Recent progress on gauge and gravity scattering amplitudes

Henrik Johansson

CERN

March 19, 2013

XXV Workshop Beyond the Standard Model Physikzentrum Bad Honnef

Based on work in collaboration with: Z.Bern, J.J.Carrasco, L.Dixon, Y-t. Huang, R.Roiban

This talk:

1) Overview of Color—Kinematics Duality

- Yang-Mills Theory = Kinematical Lie 2-Algebra
- Chern-Simons Matter Theory = Kinematical Lie 3-Algebra
- Gravity = Double Copy of Gauge Theories.
- What is the Lie Algebra? (partial results)
- 2) An exercise in calculating 3-loop 4-pt supergravity ampl.

Text-Book: Perturbative Gravity is Complicated !

de Donder gauge:
$$\mathcal{L}=rac{2}{\kappa^2}\sqrt{g}R, \quad g_{\mu
u}=\eta_{\mu
u}+\kappa h_{\mu
u}$$

$$\sum_{\mu_1}^{\nu_1} \sum_{\mu_2}^{\nu_2} = \frac{1}{2} \left[\eta_{\mu_1\nu_1} \eta_{\mu_2\nu_2} + \eta_{\mu_1\nu_2} \eta_{\nu_1\mu_2} - \frac{2}{D-2} \eta_{\mu_1\mu_2} \eta_{\nu_1\nu_2} \right] \frac{i}{p^2 + i\epsilon}$$

$$\begin{array}{l} k_{2} \\ \mu_{2} \\ \mu_{2} \\ \mu_{2} \\ \mu_{3} \\ \mu_{4} \\ \mu_{1} \\ k_{1} \\ \mu_{1} \end{array} = \operatorname{sym} \begin{bmatrix} -\frac{1}{2} P_{3}(k_{1} \cdot k_{2}\eta_{\mu_{1}\nu_{1}}\eta_{\mu_{2}\nu_{2}}\eta_{\mu_{3}\nu_{3}}) - \frac{1}{2} P_{6}(k_{1\mu_{1}}k_{1\nu_{2}}\eta_{\mu_{1}\nu_{1}}\eta_{\mu_{3}\nu_{3}}) + \frac{1}{2} P_{3}(k_{1} \cdot k_{2}\eta_{\mu_{1}\mu_{2}}\eta_{\nu_{1}\nu_{2}}\eta_{\mu_{3}\nu_{3}}) \\ + P_{6}(k_{1} \cdot k_{2}\eta_{\mu_{1}\nu_{1}}\eta_{\mu_{2}\mu_{3}}\eta_{\nu_{2}\nu_{3}}) + 2P_{3}(k_{1\mu_{2}}k_{1\nu_{3}}\eta_{\mu_{1}\nu_{1}}\eta_{\nu_{2}\mu_{3}}) - P_{3}(k_{1\nu_{2}}k_{2\mu_{1}}\eta_{\nu_{1}\mu_{1}}\eta_{\mu_{3}\nu_{3}}) \\ + P_{3}(k_{1\mu_{3}}k_{2\nu_{3}}\eta_{\mu_{1}\mu_{2}}\eta_{\nu_{1}\nu_{2}}) + P_{6}(k_{1\mu_{3}}k_{1\nu_{3}}\eta_{\mu_{1}\mu_{2}}\eta_{\nu_{1}\nu_{2}}) + 2P_{6}(k_{1\mu_{2}}k_{2\nu_{3}}\eta_{\nu_{2}\mu_{1}}\eta_{\nu_{1}\mu_{3}}) \\ + 2P_{3}(k_{1\mu_{2}}k_{2\mu_{1}}\eta_{\nu_{2}\mu_{3}}\eta_{\nu_{3}\nu_{1}}) - 2P_{3}(k_{1} \cdot k_{2}\eta_{\nu_{1}\mu_{2}}\eta_{\nu_{2}\mu_{3}}\eta_{\nu_{3}\mu_{1}})] \\ After symmetrization \\ \sim 100 \text{ terms }! \end{array}$$

higher order vertices...

