Recent progress on gauge and gravity scattering amplitudes

Henrik Johansson
CERN
March 19, 2013
XXV Workshop Beyond the Standard Model
Physikzentrum Bad Honnef

Based on work in collaboration with:
Z.Bern, J.J.Carrasco, L.Dixon, Y-t. Huang, R.Roiban

This talk:

1) Overview of Color-Kinematics Duality

- Yang-Mills Theory = Kinematical Lie 2-Algebra
- Chern-Simons Matter Theory = Kinematical Lie 3-Algebra
- Gravity = Double Copy of Gauge Theories.
- What is the Lie Algebra? (partial results)

2) An exercise in calculating 3-loop 4-pt supergravity ampl.

Text-Book: Perturbative Gravity is Complicated !

de Donder gauge:

$$
\mathcal{L}=\frac{2}{\kappa^{2}} \sqrt{g} R, \quad g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

higher order vertices...

H. Johansson, Bad Honnef 2013

On-shell simplifications

Graviton plane wave:

$$
\begin{aligned}
& \varepsilon^{\mu}(p) \varepsilon^{\nu}(p) e^{i p \cdot x} \\
& \quad \mathcal{L}^{i p a n g-M i l l s ~ p o l a r i z a t i o n ~}
\end{aligned}
$$

On-shell 3-graviton vertex:

Gravity scattering amplitude:

$$
\begin{gathered}
M_{4}^{\text {tree }}(1,2,3,4)=-i \frac{s t}{u} A_{4}^{\text {tree }}(1,2,3,4) \tilde{A}_{4}^{\text {tree }}(1,2,3,4) \\
\iota_{\text {Yang-Mills amplitude }}
\end{gathered}
$$

On-shell, gravity is the "square" of Yang-Mills - Kawai, Lewellen, Tye holds for the entire S-matrix - Bern, Carrasco, HJ
H. Johansson, Bad Honnef 2013

Color-Kinematics Duality

Yang-Mills theories are controlled by a kinematic Lie algebra

- Amplitude represented by cubic graphs:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i} \curvearrowleft \text { color factors }}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2} \longleftarrow \text { propagators }}
$$

Color \& kinematic numerators satisfy same relations:

Duality: color \leftrightarrow kinematics Bern, Carrasco, HJ
H. Johansson, Bad Honnef 2013

Some details of color-kinematics duality

can be checked for 4 pt on-shell ampl. using Feynman rules

Example with two quarks:

$$
\begin{aligned}
\varepsilon_{2} \cdot\left(\bar{u}_{1} V u_{3}\right) \cdot \varepsilon_{4} & =\bar{u}_{1 \neq} \phi_{4} \phi_{t} \phi_{2} u_{3}-\bar{u}_{1 \neq 2} \phi_{s} \not_{4} u_{3} \\
f^{c b a} T_{i k}^{c} & =T_{i j}^{b} T_{j k}^{a}-T_{i j}^{a} T_{j k}^{b}
\end{aligned}
$$

1. $\left(A^{\mu}\right)^{4}$ contact interactions absorbed into cubic graphs

- by hand $1=s / s$
- or by auxiliary field $B \sim\left(A^{\mu}\right)^{2}$

2. Beyond 4-pts duality not automatic \rightarrow Lagrangian reorganization
3. Known to work at tree level: all-n example Kiermaier; Bjerrum-Bohr et al.
4. Enforces (BCJ) relations on partial amplitudes $\rightarrow(n-3)$! basis

Duality gives new amplitude relations

In color ordered tree amplitudes 3 legs can be fixed: ($n-3$)! basis BCJ

$$
4 \text { points: } \quad A_{4}^{\text {tree }}(1,2,4,3)=\frac{A_{4}^{\text {tree }}(1,2,3,4) s_{14}}{s_{24}}
$$

5 points:

$$
\begin{aligned}
& A_{5}^{\text {tree }}(1,2,4,3,5)=\frac{A_{5}^{\text {tree }}(1,2,3,4,5)\left(s_{14}+s_{45}\right)+A_{5}^{\text {tree }}(1,2,3,5,4) s_{14}}{s_{24}} \\
& A_{5}^{\text {tree }}(1,2,4,5,3)=-\frac{A_{5}^{\text {tree }}(1,2,3,4,5) s_{34} s_{15}+A_{5}^{\text {tree }}(1,2,3,5,4) s_{14}\left(s_{245}+s_{35}\right)}{s_{24} s_{245}}
\end{aligned}
$$

