermion. If
(21) are summed over this spectrum, one has

A(2,0)
n = n3 [−4(5− T )− 4T + 20] ≡ 0 , (23)

which is consistent with the fact that the Chern-Simons
coupling A0F 0F 0 is forbidden in any five-dimensional
theory with 16 supercharges [10].
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1 Introduction and summary

In this note we address the question:

Is it possible to determine if a given five-dimensional supergravity theory
can be understood as the e↵ective low-energy description of an anomaly-free
six-dimensional supergravity theory on a circle?

Our investigation is motivated by the following considerations. On general grounds,
it is an interesting problem to study the constraints that gravity places on low-energy
quantum field theories. For instance, even-dimensional chiral theories are subject to the
requirement of cancellation of gravitational anomalies. In the spirit of [1], one can maybe
look for analogue constraints in odd-dimensional theory by exploring the ‘swampland’ of
models that cannot be seen as a circle reduction of an anomaly-free even-dimensional the-
ory. More specifically, the study of five-dimensional quantum field theories with coupling
to gravity has recently attracted a lot of attention, partly related to the attempt to find
an e↵ective world-volume action for multiple M5-branes [2, 3]. Given the great number
of new insights, it would be desirable to classify those theories which are consistent at
the quantum level. This is a formidable task and therefore it is advantageous to first try
to understand a subset of these theories, namely those that come from circle reduction
from six dimensions (see figure 1). We are thus led to question stated above, also in view
of recent proposals for five-dimensional descriptions of multiple M5-branes.

apparently consistent 
five-dimensional theories

five-dimensional theories
arising from six dimensions

five-dimensional theories arising
from known anomaly-free 
six-dimensional theories

Figure 1: Five dimensional e↵ective low-energy theories coupled to gravity which arise
through compactification of anomaly-free six-dimensional theories form a subset of all
apparently quantum-consistent theories.

Deciding upon this question is generically a highly non-trivial task, for various reasons.
On the one hand, in order to extract the low-energy e↵ective action of a six-dimensional
theory on a circle one needs not only to perform a classical dimensional reduction, but also
to integrate out massive excitations such as Kaluza-Klein modes. The five-dimensional
quantum e↵ects due to these massive excitations can make a direct comparison to a pos-
sible higher-dimensional action prohibitively di�cult. On the other hand, the structure

1

  6d origins of 5d theories

➡ can one pose the reversed question:
Given a 5d effective theory, can one determine whether this theory arises 
from a 6d theory that is anomaly free?

➡ analyzing 5d Chern-Simons terms:  split 
check if correlations to potentially lift to 6d anomaly free theory

➡ same strategy allows to check if 5d, N=4 theory can arise from 
anomaly-free Abelian (2,0) theory     
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SCS

class

+ SCS

1�loop

What about non-Abelian (2,0) theory?

[Bonetti,TG,Hohenegger 1303]
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Part II:  Gauged 6D supergravities  
and symmetry-breaking vacua
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  Generalize 6d F-theory reductions

17

➡ consider M-theory reduction with:
‣ background flux                                                   on compact geometry

‣ geometric flux:   SU(3) structure manifold         (non-Calabi-Yau space)
                                                                                    

➡ 5d supergravity has gauged hypermultiplets (gauged shift symmetries)
‣ M-theory three-form:

‣ gauged hypers:

J, ⌦              no-where vanishing 
 real 2-form, complex 3-form

dJ = eK⇤v
⇤�K , J = v⇤!⇤

d⌦ = ZKeK⇤!̃
⇤ , ⌦ = ZK↵K � FK�K

G4 = hdC3i = ✓⇤!̃
⇤

C3 = C3 + ⇠K↵K � ⇠̃K�K +A⇤ ^ !⇤

Dqu =

8
<

:

d�+ 2A⇤✓⇤ , if qu = � ,
d⇠̃K +A⇤eK⇤ , if qu = ⇠̃K ,

dqu , if qu 6= �, ⇠̃K .

universal hyper

Ẑ6

[Gurierri,Louis,Micu,Waldram] [Grana,Louis Waldram]
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  5d to 6d gauged supergravity

➡ Scalar potential determined by ‘gauge potentials‘            (transforming in SU(2))

➡ Take M-theory to F-theory limit:    6d (1,0) gauged supergravity
⇒  lift 5d hypersector from to 6d hypersector
‣ background G-flux:

⇒ potential can arise from 7-brane flux in F-theory 

‣ geometric flux:

⇒ potential for geometrically massive U(1)’s in F-theory

18

The dimensional reduction of M-theory on Ẑ6 is performed in analogy with Section 2.1 but taking

into account the properties (2.27) of the forms. For simplicity we will include the flux Gflux
4 only at

the end of the discussion. The expansion of the M-theory three-form then takes the form

ˆ̂G4 = dξKαK −Dξ̃Kβ
K + F ′ΛωΛ + G4 + ξKe′KΛω̃

Λ , (2.29)

where

Dξ̃K = dξ̃K + e′KΛA
′Λ . (2.30)

In order to perform the F-theory lift it will again be necessary to split the index Λ into directions

associated to the divisors of different origins. In doing this we now extended the range of the index

i appearing the the decomposition in order to include the additional non-harmonic 2-forms in (2.27).

