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1) Overview of Color—Kinematics Duality 

!   Yang-Mills Theory = Kinematical Lie 2-Algebra 
! Chern-Simons Matter Theory = Kinematical Lie 3-Algebra 
!   Gravity = Double Copy of Gauge Theories.  
!   What is the Lie Algebra? (partial results) 

 

2)  An exercise in calculating 3-loop 4-pt supergravity ampl.  
  

This talk: 



Text-Book: Perturbative Gravity is Complicated ! 

After symmetrization  
~ 100 terms ! 

= 

= 

de Donder gauge: 

~103 terms 

higher order 
vertices… 
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On-shell simplifications 

Graviton plane wave: 

= 

Gravity scattering amplitude: 

Yang-Mills polarization 

Yang-Mills vertex 

Yang-Mills amplitude 

On-shell 3-graviton vertex: 

On-shell, gravity is the “square” of Yang-Mills -- Kawai, Lewellen, Tye  
holds for the entire S-matrix  -- Bern, Carrasco, HJ 
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Color-Kinematics Duality 
Yang-Mills theories are controlled by a kinematic Lie algebra 
 

• Amplitude represented by cubic graphs:   

Color & kinematic  
numerators satisfy  
same relations: 

Duality: color ↔ kinematics  

Jacobi 
identity 

antisymmetry 

propagators 

color factors 

numerators 

Bern, Carrasco, HJ   

fbac = � fabc
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Some details of color-kinematics duality 

can be checked for 4pt on-shell ampl. using Feynman rules 
Bern, Carrasco, HJ 

Example with  
two quarks: 

1.           contact interactions absorbed into cubic graphs 
•  by hand 1=s/s 
•  or by auxiliary field 

2.  Beyond 4-pts duality not automatic è Lagrangian reorganization 
3.  Known to work at tree level: all-n example  Kiermaier; Bjerrum-Bohr et al. 

4.  Enforces (BCJ) relations on partial amplitudes è (n-3)! basis 

(Aµ)4

B ⇠ (Aµ)2



Duality gives new amplitude relations  

4 points: 

5 points:  

…relations obtained for any multiplicity 

In color ordered tree amplitudes 3 legs can be fixed: (n-3)! basis    BCJ  

Bjerrum-Bohr, Damgaard, Vanhove; Stieberger 
Similar relations found in string theory: monodromy relations  
on the open string worldsheet  

Used to solve string theory at tree level:  Mafra, Schlotterer, Stieberger 
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Atree
4 (1, 2, 4, 3) =

Atree
4 (1, 2, 3, 4)s14

s24

Atree
5 (1, 2, 4, 3, 5) =

Atree
5 (1, 2, 3, 4, 5)(s14 + s45) + Atree

5 (1, 2, 3, 5, 4)s14

s24

Atree
5 (1, 2, 4, 5, 3) = �

Atree
5 (1, 2, 3, 4, 5)s34s15 + Atree

5 (1, 2, 3, 5, 4)s14(s245 + s35)

s24s245

See talk by Schlotterer, Brödel 
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Gravity is a double copy 

•  The two numerators can belong to different theories: 

•  Gravity amplitudes obtained by replacing color with kinematics 

(N =4) × (N =4)   →     N =8 sugra 
(N =4) × (N =2)   →     N =6 sugra 

(N =0) × (N =0)   →     Einstein gravity + axion+ dilaton 

(N =4) × (N =0)   →     N =4 sugra 

BCJ 

similar to Kawai- 
Lewellen-Tye but  
works at loop level 

see talk by Isermann 
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Kawai-Lewellen-Tye Relations 

gravity states are  
products of gauge theory 
states: 
 
 

Field theory limit   ⇒  gravity theory ~ (gauge theory) × (gauge theory) 

String theory 
tree-level identity: closed string ∼ (left open string) × (right open string) 

|1〉grav = |1〉gauge ⊗ |1〉gauge 

KLT relations emerge after nontrivial world-sheet integral identities 

See talk by Schlotterer�
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What is the Kinematic Lie Algebra? 
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Self-Dual Kinematic Algebra 
Monteiro and  O’Connell Self dual YM in light-cone gauge:   

Diffeomorphism symmetry hidden in YM theory! 

The X(p1, p2) are YM vertices of type ++-- helicity. 

Self dual sector gives +++…+ amplitudes: only one-loop S-matrix. 
 
We need to find the algebra beyond that. 

Lie Algebra: YM vertex 

Generators of diffeomorphism invariance: 

Boels, Isermann, Monteiro, O'Connell 
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Order-by-order Lagrangian 
•  First attempt at Lagrangian with manifest duality!