...relations obtained for any multiplicity

Similar relations found in string theory: monodromy relations on the open string worldsheet Bjerrum-Bohr, Damgaard, Vanhove; Stieberger

Used to solve string theory at tree level: Mafra, Schlotterer, Stieberger

See talk by Schlotterer, Brödel

H. Johansson, Bad Honnef 2013

Gravity is a double copy

- Gravity amplitudes obtained by replacing color with kinematics

$$
\begin{aligned}
\mathcal{A}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}-}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \\
\mathcal{M}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{aligned}
$$

- The two numerators can belong to different theories:

$$
\begin{array}{cccc}
n_{i} & \tilde{n}_{i} & & \\
(\mathcal{N}=4) \times(\mathcal{N}=4) & \rightarrow & \mathcal{N}=8 \text { sugra } & \begin{array}{l}
\text { similar to Kawai- } \\
\text { Lewellen-Tye but } \\
\text { works at loop level }
\end{array} \\
(\mathcal{N}=4) \times(\mathcal{N}=2) & \rightarrow & \mathcal{N}=6 \text { sugra } & \text { see talk by Isermann } \\
(\mathcal{N}=4) \times(\mathcal{N}=0) & \rightarrow & \mathcal{N}=4 \text { sugra } & \\
(\mathcal{N}=0) \times(\mathcal{N}=0) & \rightarrow & \text { Einstein gravity }+ \text { axion+ dilaton }
\end{array}
$$

H. Johansson, Bad Honnef 2013

Kawai-Lewellen-Tye Relations

String theory

 tree-level identity: closed string \sim (left open string) \times (right open string)

KLT relations emerge after nontrivial world-sheet integral identities

Field theory limit \Rightarrow gravity theory \sim (gauge theory) \times (gauge theory)

$$
\begin{aligned}
M_{4}^{\text {tree }}(1,2,3,4)= & -i s_{12} A_{4}^{\text {tree }}(1,2,3,4) \widetilde{A}_{4}^{\text {tree }}(1,2,4,3) \\
M_{5}^{\text {tree }}(1,2,3,4,5)= & i s_{12} s_{34} A_{5}^{\text {tree }}(1,2,3,4,5) \widetilde{A}_{5}^{\text {tree }}(2,1,4,3,5) \\
& +i s_{13} s_{24} A_{5}^{\text {tree }}(1,3,2,4,5) \widetilde{A}_{5}^{\text {tree }}(3,1,4,2,5)
\end{aligned}
$$

gravity states are products of gauge theory states:
$|1\rangle_{\text {grav }}=|1\rangle_{\text {gauge }} \otimes|1\rangle_{\text {gauge }}$

What is the Kinematic Lie Algebra?

H. Johansson, Bad Honnef 2013

Self-Dual Kinematic Algebra

Self dual YM in light-cone gauge:

Generators of diffeomorphism invariance:

$$
L_{k}=e^{-i k \cdot x}\left(-k_{w} \partial_{u}+k_{u} \partial_{w}\right)
$$

Lie Algebra:

$$
\left[L_{p_{1}}, L_{p_{2}}\right]=i X\left(p_{1}, p_{2}\right) L_{p_{1}+p_{2}}=i F_{p_{1} p_{2}}^{k} L_{k}
$$

The $X\left(p_{1}, p_{2}\right)$ are YM vertices of type ++- helicity.
Diffeomorphism symmetry hidden in YM theory!
Self dual sector gives +++...+ amplitudes: only one-loop S-matrix. Boels, Isermann, Monteiro, O'Connell
We need to find the algebra beyond that.

