Tensors and symmetry-breaking vacua in F-theory

Thomas W. Grimm

Max Planck Institute for Physics, Munich (Werner-Heisenberg-Institut)

MAX-PLANCK-GESELLSCHAFT

1303.2661 [hep-th] 1302.2918 [hep-th] 1209.3017 [hep-th]	with Federico Bonetti, Stefan Hohenegger
1302.3223 [hep-th]	with Tom Pugh
1302.3223 [hep-th]	with Raffaele Savelli, Mathias Weissenbacher

Bad Honnef, March 2013

Introduction and Motivation

Motivating 6d effective theories

- Six-dimensional theories are ideal to probe concepts of string theory
 - chiral representations for spinors: strong constraints from anomalies
 - supersymmetric theories
 - (1,0) eight supercharges analog "heterotic string"
 ⇒ gauge theory: spontaneous compactification + susy breaking: N=1, 4d string phenomenology
 - (2,0) sixteen supercharges analog "Type IIB string"
 ⇒ tensor theory: two forms with self-dual field strength non-Abelian version mysterious since discovery in '96 [Witten]
 - Two main examples:

F-theory on elliptically fibered Calabi-Yau threefolds

world-volume theory of multiple M5-branes

Goals of this talk:

- Part I: Discuss 6d effective theories arising in F-theory compactifications using M-theory
 - 6d pseudo-action and anomalies
 - 6d Chern-Simons terms and landscape analysis
 - α' corrections
- Part II: Study vacua of 6d gauged supergravity theories from F-theory
 - G-fluxes and SU(3) structure geometry
 - spontaneous compactification: 6d \rightarrow 4d
 - supersymmetry breaking: 8 supercharges \rightarrow 4 supercharges

Message: F-theory via M-theory is ideal to study 6d theories with <u>both</u>
 applications: 6d non-Abelian tensor theories, 4d N=1 phenomenology

Formulating six-dimensional effective theories

F-theory compactifications

- Type IIB has non-perturbative $Sl(2,\mathbb{Z})$ symmetry rotating $\tau = C_0 + ie^{-\phi}$ \Rightarrow interpret τ as complex structure of a two-torus (2 auxiliary dimensions)

[Vafa] [Morrison, Vafa]

- minimally supersymmetric F-theory compactifications:
 - **<u>Part I:</u>** F-theory on torus fibered Calabi-Yau threefold Y_3
 - \Rightarrow 6d (1,0) supergravity theory
 - \Rightarrow base B_2 is a Kähler manifold

<u>Part II:</u> Y_3 SU(3)-structure threefold

but B_2 remains Kähler \Rightarrow 6d (1,0) sugra with gauged shift symmetries

- singularities of the fibration are crucial to encode 7-brane physics
 - \Rightarrow pinching torus indicates presence of 7-branes magn. charged under τ

F-theory / M-theory geometries

- F-theory geometries can be constructed and analyzed
 - singularities of elliptic fibration induce non-Abelian gauge symmetry
 - singularity resolution:(resolution at each codimension)
- Unification of brane and bulk physics on resolved CY manifold
- M-theory to F-theory limit: M-theory on

(1) A-cycle: if small than M-theory becomes Type IIA (2) B-cycle: T-duality \Rightarrow Type IIA becomes Type IIB (3) grow extra dimension: send T^2 - volume T-dual \Rightarrow B-cycle becomes large^T $v \rightarrow 0$

⇒ M-theory to F-theory limit connects 6d and 5d effective theories

M-theory on resolved CY manifolds

- physical interpretation of resolution only possible in M-theory
 - moving branes apart on the B-circle:
 - Coulomb branch of the lower-dimensional gauge theory: $G \rightarrow U(1)^{\text{rank}G}$

- Massive states from M2 branes on geometric 2-cycles:
 - M2-branes on resolution \mathbb{P}^1 's over generic points of *S*

 \Rightarrow massive `W-bosons' of G-breaking

M2-branes on resolution \mathbb{P}^1 's over intersection

 \Rightarrow massive matter multiplets

M2-branes on the elliptic fiber \Rightarrow massive Kaluza-Klein modes

All massive states have to be <u>integrated out</u> to determine Wilsonian effective action \Rightarrow in circle compactification also KK-modes are crucial!!