YM Lagrangian receives corrections at 5 points and higher 

corrections proportional to the Jacobi identity (thus equal to zero)  

1004.0693 [hep-th]  
Bern, Dennen, Huang,  
Kiermaier 

Introduction of auxiliary “dynamical” fields gives local cubic Lagrangian  

+ … 

kinematical structure constants 
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3-Algebra Color-Kinematics in D=3 
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BLG color-kinematics 

cs = ct + cu + cv , ns = nt + nu + nv

Bargheer, He,  
and McLoughlin  

4 and 6 point checks shows that the double copy of BLG 
Is N  = 16  E8(8)   SUGRA of Marcus and Schwarz 

[T a, T b, T c] = fabc
dT

d

D=3 Chern-Simons matter (CSM) theories obey color-kinematics duality. 
   

3-algebra gauge group 

Fundamental identity  (Jacobi identity):  

Bagger, Lambert, Gustavsson  

BLG =‘square root’ of N=16 SG ABLG
4 =

q
MN=16

4 =

r
�16(Q)

stu
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Same D=3 Supergravity Either Way ! 

Huang, H.J. 

In D=3, supergravity obtained from in two different double copies:  

CSM ⊗ CSM     =      SYM ⊗ SYM      	



•  Dimension mismatch? → propagators in SYM ⊗ SYM compensates! 

•  Odd matrix element mismatch? → double copy enhances R symmety! 

 

For N=16 SG: all states are SO(16) spinors → no odd S-matrix elements 
       Marcus and Schwarz 

CSM:�
SYM:�
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Different D=3 Supergravity Theories 

Verified double copy constructions: 

3

TABLE I: Examples of explicitly-confirmed double-copy constructions of supergravity theories with half-maximal or more
supersymmetry. N = 8 CSm theory has 16 states while N = 6, 4, 2 CSm have (8, 8̄), (4, 4̄), (2, 2̄) states in the (chiral,
antichiral) multiplet, respectively. For N = 8, 4, 2, 0 sYM we use the (four-dimensional) state counts 16, 8, 4, 2. The single state
“1” denotes pure D = 3 YM, or single-scalar CSm theory, in the respective columns. Here n counts matter multiplets.

SG theory CSmL×CSmR = supergravity sYmL×sYMR = supergravity coset

N = 16 162 = 256 162 = 256 E8(8)/SO(16)

N = 12 82 + 8̄2 = 16× (4 + 4̄) = 128 16× 8 = 128 E7(−5)/SO(12)⊗SO(3)

N = 10 8× 4 + 8̄× 4̄ = 16× (2 + 2̄) = 64 16× 4 = 64 E6(−14)/SO(10)⊗SO(2)

N = 8, n = 2 42 + 4̄2 = 8× 2 + 8̄× 2̄ = 32 16× 2 = 32 SO(8,2)/SO(8)⊗SO(2)

N = 8, n = 1 16× 1 = 16 16× 1 = 16 SO(8,1)/SO(8)

N we leave for future work. Taking legs 1 and 3 to be
antichiral multiplets, the N = 12 amplitude is

MN=12
4 (1̄, 2, 3̄, 4) = (AN=6

4 )2 =

(

δ(6)(
∑

i λ
αηIi )

〈1 2〉 〈2 3〉

)2

,

(10)
where AN=6

4 = AN=6
4 (1̄, 2, 3̄, 4) is the color-stripped four-

point amplitude [13] of the N = 6 theory constructed
by Aharony, Bergman, Jafferis and Maldacena (ABJM)
[15]. One may also construct the N = 12 amplitude as
a heterotic double copy AN=8

4 × AN=4
4 . This gives the

correct result, as explicitly verified up to six points, even
though the structure constants and hence the numerators
of the two theories obey different symmetries. For N =
10 CSm the four-point amplitude is given by

MN=10
4 (1̄, 2, 3̄, 4) =

δ(10)(
∑

i λ
αηIi ) 〈1 3〉

〈1 2〉2 〈2 3〉2
. (11)

It can be constructed as heterotic double copies AN=8
4 ×

AN=2
4 (1̄, 2, 3̄, 4) or AN=6

4 (1̄, 2, 3̄, 4)×AN=4
4 (1̄, 2, 3̄, 4).