Order-by-order Lagrangian

- First attempt at Lagrangian with manifest duality
1004.0693 [hep-th]

Bern, Dennen, Huang, Kiermaier

YM Lagrangian receives corrections at 5 points and higher

$$
\mathcal{L}_{Y M}=\mathcal{L}+\mathcal{L}_{5}^{\prime}+\mathcal{L}_{6}^{\prime}+\ldots
$$

corrections proportional to the Jacobi identity (thus equal to zero)
$\mathcal{L}_{5}^{\prime} \sim \operatorname{Tr}\left[A^{\nu}, A^{\rho}\right] \frac{1}{\square}\left(\left[\left[\partial_{\mu} A_{\nu}, A_{\rho}\right], A^{\mu}\right]+\left[\left[A_{\rho}, A^{\mu}\right], \partial_{\mu} A_{\nu}\right]+\left[\left[A^{\mu}, \partial_{\mu} A_{\nu}\right], A_{\rho}\right]\right)$
Introduction of auxiliary "dynamical" fields gives local cubic Lagrangian
$\mathcal{L}_{Y M}=\frac{1}{2} A^{a \mu} \square A_{\mu}^{a}-B^{a \mu \nu \rho} \square B_{\mu \nu \rho}^{a}-g f^{a b c}(\underbrace{\left.\partial_{\mu} A_{\nu}^{a}+\partial^{\rho} B_{\rho \mu \nu}^{a}\right) A^{b \mu} A^{c \nu}+\ldots}$ kinematical structure constants

3-Algebra Color-Kinematics in $D=3$

BLG color-kinematics

$D=3$ Chern-Simons matter (CSM) theories obey color-kinematics duality.
3-algebra gauge group $\left[T^{a}, T^{b}, T^{c}\right]=f_{d}^{a b c} T^{d} \quad$ Bagger, Lambert, Gustavsson
Fundamental identity (Jacobi identity):

Bargheer, He, and McLoughlin

$$
c_{s}=c_{t}+c_{u}+c_{v} \Leftrightarrow n_{s}=n_{t}+n_{u}+n_{v}
$$

4 and 6 point checks shows that the double copy of BLG Is $N=16 E_{8(8)}$ SUGRA of Marcus and Schwarz
$\mathrm{BLG}=‘$ square root' of $\mathrm{N}=16 \mathrm{SG} \quad A_{4}^{\mathrm{BLG}}=\sqrt{M_{4}^{\mathcal{N}=16}}=\sqrt{\frac{\delta^{16}(Q)}{s t u}}$
H. Johansson, Bad Honnef 2013

Same D=3 Supergravity Either Way!

In $D=3$, supergravity obtained from in two different double copies:

$$
\begin{aligned}
& \mathcal{M}_{m}=\sum_{\substack{j \in \text { cubic } \\
N_{j} \in 2 \text {-algebra }}} \frac{N_{j} \tilde{N}_{j}}{\prod_{\beta_{j}} s_{\beta_{j}}}=\sum_{\substack{i \in \text { quartic } \\
n_{i} \in 3 \text {-algebra }}} \frac{n_{i} \tilde{n}_{i}}{\prod_{\alpha_{i}} s_{\alpha_{i}}} \quad \text { Huang, H.J. } \\
& \operatorname{CSM} \otimes \operatorname{CSM}=\quad \mathbf{S Y M} \otimes \text { SYM }
\end{aligned}
$$

- Dimension mismatch? \rightarrow propagators in SYM \otimes SYM compensates!
- Odd matrix element mismatch? \rightarrow double copy enhances R symmety!

$$
\begin{array}{ll}
\text { SYM: } & S O(7) \otimes S O(7) \rightarrow S O(16) \\
\text { cSM: } & S O(8) \otimes S O(8) \rightarrow S O(16)
\end{array}
$$

For $\mathrm{N}=16$ SG: all states are $\mathrm{SO}(16)$ spinors \rightarrow no odd S-matrix elements
H. Johansson, Bad Honnef 2013

Different $D=3$ Supergravity Theories

Verified double copy constructions:

Huang, H.J.

SG theory	$\mathrm{CSm}_{\mathrm{L}} \times \mathrm{CSm}_{\mathrm{R}}=$ supergravity	$\mathrm{sYm}_{\mathrm{L}} \times \mathrm{SYM}_{\mathrm{R}}=$ supergravity	coset
$\mathcal{N}=16$	$16^{2}=256$	$16^{2}=256$	$\mathrm{E}_{8(8)} / \mathrm{SO}(16)$
$\mathcal{N}=12$	$8^{2}+\overline{8}^{2}=16 \times(4+\overline{4})=128$	$16 \times 8=128$	$\mathrm{E}_{7(-5)} / \mathrm{SO}(12) \otimes \mathrm{SO}(3)$
$\mathcal{N}=10$	$8 \times 4+\overline{8} \times \overline{4}=16 \times(2+\overline{2})=64$	$16 \times 4=64$	$\mathrm{E}_{6(-14)} / \mathrm{SO}(10) \otimes \mathrm{SO}(2)$
$\mathcal{N}=8, n=2$	$4^{2}+\overline{4}^{2}=8 \times 2+\overline{8} \times \overline{2}=32$	$16 \times 2=32$	$\mathrm{SO}(8,2) / \mathrm{SO}(8) \otimes \mathrm{SO}(2)$
$\mathcal{N}=8, n=1$	$16 \times 1=16$	$16 \times 1=16$	$\mathrm{SO}(8,1) / \mathrm{SO}(8)$