6d F-theory effective actions via M-theory

 effective actions can be computed via M-theory / 11-dimensional supergravity on the resolved Calabi-Yau threefolds

F-theory on singular Y_3

6d, (1,0) effective theory with non-Abelian gauge symmetry *G*

circle compactification

5d, N=2 effective theory pushed to 5d Coulomb branch: $U(1)^{\text{rk}G}$

 explicit: (1,0) characteristic data determining the action M-theory on resolved $ilde{Y}_3$

5d, N=2 effective theory with only abelian gauge symmetries

compare

6d/5d: [Ferrara,Minasian,Sagnotti], [Antoniadis,Ferrara,Minasian,Narain] [Bonetti,TG] [Bonetti,TG,Hohenegger]

gauged sugra: [TG,Pugh]

Part I: Systematics for six-dimensional theories

Classical geometric data

[Bonetti,TG]

- general form of N=1 pseudo-action
 - $S = \int \frac{1}{2} g_{\alpha\beta} G^{\alpha} \wedge *G^{\beta} + g_{\alpha\beta} dj^{\alpha} \wedge *dj^{\beta} + j^{\alpha} \Omega_{\alpha\beta} \left(a^{\beta} \operatorname{tr}(R \wedge *R) + b^{\beta}_{A} \operatorname{tr}(F^{A} \wedge *F^{A}) \right)$ $+ B_{2}^{\alpha} \Omega_{\alpha\beta} \wedge \left(a^{\beta} \operatorname{tr}(R \wedge R) + b^{\beta}_{A} \operatorname{tr}(F^{A} \wedge F^{A}) \right) + \text{hypers}$

(anti-) self-duality has to be imposed on the level of e.o.m.

- reduce on circle and move to 5d Coulomb branch:
 - (1) comparison with M-theory: determine const. a^{α} , b^{α}_{A} , $\Omega_{\alpha\beta}$ geometrically

e.g.
$$c_1(B_2) = -a^{\alpha}\omega_{\alpha}$$
 canonical class of B_2
$$\Omega_{\alpha\beta} = \int_{B_2} \omega_{\alpha} \wedge \omega_{\beta}$$
 intersection numbers on B_2

- (2) crucial knowledge of Kaluza-Klein action of tensor tower (and other fields)
- (3) integrate out massive Coulomb branch / Kaluza-Klein modes

Higher curvature terms / α' - corrections

 determine α'- corrections to 6d F-theory effective action by dimensionally reducing known higher-curvature correction to 11d supergravity

$$S_{\text{curv}}^{(11)} = \frac{1}{l_M^9} \int *1 \left(R_{\text{sc}}^{(11)} + l_M^6 \mathcal{J}_0 \right) + l_M^6 \mathcal{C}_3 \wedge \mathcal{I}_0 \qquad \qquad \mathcal{J}_0 = t_8 t_8 (R^{(11)})^4 - \frac{1}{4!} \epsilon_{11} \epsilon_{11} (R^{(11)})^4 \\ \mathcal{I}_0 = \epsilon_{11} (\text{Tr}(\mathcal{R}^{(11)4}) - \frac{1}{4} \text{Tr}(\mathcal{R}^{(11)2})^2)$$

• 5d volume correction / higher curvature terms from \mathcal{J}_0 , \mathcal{I}_0 on \hat{Y}_3

$$S_{\text{curv}}^{(5)} = \int *1(\tilde{\mathcal{V}}_3 \ R_{\text{sc}}^{(5)} + \tilde{\mathcal{V}}_2 \ \text{Tr}(\mathcal{R}^{(5)} \wedge *\mathcal{R}^{(5)})) + c_{\Sigma} A^{\Sigma} \wedge \text{Tr}(\mathcal{R}^{(5)} \wedge \mathcal{R}^{(5)}))$$
$$\tilde{\mathcal{V}}_3 = \frac{1}{3!} \int J^3 + \chi(Y_3) \qquad \tilde{\mathcal{V}}_2 = \int c_2(Y_3) \wedge J \qquad c_{\Sigma} = \int c_2(Y_3) \wedge \omega_{\Sigma}$$

⇒ corrections survive <u>partly</u> in the F-theory limit → 6d α' - corrections ⇒ <u>non-surviving</u> corrections correspond to 1-loop terms in 5d!

volume corrections in 4d N=1 Kähler potential → volume D7 ∩ O7- curve
 [TG,Weissenbacher,Savelli] → R. Savelli's talk

5d perspective on tensor actions

 $+\sum_{n=1}^{\infty}\int -r^{-1}\bar{B}_n\wedge *B_n+i\,n\,c\,\bar{B}_n\wedge\mathcal{D}B_n$

action for Kaluza-Klein tensor tower

 $S_{\text{tensor}}^{\text{KK}} = \int -\frac{1}{2}r^{-1}\mathcal{F} \wedge *\mathcal{F} + \frac{1}{2}cA^0 \wedge \mathcal{F} \wedge \mathcal{F}$

$$\hat{B} = \sum_{n \in \mathbb{Z}} e^{iny} \left[B_n + A_n \wedge (dy + A^0) \right]$$

 A^0 Kaluza-Klein vector $\mathcal{D}B_n = dB_n - inA^0 \wedge B_n$

[Townsend etal.] [Bonetti,TG,Hohenegger 1206]