On-shell simplifications

Gravity scattering amplitude:

$$M_4^{\text{tree}}(1,2,3,4) = -i\frac{st}{u}A_4^{\text{tree}}(1,2,3,4)\tilde{A}_4^{\text{tree}}(1,2,3,4)$$

Yang-Mills amplitude

On-shell, gravity is the "square" of Yang-Mills – Kawai, Lewellen, Tye holds for the entire S-matrix – Bern, Carrasco, HJ

Color-Kinematics Duality

Yang-Mills theories are controlled by a kinematic Lie algebra

• Amplitude represented by cubic graphs:

Duality: color ↔ kinematics

Bern, Carrasco, HJ

Some details of color-kinematics duality

Bern, Carrasco, HJ

can be checked for 4pt on-shell ampl. using Feynman rules

Example with two quarks:

- **1.** $(A^{\mu})^4$ contact interactions absorbed into cubic graphs
 - by hand 1=s/s
 - or by auxiliary field $B \sim (A^\mu)^2$
- 2. Beyond 4-pts duality not automatic \rightarrow Lagrangian reorganization
- 3. Known to work at tree level: all-*n* example Kiermaier; Bjerrum-Bohr et al.
- 4. Enforces (BCJ) relations on partial amplitudes \rightarrow (*n*-3)! basis

Duality gives new amplitude relations

In color ordered tree amplitudes 3 legs can be fixed: (*n*-3)! basis **BCJ**

$$\begin{array}{ll} \textbf{4 points:} & A_4^{\rm tree}(1,2,4,3) = \frac{A_4^{\rm tree}(1,2,3,4)s_{14}}{s_{24}} \\ \textbf{5 points:} \\ A_5^{\rm tree}(1,2,4,3,5) = \frac{A_5^{\rm tree}(1,2,3,4,5)(s_{14}+s_{45}) + A_5^{\rm tree}(1,2,3,5,4)s_{14}}{s_{24}} \\ A_5^{\rm tree}(1,2,4,5,3) = -\frac{A_5^{\rm tree}(1,2,3,4,5)s_{34}s_{15} + A_5^{\rm tree}(1,2,3,5,4)s_{14}(s_{245}+s_{35})}{s_{24}s_{245}} \end{array}$$

...relations obtained for any multiplicity

Similar relations found in string theory: monodromy relations on the open string worldsheet Bjerrum-Bohr, Damgaard, Vanhove; Stieberger

Used to solve string theory at tree level: Mafra, Schlotterer, Stieberger

See talk by Schlotterer, Brödel

Gravity is a double copy

• Gravity amplitudes obtained by replacing color with kinematics

$$\mathcal{A}_{m}^{(L)} = \sum_{i \in \Gamma_{3}} \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_{i}} \frac{n_{i}c_{i}}{p_{i_{1}}^{2}p_{i_{2}}^{2}p_{i_{3}}^{2}\cdots p_{i_{l}}^{2}}$$
BCJ
$$\mathcal{M}_{m}^{(L)} = \sum_{i \in \Gamma_{3}} \int \frac{d^{LD}\ell}{(2\pi)^{LD}} \frac{1}{S_{i}} \frac{n_{i}\tilde{n}_{i}}{p_{i_{1}}^{2}p_{i_{2}}^{2}p_{i_{3}}^{2}\cdots p_{i_{l}}^{2}}$$

• The two numerators can belong to different theories:

$$\begin{array}{cccc} n_i & \tilde{n}_i \\ (\mathcal{N}=4) \times (\mathcal{N}=4) & \rightarrow & \mathcal{N}=8 \text{ sugra} \\ (\mathcal{N}=4) \times (\mathcal{N}=2) & \rightarrow & \mathcal{N}=6 \text{ sugra} \\ (\mathcal{N}=4) \times (\mathcal{N}=0) & \rightarrow & \mathcal{N}=4 \text{ sugra} \\ (\mathcal{N}=0) \times (\mathcal{N}=0) & \rightarrow & \text{Einstein gravity + axion+ dilaton} \end{array}$$