As discussed in ref. [16] all supergravity theories with
N > 8 supersymmetry are unique, while beginning with
N = 8 one can have n matter multiplets, corresponding
to 16n states. The dimensional reduction of pure half-
maximal D = 4 supergravity corresponds to N = 8 with
n = 2; the four-point amplitude is

MN=8
4,n=2(1̄, 2, 3̄, 4) = (AN=4

4 )2=

(

δ(4)(
∑

i λ
αηIi ) 〈1 3〉

〈1 2〉 〈2 3〉

)2

,

(12)
with AN=4

4 = AN=4
4 (1̄, 2, 3̄, 4). One can also write this as

AN=6
4 ×AN=2

4 . For n = 1, the four-point amplitude is

MN=8
4,n=1 =

1

2

δ(8)(
∑

i λ
αηIi )(s

2 + t2 + u2)

〈1 2〉2 〈2 3〉2 〈1 3〉2
(13)

This is given by a direct product of AN=8
4 ×AN=0

4 , where
N = 0 denotes CS theory plus a single minimally-coupled
scalar. We summarize these results in table I.

Vanishing of odd-multiplicity amplitudes

It is enlightening to consider the constraint from R-
symmetry in four dimensions (see [17] for similar dis-

cussion). Through the KLT relations, that is, the two-
algebra double-copy formula, maximally supersymmetric
N = 8 gravity inherits an enhanced SU(8) R-symmetry.
This includes the following U(1) generator

R =
n
∑

i=1

ηILi
∂

∂ηILi
− η̃IRi

∂

∂η̃IRi
, (14)

where IL, IR ∈ 1, · · · , 4. Applied to the amplitude, the
generator R counts the η degree minus the η̃ degree, or,
as the η’s are charged under helicity, the difference of he-
licity weight between left and right amplitudes. Denoting
the KLT map as M = K[AL,AR], R-symmetry invari-
ance thus requires that the two N = 4 sYM amplitudes
must have the same helicity weight:

K[ANkMHV
L ,ANk

′

MHV
R ]

{

= 0 for k &= k′

&= 0 for k = k′
, (15)

where NkMHV stands for (next-to-)kmaximally-helicity-
violating amplitude. Note that since one can consis-
tently truncate supersymmetry on both sides of the KLT
formula to obtain reduced supersymmetric theories, the
above condition is valid for all tree-level pure (super)
gravity amplitudes.
Reducing four-dimensional N = q supergravity to

three dimensions, one obtains an enhanced SO(2q) sym-
metry. The SO(2q) generators are built out of quadratic
forms ∼ η2, η∂η and (∂η)2, among these one can identify
the U(1) generator Y = YL + YR, where

YL =
1

2

(

m
∑

i=1

ηILi
∂

∂ηILi

)

−m, (16)

and YR is similarly defined in terms of the η̃ variables.
As R = 2(YL − YR) it follows that YL and YR must
vanish individually. This freezes the number of η’s, or
η̃’s, to be 2m, corresponding to helicity weight m. Ad-
ditionally, any D = 4 sYM amplitude carries overall
helicity weight −m not accounted for by the η’s (cf.
Park-Taylor denominator). Thus, in total, only helicity-
conserving Yang-Mills amplitudes – present exclusively
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MN=10
4 (1̄, 2, 3̄, 4) =

δ(10)(
∑

i λ
αηIi ) 〈1 3〉

〈1 2〉2 〈2 3〉2
. (11)

It can be constructed as heterotic double copies AN=8
4 ×

AN=2
4 (1̄, 2, 3̄, 4) or AN=6

4 (1̄, 2, 3̄, 4)×AN=4
4 (1̄, 2, 3̄, 4).

As discussed in ref. [16] all supergravity theories with
N > 8 supersymmetry are unique, while beginning with
N = 8 one can have n matter multiplets, corresponding
to 16n states. The dimensional reduction of pure half-
maximal D = 4 supergravity corresponds to N = 8 with
n = 2; the four-point amplitude is

MN=8
4,n=2(1̄, 2, 3̄, 4) = (AN=4

4 )2=

(

δ(4)(
∑

i λ
αηIi ) 〈1 3〉

〈1 2〉 〈2 3〉

)2

,

(12)
with AN=4

4 = AN=4
4 (1̄, 2, 3̄, 4). One can also write this as

AN=6
4 ×AN=2

4 . For n = 1, the four-point amplitude is

MN=8
4,n=1 =

1

2

δ(8)(
∑

i λ
αηIi )(s

2 + t2 + u2)

〈1 2〉2 〈2 3〉2 〈1 3〉2
(13)

This is given by a direct product of AN=8
4 ×AN=0

4 , where
N = 0 denotes CS theory plus a single minimally-coupled
scalar. We summarize these results in table I.