Examples 4pts:

$$
\begin{aligned}
& \mathcal{M}_{4}^{\mathcal{N}=12}(\overline{1}, 2, \overline{3}, 4)=\left(A_{4}^{\mathcal{N}=6}\right)^{2}=\left(\frac{\delta^{(6)}\left(\sum_{i} \lambda^{\alpha} \eta_{i}^{I}\right)}{\langle 12\rangle\langle 23\rangle}\right)^{2} \\
& \mathcal{M}_{4, n=2}^{\mathcal{N}=8}(\overline{1}, 2, \overline{3}, 4)=\left(A_{4}^{\mathcal{N}=4}\right)^{2}=\left(\frac{\delta^{(4)}\left(\sum_{i} \lambda^{\alpha} \eta_{i}^{I}\right)\langle 13\rangle}{\langle 12\rangle\langle 23\rangle}\right)^{2} \\
& \mathcal{M}_{4, n=1}^{\mathcal{N}=8}=\frac{1}{2} \frac{\delta^{(8)}\left(\sum_{i} \lambda^{\alpha} \eta_{i}^{I}\right)\left(s^{2}+t^{2}+u^{2}\right)}{\langle 12\rangle^{2}\langle 23\rangle^{2}\langle 13\rangle^{2}} \quad \text { checked d }
\end{aligned}
$$

H. Johansson, Bad Honnef 2013

Example calculation

H. Johansson, Bad Honnef 2013

Goal: Calculate 3-loop 4-pt N=8 SG ampl.

Goal: Calculate 3-loop 4-pt N=8 SG ampl.

- First find a duality-satisfying $\mathrm{N}=4 \mathrm{SYM}$ ampl.
- Square each kinematic numerator $\rightarrow \mathrm{N}=8 \mathrm{SG}$.
- See: 1201.5366 [hep-th] for this example.

Step 1. List diagram topologies

Step 1. List diagram topologies

Step 1. List diagram topologies

Step 1. List diagram topologies

Step 1. List diagram topologies

Step 1. List diagram topologies

Step 1. List diagram topologies

Step 1. List diagram topologies

Step 2. Identify Jacobi relations

Step 2. Identify Jacobi relations

Step 2. Identify Jacobi relations

Step 2. Identify Jacobi relations

Step 2. Identify Jacobi relations

Some simplifications due to $\mathrm{N}=4$ susy:

$$
\begin{aligned}
n^{(x)} & =s t A_{4}^{\text {tree }}(1,2,3,4) N^{(x)} \\
N^{(x)} & \equiv N^{(x)}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)
\end{aligned}
$$

Step 2. Identify Jacobi relations

Some simplifications due to $\mathrm{N}=4$ susy:

$$
\begin{aligned}
& \\
& n^{(x)}=\overbrace{s t A_{4}^{\text {tree }}(1,2,3,4)}^{\text {crossing symmetric }} N^{(x)}, \\
& N^{(x)} \equiv N^{(x)}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right) \longleftarrow \text { functions of external \& } \\
& \text { internal momenta }
\end{aligned}
$$

Step 2. Identify Jacobi relations

Some simplifications due to $\mathrm{N}=4$ susy:

$$
\begin{aligned}
& \\
& n^{(x)}=\overbrace{s t A_{4}^{\text {tree }}(1,2,3,4)}^{\text {crossing symmetric }} N^{(x)}, \\
& N^{(x)} \equiv N^{(x)}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right) \longleftarrow \text { functions of external \& } \\
& \text { internal momenta }
\end{aligned}
$$

Kinematic Jacobi Id.

$$
N^{(\mathrm{a})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)=N^{(\mathrm{b})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)+N^{(\mathrm{tri})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)
$$