Kawai-Lewellen-Tye Relations

String theory
tree-level identity:closed string ~ (left open string) × (right open string)Image: GravityImage: Gravity<

KLT relations emerge after nontrivial world-sheet integral identities

Field theory limit \Rightarrow gravity theory ~ (gauge theory) × (gauge theory)

$$egin{aligned} M_4^{ ext{tree}}(1,2,3,4) &= -i s_{12} A_4^{ ext{tree}}(1,2,3,4) \, \widetilde{A}_4^{ ext{tree}}(1,2,4,3) & ext{graduations} \ M_5^{ ext{tree}}(1,2,3,4,5) &= i s_{12} s_{34} A_5^{ ext{tree}}(1,2,3,4,5) \, \widetilde{A}_5^{ ext{tree}}(2,1,4,3,5) & ext{stat} \ + i s_{13} s_{24} A_5^{ ext{tree}}(1,3,2,4,5) \, \widetilde{A}_5^{ ext{tree}}(3,1,4,2,5) & |1
angle \end{aligned}$$

gravity states are products of gauge theory states:

$$|1\rangle_{\text{grav}} = |1\rangle_{\text{gauge}} \otimes |1\rangle_{\text{gauge}}$$

See talk by Schlotterer

What is the Kinematic Lie Algebra?

Self-Dual Kinematic Algebra

YM vertex

Self dual YM in light-cone gauge:

Monteiro and O'Connell

Generators of diffeomorphism invariance:

$$L_k = e^{-ik \cdot x} (-k_w \partial_u + k_u \partial_w)$$

Lie Algebra:

 $[L_{p_1}, L_{p_2}] = iX(p_1, p_2)L_{p_1+p_2} = iF_{p_1p_2}{}^kL_k$

The $X(p_1, p_2)$ are YM vertices of type ++– helicity.

Diffeomorphism symmetry hidden in YM theory!

Self dual sector gives +++...+ amplitudes: only one-loop S-matrix. Boels, Isermann, Monteiro, O'Connell

We need to find the algebra beyond that.

Order-by-order Lagrangian

• First attempt at Lagrangian with manifest duality

1004.0693 [hep-th] Bern, Dennen, Huang, Kiermaier

YM Lagrangian receives corrections at 5 points and higher

$$\mathcal{L}_{YM} = \mathcal{L} + \mathcal{L}'_5 + \mathcal{L}'_6 + \dots$$

corrections proportional to the Jacobi identity (thus equal to zero) $\mathcal{L}'_5 \sim \operatorname{Tr} [A^{\nu}, A^{\rho}] \frac{1}{\Box} ([[\partial_{\mu}A_{\nu}, A_{\rho}], A^{\mu}] + [[A_{\rho}, A^{\mu}], \partial_{\mu}A_{\nu}] + [[A^{\mu}, \partial_{\mu}A_{\nu}], A_{\rho}])$ Introduction of auxiliary "dynamical" fields gives local cubic Lagrangian

$$\mathcal{L}_{YM} = \frac{1}{2} A^{a\mu} \Box A^a_\mu - B^{a\mu\nu\rho} \Box B^a_{\mu\nu\rho} - g f^{abc} (\partial_\mu A^a_\nu + \partial^\rho B^a_{\rho\mu\nu}) A^{b\mu} A^{c\nu} + \dots$$

kinematical structure constants

3-Algebra Color-Kinematics in D=3

BLG color-kinematics

D=3 Chern-Simons matter (CSM) theories obey color-kinematics duality.