- proposal for non-Abelian generalization
 - zero modes become non-Abelian gauge potentials, e.g. YM $\mathcal{F} = dA + \frac{1}{2}[A, A]$
 - massive tensor modes are gauged $\mathcal{D}B_n = dB_n + [A, B_n] inA^0 \wedge B_n$

$$S_{\text{tensor}}^{\text{KK}} = \sum_{n=1}^{\infty} \int -r^{-1} \operatorname{Tr}(\bar{B}_n \wedge *B_n) + i n c \operatorname{Tr}(\bar{B}_n \wedge \mathcal{D}B_n) + \text{fermions} + \dots$$

proposed 5d, N=2 superconformal action for KK-spectrum of (2,0) theory \Rightarrow How can we test the correctness of this proposal?

[Bonetti,TG,Hohenegger 1209] → F. Bonetti's talk

6d anomalies and 1-loop Chern-Simons terms

6d gravitational anomalies

[Alvarez-Gaume,Witten] [Sagnotti]

$$a^{\alpha}\Omega_{\alpha\beta}a^{\beta} = 9 - T$$

Green-Schwarz mechanism: $a^{\alpha}\Omega_{\alpha\beta}B_2^{\beta} \wedge \operatorname{Tr}(\mathcal{R} \wedge \mathcal{R})$

6d anomalies captured by 5d 1-loop Chern-Simons terms

	spin-1/2 fermion ψ	self-dual tensor $B_{\mu\nu}$	spin-3/2 fermion ψ_{μ}
$k_{AFF} \int A \wedge F \wedge F$	$-\frac{1}{48\pi^2} q^3 \cdot c_{1/2}$	$-\frac{1}{48\pi^2} q^3 \cdot (-4 c_B)$	$-\frac{1}{48\pi^2} q^3 \cdot (5 c_{3/2})$
$k_{ARR} \int A \wedge \operatorname{tr} \left(R \wedge R \right)$	$-\frac{1}{384\pi^2} q \cdot c_{1/2}$	$-\frac{1}{384\pi^2}q\cdot(8c_B)$	$-\frac{1}{384\pi^2} q \cdot (-19 c_{3/2})$

q is the charge of the field under the U(1)-field *A*, $c_{1/2}$, c_B , $c_{3/2}$ is 6d chirality ⇒ summation over all Kaluza-Klein modes, zeta-function regularization [Bonetti,TG,Hohenegger 1302] → F. Bonetti's talk

6d origins of 5d theories

• can one pose the reversed question:

Given a 5d effective theory, can one determine whether this theory arises from a 6d theory that is **anomaly free**?

apparently consistent five-dimensional theories

five-dimensional theories arising from six dimensions

five-dimensional theories arising from **known anomaly-free** six-dimensional theories

- analyzing 5d Chern-Simons terms: split S^{CS}_{class} + S^{CS}_{1-loop}
 check if correlations to potentially lift to 6d anomaly free theory
- same strategy allows to check if 5d, N=4 theory can arise from anomaly-free Abelian (2,0) theory What about non-Abelian (2,0) theory?

Part II: Gauged 6D supergravities and symmetry-breaking vacua

Generalize 6d F-theory reductions

- consider M-theory reduction with:
 - background flux $G_4 = \langle dC_3 \rangle = \theta_\Lambda \tilde{\omega}^\Lambda$ on compact geometry
 - **geometric flux:** SU(3) structure manifold \hat{Z}_6 (non-Calabi-Yau space)
 - $dJ = e_{K\Lambda} v^{\Lambda} \beta^{K}, \qquad J = v^{\Lambda} \omega_{\Lambda} \qquad \qquad J, \ \Omega \text{ no-where vanishing} \\ d\Omega = Z^{K} e_{K\Lambda} \tilde{\omega}^{\Lambda}, \qquad \Omega = Z^{K} \alpha_{K} F_{K} \beta^{K} \qquad \text{real 2-form, complex 3-form}$

[Gurierri,Louis,Micu,Waldram] [Grana,Louis Waldram]

- 5d supergravity has gauged hypermultiplets (gauged shift symmetries)
 - M-theory three-form: $C_3 = C_3 + \xi^K \alpha_K \tilde{\xi}_K \beta^K + A^\Lambda \wedge \omega_\Lambda$
 - gauged hypers: $Dq^u = \begin{cases} d\Phi + 2A^{\Lambda}\theta_{\Lambda}, & \text{if } q^u = \Phi, \text{ universal hyper} \\ d\tilde{\xi}_K + A^{\Lambda}e_{K\Lambda}, & \text{if } q^u = \tilde{\xi}_K, \\ dq^u, & \text{if } q^u \neq \Phi, \tilde{\xi}_K. \end{cases}$