Step 2. Identify Jacobi relations

Some simplifications due to $\mathrm{N}=4$ susy:

$$
\begin{aligned}
& \overbrace{s A_{4}^{\text {tree }}(1,2,3,4)}^{\text {crossing symmetric }} N^{(x)}, \\
n^{(x)} & =\begin{array}{c}
\text { functions of external \& } \\
N^{(x)} \\
\equiv N^{(x)}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right) \longleftarrow
\end{array}
\end{aligned}
$$

Kinematic Jacobi Id.

$$
N^{(\mathrm{a})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)=N^{(\mathrm{b})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)+N^{(\text {tri) }}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)
$$

Step 2. Identify Jacobi relations

Step 2. Identify Jacobi relations

$$
N^{(\mathrm{b})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)=N^{(\mathrm{d})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)+0
$$

Step 2. Identify Jacobi relations

$$
N^{(\mathrm{b})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)=N^{(\mathrm{d})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)+0
$$

$$
N^{(\mathrm{d})}=N^{(\mathrm{h})}\left(k_{3}, k_{1}, k_{2}, l_{7}, l_{6}, k_{1,3}-l_{5}+l_{6}-l_{7}\right)+N^{(\mathrm{h})}\left(k_{3}, k_{2}, k_{1}, l_{7}, l_{6}, k_{2,3}+l_{5}-l_{7}\right)
$$

Step 3. Reduce to master numerators

Step 3. Reduce to master numerators

The marked Jacobi relations $J_{\mathrm{a}}, J_{\mathrm{b}}, \ldots, J_{\mathrm{k}}, J_{1}$ gives functional eqns

$$
\begin{aligned}
N^{(\mathrm{a})} & =N^{(\mathrm{b})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right) \\
N^{(\mathrm{b})} & =N^{(\mathrm{d})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right) \\
N^{(\mathrm{c})} & =N^{(\mathrm{a})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right) \\
N^{(\mathrm{d})} & =N^{(\mathrm{h})}\left(k_{3}, k_{1}, k_{2}, l_{7}, l_{6}, k_{1,3}-l_{5}+l_{6}-l_{7}\right)+N^{(\mathrm{h})}\left(k_{3}, k_{2}, k_{1}, l_{7}, l_{6}, k_{2,3}+l_{5}-l_{7}\right) \\
N^{(\mathrm{f})} & =N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right) \\
N^{(\mathrm{g})} & =N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right) \\
N^{(\mathrm{h})} & =-N^{(\mathrm{g})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, k_{1,2}-l_{5}-l_{7}\right)-N^{(\mathrm{i})}\left(k_{4}, k_{3}, k_{2}, l_{6}-l_{5}, l_{5}-l_{6}+l_{7}-k_{1,2}, l_{6}\right), \\
N^{(\mathrm{i})} & =N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{7}, l_{6}\right)-N^{(\mathrm{e})}\left(k_{3}, k_{2}, k_{1},-k_{4}-l_{5}-l_{6},-l_{6}-l_{7}, l_{6}\right) \\
N^{(\mathrm{j})} & =N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)-N^{(\mathrm{e})}\left(k_{2}, k_{1}, k_{3}, l_{5}, l_{6}, l_{7}\right), \\
N^{(\mathrm{k})} & =N^{(\mathrm{f})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)-N^{(\mathrm{f})}\left(k_{2}, k_{1}, k_{3}, l_{5}, l_{6}, l_{7}\right) \\
N^{(\mathrm{l})} & =N^{(\mathrm{g})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)-N^{(\mathrm{g})}\left(k_{2}, k_{1}, k_{3}, l_{5}, l_{6}, l_{7}\right),
\end{aligned}
$$