3-algebra gauge group $[T^a, T^b, T^c] = f^{abc}_{\ \ d}T^d$ Bagger, Lambert, Gustavsson

Fundamental identity (Jacobi identity):

Bargheer, He, and McLoughlin

 $c_s = c_t + c_u + c_v \Leftrightarrow n_s = n_t + n_u + n_v$

4 and 6 point checks shows that the double copy of BLG Is $N = 16 E_{8(8)}$ SUGRA of Marcus and Schwarz

BLG ='square root' of N=16 SG $A_4^{\text{BLG}} = \sqrt{M_4^{\mathcal{N}=16}} = \sqrt{\frac{\delta^{16}(Q)}{stu}}$

Same D=3 Supergravity Either Way !

In *D*=3, supergravity obtained from in two different double copies:

- Dimension mismatch? \rightarrow propagators in SYM \otimes SYM compensates!
- Odd matrix element mismatch? \rightarrow double copy enhances R symmety!

SYM: $SO(7) \otimes SO(7) \rightarrow SO(16)$ **CSM:** $SO(8) \otimes SO(8) \rightarrow SO(16)$

For N=16 SG: all states are SO(16) spinors \rightarrow no odd S-matrix elements

H. Johansson, Bad Honnef 2013

Marcus and Schwarz

Different D=3 Supergravity Theories

Verified double copy constructions:

Huang, H.J.

SG theory	$CSm_L \times CSm_R = supergravity$	$sYm_L \times sYM_R = supergravity$	coset
$\mathcal{N} = 16$	$16^2 = 256$	$16^2 = 256$	$E_{8(8)}/SO(16)$
$\mathcal{N} = 12$	$8^2 + \bar{8}^2 = 16 \times (4 + \bar{4}) = 128$	$16 \times 8 = 128$	$E_{7(-5)}/SO(12)\otimes SO(3)$
$\mathcal{N} = 10$	$8 \times 4 + \bar{8} \times \bar{4} = 16 \times (2 + \bar{2}) = 64$	$16 \times 4 = 64$	$E_{6(-14)}/SO(10)\otimes SO(2)$
$\mathcal{N}=8, n=2$	$4^2 + \bar{4}^2 = 8 \times 2 + \bar{8} \times \bar{2} = 32$	$16 \times 2 = 32$	$SO(8,2)/SO(8) \otimes SO(2)$
$\mathcal{N}=8, n=1$	$16 \times 1 = 16$	$16 \times 1 = 16$	SO(8,1)/SO(8)

Examples 4pts:

$$\mathcal{M}_{4}^{\mathcal{N}=12}(\bar{1},2,\bar{3},4) = (A_{4}^{\mathcal{N}=6})^{2} = \left(\frac{\delta^{(6)}(\sum_{i}\lambda^{\alpha}\eta_{i}^{I})}{\langle 12\rangle\langle 23\rangle}\right)^{2}$$
$$\mathcal{M}_{4,n=2}^{\mathcal{N}=8}(\bar{1},2,\bar{3},4) = (A_{4}^{\mathcal{N}=4})^{2} = \left(\frac{\delta^{(4)}(\sum_{i}\lambda^{\alpha}\eta_{i}^{I})\langle 13\rangle}{\langle 12\rangle\langle 23\rangle}\right)^{2}$$
$$\mathcal{M}_{4,n=1}^{\mathcal{N}=8} = \frac{1}{2}\frac{\delta^{(8)}(\sum_{i}\lambda^{\alpha}\eta_{i}^{I})(s^{2}+t^{2}+u^{2})}{\langle 12\rangle^{2}\langle 23\rangle^{2}\langle 13\rangle^{2}}$$
checked double copy up to 6pts!

Example calculation

Goal: Calculate 3-loop 4-pt N=8 SG ampl.

Goal: Calculate 3-loop 4-pt N=8 SG ampl.

- First find a duality-satisfying N=4 SYM ampl.
- Square each kinematic numerator \rightarrow N=8 SG.
- See: 1201.5366 [hep-th] for this example.

