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Overview
Review of unrefined topological string

- worldsheet description
- relation to BPS saturated effective string couplings 
- relation to gauge theory partition functions  
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- connection to gauge theory partition function
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contributions starting at 1-loop on heterotic on K3⇥ T 2
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Basic idea for the description of the refinement is to generalize the top. amplitudes.
Can get hints on the modification from abstract considerations:  

Gopakumar Vafa reformulation: A-model top. string partition fct. by integrating out 
massive BPS states in const. anti-self-dual graviphoton field strength background 

due to anti-self-duality, states only couple to              subgroup of 4-dim Lorentz groupSU(2)

from the Omega-background point of view, this explains sensitivity with respect to only 
one of the deformation parameters ✏�

To get a coupling to       we thus need couplings including self-dual field strengths✏+

Questions:
How to include self-dual field strength tensors in the topological amplitudes consistent 
with supersymmetry?

Which type of fields exactly should be included?
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Refinement from the effective action point
General idea is to generalize the ‘unrefined’ topological couplings

Notation:
(xµ

, ✓

i
↵, ✓̄

↵̇
i ) 2 R4|4,4

,

g � 1

W ij
µ⌫ = FG,ij

(�),µ⌫ + ✓[iBj]
(�),µ⌫ � (✓i�⇢⌧✓j)R(�),µ⌫⇢⌧

Rµ⌫⇢⌧ . . .Riemann tensor

FG,ij
µ⌫ . . . gravitphoton field strength tensor

Bi↵
µ⌫ . . . gravitino field strength tensor

X = '+ ✓i�i +
1
2F(�)µ⌫✏ij(✓

i�µ⌫✓j)
' . . . scalar
�↵
i . . . spin 1

2
Fµ⌫ . . . vector field strength tensor

[Antoniadis, SH, Narain, Taylor 2010]

Ig =

Z
d

4
x

Z
d

4
✓Fg(X)(W ij

µ⌫W
µ⌫
ij )g
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Refined Topological Amplitudes
Thus we propose the following refined topological amplitudes

gravitino vertex:

V ±
(⇠µ↵, p) = ⇠µ↵e

�'/2S↵ei�3/2
⌃

±
¯@Zµeip·Z

graviphoton vertex:

V G
(p, ✏) = ✏µ (@X � i(p · �) ) ¯@Zµeip·Z

vertex of

¯U � vector partner:

V Ū
(p, ✏) = ✏µ (@Z

µ � i(p · �)�µ
)

¯@Xeip·Z

(Z1, Z2, X, Z4, Z5
) = bosonic coords.

(�1,�2, ,�4,�5
) = superpartners

✏ · p = 0 = ✏ · ⇠↵

g-loop amplitude in type II compactified on Calabi-Yau manifold

starts receiving contributions at 1-loop in heterotic on K3⇥ T 2

Notation:
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g-loop amplitude in type II compactified on Calabi-Yau manifold

starts receiving contributions at 1-loop in heterotic on K3⇥ T 2

Notation:

for technical details: see following talk by A. Zein Assi

[Antoniadis, Florakis, SH, Narain, Zein Assi 2013]
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These amplitudes can be computed using a generating function
Fg,n = h(V +)2(V �)2(V G)2g�2(V Ū )2ni

G(✏±) =
1X

g=1

1X

n=0

✏2g�2
� ✏2n+

n!2(g � 1)!2
Fg,n
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G(✏±) =
1X

g=1

1X

n=0

✏2g�2
� ✏2n+

n!2(g � 1)!2
Fg,n

Wednesday, March 20, 13



Field Theory Limit and Nekrasov Partition Fct.

Wednesday, March 20, 13



Field Theory Limit and Nekrasov Partition Fct.
The relevant moduli are the Kähler and complex structure moduli of the torus, 
together with a non-trivial Wilson line Y a

i

Wednesday, March 20, 13



Field Theory Limit and Nekrasov Partition Fct.
The relevant moduli are the Kähler and complex structure moduli of the torus, 
together with a non-trivial Wilson line Y a

i

We expand the amplitude around an            -enhancement point  SU(2)

Y a
1 = Y a

2 = ( 12 ,
1
2 , 0, . . . , 0)

Wednesday, March 20, 13
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The relevant moduli are the Kähler and complex structure moduli of the torus, 
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the amplitude           is accompanied by a factor                      which is precisely the 
expected behaviour in the vicinity of a point of enhanced gauge symmetry 
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This amplitude is exact at the g-loop level

This expression can serve as a worldsheet description of the refined 
topological string 
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For the future it will be important to further study the proposal

Thank you for your attention!
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