Step 3. Reduce to master numerators

The marked Jacobi relations $J_{\mathrm{a}}, J_{\mathrm{b}}, \ldots, J_{\mathrm{k}}, J_{1}$ gives functional eqns

$$
\begin{aligned}
& N^{(\mathrm{a})}=N^{(\mathrm{b})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right), \\
& N^{(\mathrm{b})}=N^{(\mathrm{d})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right), \\
& N^{(\mathrm{c})}=N^{(\mathrm{a})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right) \\
& N^{(\mathrm{d})}=N^{(\mathrm{h})}\left(k_{3}, k_{1}, k_{2}, l_{7}, l_{6}, k_{1,3}-l_{5}+l_{6}-l_{7}\right)+N^{(\mathrm{h})}\left(k_{3}, k_{2}, k_{1}, l_{7}, l_{6}, k_{2,3}+l_{5}-l_{7}\right), \\
& N^{(\mathrm{f})}=N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right) \\
& N^{(\mathrm{g})}=N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right) \\
& N^{(\mathrm{h})}=-N^{(\mathrm{g})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, k_{1,2}-l_{5}-l_{7}\right)-N^{(\mathrm{i})}\left(k_{4}, k_{3}, k_{2}, l_{6}-l_{5}, l_{5}-l_{6}+l_{7}-k_{1,2}, l_{6}\right), \\
& N^{(\mathrm{i})}=N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{7}, l_{6}\right)-N^{(\mathrm{e})}\left(k_{3}, k_{2}, k_{1},-k_{4}-l_{5}-l_{6},-l_{6}-l_{7}, l_{6}\right), \\
& N^{(\mathrm{j})}=N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)-N^{(\mathrm{e})}\left(k_{2}, k_{1}, k_{3}, l_{5}, l_{6}, l_{7}\right), \\
& N^{(\mathrm{k})}=N^{(\mathrm{f})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)-N^{(\mathrm{f})}\left(k_{2}, k_{1}, k_{3}, l_{5}, l_{6}, l_{7}\right), \\
& N^{(\mathrm{l})}=N^{(\mathrm{g})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)-N^{(\mathrm{g})}\left(k_{2}, k_{1}, k_{3}, l_{5}, l_{6}, l_{7}\right),
\end{aligned}
$$

Note: all numerators can be reduced to linear combinations of $N^{(\mathrm{e})}$
$N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)$ is a "master numerator"

Step 4. Use Ansatz for master(s)

To simplify the ansatz we use auxiliary constraints (specific to $N=4$):

1) n-gon subgraphs carries at most $n-4$ powers of loop momenta
2) $N^{(x)}$ are polynomials in Lorents products of momenta.
3) $N^{(x)}$ have the (crossing) symmetries of theirs graphs.

Step 4. Use Ansatz for master(s)

To simplify the ansatz we use auxiliary constraints (specific to $N=4$):

1) n-gon subgraphs carries at most $n-4$ powers of loop momenta
2) $N^{(x)}$ are polynomials in Lorents products of momenta.
3) $N^{(x)}$ have the (crossing) symmetries of theirs graphs.
$\Rightarrow \quad N^{(\mathrm{e})}=N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}\right)$

Step 4. Use Ansatz for master(s)

To simplify the ansatz we use auxiliary constraints (specific to $N=4$):

1) n-gon subgraphs carries at most $n-4$ powers of loop momenta
2) $N^{(x)}$ are polynomials in Lorents products of momenta.
3) $N^{(x)}$ have the (crossing) symmetries of theirs graphs.
$\Rightarrow \quad N^{(\mathrm{e})}=N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}\right)$

Physical constraint: on the maximal unitarity cut $\quad N^{(\mathrm{e})} \rightarrow s\left(l_{5}+k_{4}\right)^{2}$

Step 4. Use Ansatz for master(s)

To simplify the ansatz we use auxiliary constraints (specific to $N=4$):

1) n-gon subgraphs carries at most $n-4$ powers of loop momenta
2) $N^{(x)}$ are polynomials in Lorents products of momenta.
3) $N^{(x)}$ have the (crossing) symmetries of theirs graphs.
$\Rightarrow \quad N^{(\mathrm{e})}=N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}\right)$

Physical constraint: on the maximal unitarity cut $\quad N^{(\mathrm{e})} \rightarrow s\left(l_{5}+k_{4}\right)^{2}$
This gives a four-parameter ansatz:

$$
N^{(\mathrm{e})}=s\left(l_{5}+k_{4}\right)^{2}+(\alpha s+\beta t) l_{5}^{2}+(\gamma s+\delta t)\left(l_{5}-k_{1}\right)^{2}+(\alpha s+\beta t)\left(l_{5}-k_{1}-k_{2}\right)^{2}
$$

Step 4. Use Ansatz for master(s)

To simplify the ansatz we use auxiliary constraints (specific to $N=4$):