Step 1. List diagram topologies ,3 2. ,3 (b) (c) (a)

Step 1. List diagram topologies ,3 .3 2. ,3 (b) (c) (a) (d) (e) (f)

Step 2. Identify Jacobi relations 2. .3 3 2 3 7 5 6 6 56 5 += J_{a} (a) (b) 4

Some simplifications due to N=4 susy:

Some simplifications due to N=4 susy:

Some simplifications due to N=4 susy:

Kinematic Jacobi Id.

 $N^{(a)}(k_1, k_2, k_3, l_5, l_6, l_7) = N^{(b)}(k_1, k_2, k_3, l_5, l_6, l_7) + N^{(tri)}(k_1, k_2, k_3, l_5, l_6, l_7)$

Some simplifications due to N=4 susy:

Kinematic Jacobi Id.

 $N^{(a)}(k_1, k_2, k_3, l_5, l_6, l_7) = N^{(b)}(k_1, k_2, k_3, l_5, l_6, l_7) + N^{(tri)}(k_1, k_2, k_3, l_5, l_6, l_7)$

 $N^{(b)}(k_1, k_2, k_3, l_5, l_6, l_7) = N^{(d)}(k_1, k_2, k_3, l_5, l_6, l_7) + 0$

 $N^{(b)}(k_1, k_2, k_3, l_5, l_6, l_7) = N^{(d)}(k_1, k_2, k_3, l_5, l_6, l_7) + 0$

 $N^{(\rm d)} = N^{(\rm h)}(k_3, k_1, k_2, l_7, l_6, k_{1,3} - l_5 + l_6 - l_7) + N^{(\rm h)}(k_3, k_2, k_1, l_7, l_6, k_{2,3} + l_5 - l_7)$

Step 3. Reduce to master numerators

Step 3. Reduce to master numerators

The marked Jacobi relations $J_{\mathrm{a}}, J_{\mathrm{b}}, \ldots, J_{\mathrm{k}}, J_{\mathrm{l}}$ gives functional eqns

$$\begin{split} N^{(a)} &= N^{(b)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(b)} &= N^{(d)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(c)} &= N^{(a)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(d)} &= N^{(h)}(k_3, k_1, k_2, l_7, l_6, k_{1,3} - l_5 + l_6 - l_7) + N^{(h)}(k_3, k_2, k_1, l_7, l_6, k_{2,3} + l_5 - l_7) \,, \\ N^{(f)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(g)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(h)} &= -N^{(g)}(k_1, k_2, k_3, l_5, l_6, k_{1,2} - l_5 - l_7) - N^{(i)}(k_4, k_3, k_2, l_6 - l_5, l_5 - l_6 + l_7 - k_{1,2}, l_6) \,, \\ N^{(i)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_7, l_6) - N^{(e)}(k_3, k_2, k_1, -k_4 - l_5 - l_6, -l_6 - l_7, l_6) \,, \\ N^{(j)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(e)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(k)} &= N^{(f)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(f)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) \,. \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) \,. \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) \,. \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) \,. \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) \,. \\ N^{(l)} &= N^{(l)}(k_1, k_2, k_3, l_5, l_6, l_7) \,. \\ N^{(l)} &= N^{(l)}(k_1, k_2,$$

Step 3. Reduce to master numerators

The marked Jacobi relations $J_{\mathrm{a}}, J_{\mathrm{b}}, \ldots, J_{\mathrm{k}}, J_{\mathrm{l}}$ gives functional eqns

$$\begin{split} N^{(a)} &= N^{(b)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(b)} &= N^{(d)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(c)} &= N^{(a)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(d)} &= N^{(h)}(k_3, k_1, k_2, l_7, l_6, k_{1,3} - l_5 + l_6 - l_7) + N^{(h)}(k_3, k_2, k_1, l_7, l_6, k_{2,3} + l_5 - l_7) \,, \\ N^{(f)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(g)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) \,, \\ N^{(h)} &= -N^{(g)}(k_1, k_2, k_3, l_5, l_6, k_{1,2} - l_5 - l_7) - N^{(i)}(k_4, k_3, k_2, l_6 - l_5, l_5 - l_6 + l_7 - k_{1,2}, l_6) \,, \\ N^{(i)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(e)}(k_3, k_2, k_1, -k_4 - l_5 - l_6, -l_6 - l_7, l_6) \,, \\ N^{(j)} &= N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(e)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(k)} &= N^{(f)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(f)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(g)}(k_2, k_1, k_3, l_5, l_6, l_7) \,, \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) \,. \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) \,. \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) \,. \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6, l_7) \,. \\ N^{(l)} &= N^{(g)}(k_1, k_2, k_3, l_5, l_6,$$