This means that when making the basis change (2.16) we may then define

eK0 = 0 , eKα = 0 , eKi = 2e′Ki . (2.31)

When carrying out this decomposition we will also extend the definition of Cij appearing in (2.15)

so that now only the part associated with the harmonic 2-forms corresponds to the Cartan matrix

of the gauge group, associated with the singularity resolution. Reducing as before, carrying out the

rescalings and dualizing the three-from with field strength G4 into a scalar Φ we find that

S
(5)
(M) =

∫

M5

[

1

2
R ∗ 1− 1

2
GΛΣ dMΛ ∧ ∗dMΣ − 1

2
huvDqu ∧ ∗Dqv

− 1

2
GΛΣ FΛ ∧ ∗FΣ − 1

12
NΛΣΘAΛ ∧ FΣ ∧ FΘ − V (5)

geom ∗ 1
]

, (2.32)

where GΛΣ(M) is formally obtained by the same generating function N(M) as in (2.17). The gaugings

that appear here are now given by

Dqu =











dΦ+AΛeKΛξ
K , if qu = Φ ,

dξ̃K +AΛeKΛ , if qu = ξ̃K ,

dqu , if qu $= Φ, ξ̃K .

(2.33)

These can be brought into a simplified form by once again making a field redefinition Φ → Φ+ ξK ξ̃K
which modifies the hypermultiplet metric to match that shown in (2.13). When this is done the scalar

ξ̃K has a standard gauged shift symmetry and is the only scalar with a gauge covariantized derivative

such that Dξ̃K = dξ̃K +AΛeKΛ.

The potential V (5)
geom now contains contributions which arise in the M-theory reduction from both

the ˆ̂G4 kinetic term and from the internal space Ricci scalar. These combine to give a total potential

which agrees with that which is required by supersymmetry (2.21) for the gaugings we have described.

The SU(2) adjoint valued functions PΛA
B can also be derived by reducing the 11D gravitino variation

and reading off the relevant term as described in [40, 43]. For both the fluxes and the geometric

deformations we have described here this gives

vΛP3
Λ =

i

8V

∫

Ẑ6

J ∧G4 , vΛP1
Λ + ivΛP2

Λ =
i

8
√
V
e

1
2Kc

∫

Ẑ6

Ω ∧ dJ , (2.34)
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vΛP3
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8V
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Ẑ6
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V
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Pi
⇤

Then for the potential induced by the flux gaugings in 5D where (2.24) applies the 6D potential is

given by

V̂
(6)
flux =

1

32Ωαβ ĵαbβV̂2
C−1ijθiθj . (2.62)

This potential has a runaway direction for the scalars ĵα and V̂ and as a result the 6D theory effective

theory has no maximally symmetric solutions. We will discuss the non-maximally symmetric solution

which replace this in the next section.

We can also up-lift the gaugings induced in the reduction on the SU(3) structure manifold. As

before we compare the gaugings that are arise in the circle reduction (2.46) with (2.33) to find that

the only non-vanishing killing vectors of the 5D hypermultiplet target space are k
ξ̃K
i = eKi with all

other components of the killing vectors vanishing.

We can also consider the F-theory duals of these lifted SU(3) structure deformations. Here we find

that the gaugings of the 6D effective theories are caused in the IIB reduction by the presence of extra

massive U(1) symmetries. To see this we can note that when these symmetries are included there will

be an additional term of the from
∫

D7

ˆ̂C6 ∧ Tr( ˆ̂F ), (2.63)

where ˆ̂C6 is the Ramond-Ramond 6-form and these extra U(1) branes wrap new cycles Si on the base

B2. To reduce these extra terms to 6D we expand ˆ̂C6 = ẐK
4 ∧ iηαK , where η is a vector that projects

αK to a 2-form on the base, and then integrate over Si. This then gives rise to extra terms in the 6D

action of the form
∫

D7

ˆ̂C6 ∧ Tr( ˆ̂F ) =

∫

M6

ẐK
4 ∧ F̂ i

∫

Si

iηαK =

∫

M6

ẐK
4 ∧ F̂ ieiK . (2.64)

When the 4-form ẐK
4 is dualized to give the scalar ˆ̃

ξK this term then gives rise to gaugings present in

our 6D effective theory. We note from this that if we make the gauge choice as described in section

2.2 and expand αK into α0 and ακ then, as iηα0 is a (2, 0)-form and Si is a (1, 1)-cycle, we see that

e0i = 0 for the F-theory gaugings we describe here. These are then dual to a restricted set of SU(3)

structure deformations which also satisfy this constraint.