Vanishing of odd-multiplicity amplitudes

It is enlightening to consider the constraint from R-
symmetry in four dimensions (see [17] for similar dis-

cussion). Through the KLT relations, that is, the two-
algebra double-copy formula, maximally supersymmetric
N = 8 gravity inherits an enhanced SU(8) R-symmetry.
This includes the following U(1) generator

R =
n
∑

i=1

ηILi
∂

∂ηILi
− η̃IRi

∂

∂η̃IRi
, (14)

where IL, IR ∈ 1, · · · , 4. Applied to the amplitude, the
generator R counts the η degree minus the η̃ degree, or,
as the η’s are charged under helicity, the difference of he-
licity weight between left and right amplitudes. Denoting
the KLT map as M = K[AL,AR], R-symmetry invari-
ance thus requires that the two N = 4 sYM amplitudes
must have the same helicity weight:

K[ANkMHV
L ,ANk

′

MHV
R ]

{

= 0 for k &= k′

&= 0 for k = k′
, (15)

where NkMHV stands for (next-to-)kmaximally-helicity-
violating amplitude. Note that since one can consis-
tently truncate supersymmetry on both sides of the KLT
formula to obtain reduced supersymmetric theories, the
above condition is valid for all tree-level pure (super)
gravity amplitudes.
Reducing four-dimensional N = q supergravity to

three dimensions, one obtains an enhanced SO(2q) sym-
metry. The SO(2q) generators are built out of quadratic
forms ∼ η2, η∂η and (∂η)2, among these one can identify
the U(1) generator Y = YL + YR, where

YL =
1

2

(

m
∑

i=1

ηILi
∂

∂ηILi

)

−m, (16)

and YR is similarly defined in terms of the η̃ variables.
As R = 2(YL − YR) it follows that YL and YR must
vanish individually. This freezes the number of η’s, or
η̃’s, to be 2m, corresponding to helicity weight m. Ad-
ditionally, any D = 4 sYM amplitude carries overall
helicity weight −m not accounted for by the η’s (cf.
Park-Taylor denominator). Thus, in total, only helicity-
conserving Yang-Mills amplitudes – present exclusively

Examples 4pts: 

checked double copy up to 6pts! 

Huang, H.J. 
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Example calculation 



Goal: Calculate 3-loop 4-pt N=8 SG ampl.  



Goal: Calculate 3-loop 4-pt N=8 SG ampl.  

•  First find a duality-satisfying N=4 SYM ampl. 

•  Square each kinematic numerator → N=8 SG. 

•  See: 1201.5366 [hep-th] for this example.�
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Step 3. Reduce to master numerators 
The marked Jacobi relations                                gives functional eqns 

Note: all numerators can be reduced to linear combinations of 

is a “master numerator” 



Step 4. Use Ansatz for master(s) 
To simplify the ansatz we use auxiliary constraints (specific to N=4): 
1) n-gon subgraphs carries at most n - 4 powers of loop momenta  
2) N(x) are polynomials in Lorents products of momenta. 
3) N(x) have the (crossing) symmetries of theirs graphs. 
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Step 4. Use Ansatz for master(s) 
To simplify the ansatz we use auxiliary constraints (specific to N=4): 
1) n-gon subgraphs carries at most n - 4 powers of loop momenta  
2) N(x) are polynomials in Lorents products of momenta. 
3) N(x) have the (crossing) symmetries of theirs graphs. 
   

Physical constraint: on the maximal unitarity cut  

è �

This gives a four-parameter ansatz: 

Enforcing linearity in      : 
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Step 5. Impose constraints on derived numerators 

Only boxes (4-gons):   

Final solution for master: 

è N=4 SYM and N=8 SUGRA amplitude integrands fully determined  



Collecting the result 
1004.0476 [hep-th] Bern, Carrasco, HJ 

Used to show absence of N=4 SG divergence   Bern, Davies, Dennen, Huang 



Summary 
!   Yang-Mills theories are controlled by a kinematic Lie 2-algebra 
! Chern-Simons-matter theories controlled by a kinematic Lie 3-algebra 
 

!   With duality manifest: Gravity becomes double copy of Yang-Mills 
theory for any dim., or, in D=3, of Chern-Simons-matter theory 

!   A complete representation of the kinematic algebra is still missing for 
all but the simplest case of self-dual Yang-Mills.  

!   Constructing CK-amplitude representations is nonetheless possible, 
case by case. Double-copy formula gives gravity integrands for free. 

!   Duality is a key tool for nonplanar gauge and gravity calculations.  
!    N=8 supergravity UV behavior at five (seven) loops ? 
!    D=4 UV divergence 3,4 loops N=4 supergravity ? 

 

          

           THANK YOU! 