Note: all numerators can be reduced to linear combinations of $N^{(e)}$

 $N^{(\mathrm{e})}(k_1,k_2,k_3,l_5,l_6,l_7)$ is a "master numerator"

To simplify the ansatz we use auxiliary constraints (specific to *N*=4):
1) *n*-gon subgraphs carries at most *n* - 4 powers of loop momenta
2) N^(x) are polynomials in Lorents products of momenta.
3) N^(x) have the (crossing) symmetries of theirs graphs.

To simplify the ansatz we use auxiliary constraints (specific to *N*=4):
1) *n*-gon subgraphs carries at most *n* - 4 powers of loop momenta
2) N^(x) are polynomials in Lorents products of momenta.
3) N^(x) have the (crossing) symmetries of theirs graphs.

$$> N^{(e)} = N^{(e)}(k_1, k_2, k_3, l_5)$$

To simplify the ansatz we use auxiliary constraints (specific to *N*=4):
1) *n*-gon subgraphs carries at most *n* - 4 powers of loop momenta
2) N^(x) are polynomials in Lorents products of momenta.
3) N^(x) have the (crossing) symmetries of theirs graphs.

→
$$N^{(e)} = N^{(e)}(k_1, k_2, k_3, l_5)$$

Physical constraint: on the maximal unitarity cut $N^{(e)} \rightarrow s(l_5 + k_4)^2$

To simplify the ansatz we use auxiliary constraints (specific to *N*=4):
1) *n*-gon subgraphs carries at most *n* - 4 powers of loop momenta
2) N^(x) are polynomials in Lorents products of momenta.
3) N^(x) have the (crossing) symmetries of theirs graphs.

→
$$N^{(e)} = N^{(e)}(k_1, k_2, k_3, l_5)$$

Physical constraint: on the maximal unitarity cut $N^{(e)} \rightarrow s(l_5 + k_4)^2$

This gives a four-parameter ansatz:

$$N^{(e)} = s(l_5 + k_4)^2 + (\alpha s + \beta t)l_5^2 + (\gamma s + \delta t)(l_5 - k_1)^2 + (\alpha s + \beta t)(l_5 - k_1 - k_2)^2$$

To simplify the ansatz we use auxiliary constraints (specific to *N*=4):
1) *n*-gon subgraphs carries at most *n* - 4 powers of loop momenta
2) N^(x) are polynomials in Lorents products of momenta.
3) N^(x) have the (crossing) symmetries of theirs graphs.

→
$$N^{(e)} = N^{(e)}(k_1, k_2, k_3, l_5)$$

Physical constraint: on the maximal unitarity cut $N^{(e)} \rightarrow s(l_5 + k_4)^2$

This gives a four-parameter ansatz:

$$N^{(e)} = s(l_5 + k_4)^2 + (\alpha s + \beta t)l_5^2 + (\gamma s + \delta t)(l_5 - k_1)^2 + (\alpha s + \beta t)(l_5 - k_1 - k_2)^2$$