As before we can also compare the scalar potentials find that in this case

V̂
(6)
U(1) =

1

32Ωαβ ĵαbβ
C−1ij(

1

V2
eκieλjξ

κξλ +
eKc

V eκieλjz
κz̄λ) . (2.65)

When interpreted as coming from D7-branes the potential arises by expanding the Dirac-Born-Infeld

action. The first term of the potential depends on the Wilson line scalars, while the second term

depends on the D7-brane deformations. The latter indicates that certain D7-brane deformations are

actually massive since they require it to wrap a non-supersymmetric cycle.
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  Vacua of the 6d gauged theory

➡ gauged 6d (1,0) theories admit no Minkowski vacua

➡ new Ansatz:

Solution:
‣ volume of         develops 

profile on      due to G-flux 
⇒  sources needed

‣ complex structure moduli 
develop profile on       
⇒ cosmic string solutions:  new 7-branes wrapping base        of    

‣ universal hypermultiplet scalar       develops profile on 
‣ new U(1)-fluxes needed on      (complete G-flux, s.t. it is self-dual)      

➡ Solution matches with N=1, 4d fourfold reduction on        with base

19

When θi = 0 and V̌ is constant these sorts of solutions are known and are related to cosmic strings

[46]. In this case we may work in a coordinate system where

ds2 = ηµνdx
µdxν + Ω(z, z̄)dzdz̄ , (3.23)

in which the self duality condition on τ̌ becomes

∂z̄ τ̌ = 0 , ∂z ˇ̄τ = 0 . (3.24)

The solution to the resulting field equations is complicated as there is no known solution with finite

energy per unit length for which τ̌ is both sourced and continuous. Instead the solutions for τ̌ have

discontinuities at which τ̌ undergoes an SL(2,Z) transformation. The solutions are then described by

the modular invariant function j(τ̌) as

j(τ̌) =
P (z)

Q(z)
, (3.25)

for polynomials P and Q which share no roots. The roots of these functions then determine the

locations and numbers of the co-dimension 2 sources.

The z dependence of the metric is then determined by the remaining field equation

∂z̄∂zlnΩ = ∂z̄∂zln(Imτ̌) , (3.26)

which has the modular invariant nowhere vanishing solution

Ω = Imτ̌ |η(τ̌)|4
N
∏

n=1

∣

∣(z − zn)−
1
12
∣

∣

2
, (3.27)

for N co-dimension 2 sources located at the zn. When N > 12 the internal space becomes compact

and is given by P1. In this case the only allowed solution has N = 24. As we are interested in compact

solutions here this special case will be of particular relevance.

We now consider turning back on the fluxes θi. When this is done we modify the metric ansatz so

that

ds2 = ηµνdx
µdxν + V̌(z, z̄)Ω(z, z̄)dzdz̄ , (3.28)

This ansatz means that the field equations (3.24) and (3.26) are unmodified when V̌ and θi are turned

on. The remaining field equation for V̌ now becomes

∂z̄∂zV̌ + C−1ijθiθjΩ = 0 , (3.29)

solutions to this equation will then describe the geometry of the internal space in the presence of the

fluxes θi which deform the P1 into a new compact space B̂.
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R3,1 ⇥ B̂

B̂

B̂

B̂�

B̂

Ẑ6Ẑ6

Ẑ6B2

B̂

B̂ ⇥B2Ẑ8
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  Supersymmetry breaking and chirality

➡ study vanishing of fermion variations on this background
⇒  Killing spinor equation implies that only 4 supercharges can be 
      preserved in 4d

➡ supersymmetry breaking corresponds to N=2 → N=1 in 4d
however, is accompanied by 6d → 4d reduction

➡ derived N=1, 4d effective action obtained in       - reduction 
⇒  matches F-theory reduction on with G-flux and geom. massive U(1)’s

➡ 4d theory can admit a chiral spectrum:
‣ chiral spectrum can be ‘measured’ by 3d Chern-Simons terms: 

(generated at 1-loop in 3d Coulomb branch)

‣ 3d Chern-Simons terms for solution: 
20

recently studied 
[Louis,Smyth,Triendl]

B̂

⇥ij = Vijk✓
k

⇥ij =

Z

Ẑ8

G4 ^ !i ^ !j

1-loop Chern-
Simons terms in 5d
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  Conclusions

➡ M-theory to F-theory limit allows to study 6d theories with self-dual tensors
‣ 6d pseudo-action via 5d Kaluza-Klein actions
→  proposed non-Abelian generalization of 5d tensor action

‣ 5d Chern-Simons terms capture quantum information about 6d theory
→  non-Abelian generalization?

‣       - corrections →  also exist in 4d, N=1 compactifications

➡ background G-flux and geometric fluxes induce 6d gauged supergravity
‣ no 6d Minkowski vacua:   G-flux ensures spontaneous compactificaiton 
‣ compactifying solutions with 4d Minkowski and 2d compact space 
→  vacua admit all key features of 4d F-theory vacua but are simpler

‣ spontaneous supersymmetry breaking from 8 to 4 supercharges 
→  since 6d → 4d reduction:  can still have 4d chiral spectrum
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The End. 
Thank you!
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