5d to 6d gauged supergravity

- Scalar potential determined by 'gauge potentials' \mathcal{P}^i_{Λ} (transforming in SU(2))

$$v^{\Lambda} \mathcal{P}^{3}_{\Lambda} = \frac{i}{8\mathcal{V}} \int_{\hat{Z}_{6}} J \wedge G_{4} \qquad \qquad v^{\Lambda} \mathcal{P}^{1}_{\Lambda} + iv^{\Lambda} \mathcal{P}^{2}_{\Lambda} = \frac{i}{8\sqrt{\mathcal{V}}} e^{\frac{1}{2}K_{c}} \int_{\hat{Z}_{6}} \Omega \wedge dJ$$

- Take M-theory to F-theory limit: 6d (1,0) gauged supergravity
 ⇒ lift 5d hypersector from to 6d hypersector
 - background G-flux: $\hat{V}_{\text{flux}}^{(6)} = \frac{1}{32\Omega_{\alpha\beta}\hat{j}^{\alpha}b^{\beta}\hat{\mathcal{V}}^{2}}C^{-1ij}\theta_{i}\theta_{j}$

⇒ potential can arise from 7-brane flux in F-theory

• geometric flux:
$$\hat{V}_{U(1)}^{(6)} = \frac{1}{32\Omega_{\alpha\beta}\hat{j}^{\alpha}b^{\beta}}C^{-1ij}(\frac{1}{\mathcal{V}^{2}}e_{\kappa i}e_{\lambda j}\xi^{\kappa}\xi^{\lambda} + \frac{e^{K_{c}}}{\mathcal{V}}e_{\kappa i}e_{\lambda j}z^{\kappa}\bar{z}^{\lambda})$$

 \Rightarrow potential for geometrically massive U(1)'s in F-theory

[TG,Weigand] [TG,Kerstan,Palti,Weigand]

→ T. Weigand's talk

[TG,Pugh]

Vacua of the 6d gauged theory

- gauged 6d (1,0) theories admit <u>no</u> Minkowski vacua
- new Ansatz: $\mathbb{R}^{3,1} \times \hat{\mathcal{B}}$ $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \Omega(z, \bar{z}) dz d\bar{z}$

Solution:

volume of Z₆ develops
 profile on B due to G-flux
 ⇒ sources needed

- complex structure moduli
 B
 develop profile on \hat{B} ⇒ cosmic string solutions: new 7-branes wrapping base B_2 of \hat{Z}_6
- universal hypermultiplet scalar Φ develops profile on $\hat{\mathcal{B}}$
- new U(1)-fluxes needed on $\hat{\mathcal{B}}$ (complete G-flux, s.t. it is self-dual)

Solution matches with N=1, 4d fourfold reduction on \hat{Z}_8 with base $\hat{\mathcal{B}} \times B_2$

compare with warped solution [Becker, Becker]

Supersymmetry breaking and chirality

- study vanishing of fermion variations on this background
 - ⇒ Killing spinor equation implies that only 4 supercharges can be preserved in 4d
 recently studied
- supersymmetry breaking corresponds to N=2 → N=1 in 4d [Louis, Smyth, Triendl] however, is accompanied by 6d → 4d reduction
- derived N=1, 4d effective action obtained in $\hat{\mathcal{B}}$ reduction \Rightarrow matches F-theory reduction on with G-flux and geom. massive U(1)'s compare [TG] [TG,Kerstan,Palti,Weigand]
- 4d theory can admit a chiral spectrum:
 - chiral spectrum can be 'measured' by 3d Chern-Simons terms:
 (generated at 1-loop in 3d Coulomb branch) $\Theta_{ij} = \int_{\hat{Z}_{\circ}} G_4 \wedge \omega_i \wedge \omega_j$

3d Chern-Simons terms for solution: $\Theta_{ij} = \mathcal{V}_{ijk} \Theta^k$ 1-loop Chern-

Conclusions

- M-theory to F-theory limit allows to study 6d theories with self-dual tensors
 - 6d pseudo-action via 5d Kaluza-Klein actions
 - → proposed non-Abelian generalization of 5d tensor action
 - 5d Chern-Simons terms capture quantum information about 6d theory
 → non-Abelian generalization?
 - α' corrections \rightarrow also exist in 4d, N=1 compactifications
- background G-flux and geometric fluxes induce 6d gauged supergravity
 - no 6d Minkowski vacua: G-flux ensures spontaneous compactificaiton
 - compactifying solutions with 4d Minkowski and 2d compact space
 → vacua admit all key features of 4d F-theory vacua but are simpler
 - spontaneous supersymmetry breaking from 8 to 4 supercharges
 → since 6d → 4d reduction: can still have 4d chiral spectrum

The End. Thank you!