Enforcing linearity in $l_5: \quad \gamma = -1 - 2 \alpha \qquad \delta = -2 \beta$

$$N^{(e)} = s(\tau_{45} + \tau_{15}) + (\alpha s + \beta t)(s + \tau_{15} - \tau_{25})$$

$$\overbrace{j}_{1}^{2} \overbrace{j}_{6}^{7} \overbrace{(e)}^{3} \quad \tau_{ij} = 2k_i \cdot l_j$$

$$N^{(e)} = s(\tau_{45} + \tau_{15}) + (\alpha s + \beta t)(s + \tau_{15} - \tau_{25})$$

$$\sum_{\substack{j=1\\ j \in \mathbb{Q}}}^{2} \tau_{ij} = 2k_i \cdot l_j$$

$$N^{(j)} = N^{(e)}(k_1, k_2, k_3, l_5, l_6, l_7) - N^{(e)}(k_2, k_1, k_3, l_5, l_6, l_7)$$

= $s(1 + 2\alpha - \beta)(\tau_{15} - \tau_{25}) + \beta s(t - u)$
 $2 \rightarrow J_j \rightarrow$

$$N^{(a)} = N^{(e)}(k_1, k_2, k_4, -k_3 + l_5 - l_6 + l_7, l_5 - l_6, -l_5) + N^{(e)}(k_2, k_1, k_4, -k_3 - l_5 + l_7, -l_5, l_5 - l_6) - N^{(e)}(k_4, k_1, k_2, l_6 - l_7, l_6, l_5 - l_6) - N^{(e)}(k_4, k_2, k_1, l_6 - l_7, l_6, -l_5) - N^{(e)}(k_3, k_1, k_2, l_7, l_6, l_5 - l_6) - N^{(e)}(k_3, k_2, k_1, l_7, l_6, -l_5) . = s^2 + (1 + 3\alpha) \Big((\tau_{16} - \tau_{46})s - 2(\tau_{17} + \tau_{37})s + (\tau_{16} - 2\tau_{17} - \tau_{26} + 2\tau_{27})t + 4ut \Big)$$

$$N^{(a)} = N^{(e)}(k_1, k_2, k_4, -k_3 + l_5 - l_6 + l_7, l_5 - l_6, -l_5) + N^{(e)}(k_2, k_1, k_4, -k_3 - l_5 + l_7, -l_5, l_5 - l_6) - N^{(e)}(k_4, k_1, k_2, l_6 - l_7, l_6, l_5 - l_6) - N^{(e)}(k_4, k_2, k_1, l_6 - l_7, l_6, -l_5) - N^{(e)}(k_3, k_1, k_2, l_7, l_6, l_5 - l_6) - N^{(e)}(k_3, k_2, k_1, l_7, l_6, -l_5) . = s^2 + (1 + 3\alpha) \Big((\tau_{16} - \tau_{46})s - 2(\tau_{17} + \tau_{37})s + (\tau_{16} - 2\tau_{17} - \tau_{26} + 2\tau_{27})t + 4ut \Big)$$

Final solution for master: $N^{(e)} = s(\tau_{45} + \tau_{15}) + \frac{1}{3}(t-s)(s+\tau_{15}-\tau_{25})$ $I = s(\tau_{45} + \tau_{15}) + \frac{1}{3}(t-s)(s+\tau_{15}-\tau_{25})$

→ N=4 SYM and N=8 SUGRA amplitude integrands fully determined

Collecting the result

1004.0476 [hep-th] Bern, Carrasco, HJ

Used to show absence of N=4 SG divergence Bern, Davies, Dennen, Huang

Summary

- Yang-Mills theories are controlled by a kinematic Lie 2-algebra
- **Chern-Simons-matter theories controlled by a kinematic Lie 3-algebra**
- With duality manifest: Gravity becomes double copy of Yang-Mills theory for any dim., or, in D=3, of Chern-Simons-matter theory
- A complete representation of the kinematic algebra is still missing for all but the simplest case of self-dual Yang-Mills.
- Constructing CK-amplitude representations is nonetheless possible, case by case. Double-copy formula gives gravity integrands for free.
- Duality is a key tool for nonplanar gauge and gravity calculations.
 - \checkmark $\mathcal{N}=8$ supergravity UV behavior at five (seven) loops ?
 - D=4 UV divergence 3,4 loops N=4 supergravity ?

THANK YOU!