1) n-gon subgraphs carries at most $n-4$ powers of loop momenta
2) $N^{(x)}$ are polynomials in Lorents products of momenta.
3) $N^{(x)}$ have the (crossing) symmetries of theirs graphs.
$\Rightarrow \quad N^{(\mathrm{e})}=N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}\right)$

Physical constraint: on the maximal unitarity cut $\quad N^{(\mathrm{e})} \rightarrow s\left(l_{5}+k_{4}\right)^{2}$
This gives a four-parameter ansatz:
$N^{(\mathrm{e})}=s\left(l_{5}+k_{4}\right)^{2}+(\alpha s+\beta t) l_{5}^{2}+(\gamma s+\delta t)\left(l_{5}-k_{1}\right)^{2}+(\alpha s+\beta t)\left(l_{5}-k_{1}-k_{2}\right)^{2}$
Enforcing linearity in $l_{5}: \quad \gamma=-1-2 \alpha \quad \delta=-2 \beta$

Step 5. Impose constraints on derived numerators

$$
N^{(\mathrm{e})}=s\left(\tau_{45}+\tau_{15}\right)+(\alpha s+\beta t)\left(s+\tau_{15}-\tau_{25}\right)
$$

$$
\tau_{i j}=2 k_{i} \cdot l_{j}
$$

Step 5. Impose constraints on derived numerators

$$
N^{(\mathrm{e})}=s\left(\tau_{45}+\tau_{15}\right)+(\alpha s+\beta t)\left(s+\tau_{15}-\tau_{25}\right)
$$

$$
\begin{aligned}
N^{(\mathrm{j})} & =N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right)-N^{(\mathrm{e})}\left(k_{2}, k_{1}, k_{3}, l_{5}, l_{6}, l_{7}\right) \\
& =s(1+2 \alpha-\beta)\left(\tau_{15}-\tau_{25}\right)+\beta s(t-u)
\end{aligned}
$$

Only boxes (4-gons): $\beta=1+2 \alpha$

Step 5. Impose constraints on derived numerators

$$
\begin{aligned}
N^{(\mathrm{a})}= & N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{4},-k_{3}+l_{5}-l_{6}+l_{7}, l_{5}-l_{6},-l_{5}\right) \\
& +N^{(\mathrm{e})}\left(k_{2}, k_{1}, k_{4},-k_{3}-l_{5}+l_{7},-l_{5}, l_{5}-l_{6}\right) \\
& -N^{(\mathrm{e})}\left(k_{4}, k_{1}, k_{2}, l_{6}-l_{7}, l_{6}, l_{5}-l_{6}\right)-N^{(\mathrm{e})}\left(k_{4}, k_{2}, k_{1}, l_{6}-l_{7}, l_{6},-l_{5}\right) \\
& -N^{(\mathrm{e})}\left(k_{3}, k_{1}, k_{2}, l_{7}, l_{6}, l_{5}-l_{6}\right)-N^{(\mathrm{e})}\left(k_{3}, k_{2}, k_{1}, l_{7}, l_{6},-l_{5}\right) . \\
= & s^{2}+(1+3 \alpha)\left(\left(\tau_{16}-\tau_{46}\right) s-2\left(\tau_{17}+\tau_{37}\right) s+\left(\tau_{16}-2 \tau_{17}-\tau_{26}+2 \tau_{27}\right) t+4 u t\right) \\
& \underbrace{2}_{1} \overbrace{\text { (a) }}^{5} \overbrace{4}^{6} \text { Only boxes (4-gons): } \alpha=-\frac{1}{3}
\end{aligned}
$$

Step 5. Impose constraints on derived numerators

$$
\begin{aligned}
& N^{(\mathrm{a})}= N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{4},-k_{3}+l_{5}-l_{6}+l_{7}, l_{5}-l_{6},-l_{5}\right) \\
&+N^{(\mathrm{e})}\left(k_{2}, k_{1}, k_{4},-k_{3}-l_{5}+l_{7},-l_{5}, l_{5}-l_{6}\right) \\
&-N^{(\mathrm{e})}\left(k_{4}, k_{1}, k_{2}, l_{6}-l_{7}, l_{6}, l_{5}-l_{6}\right)-N^{(\mathrm{e})}\left(k_{4}, k_{2}, k_{1}, l_{6}-l_{7}, l_{6},-l_{5}\right) \\
&-N^{(\mathrm{e})}\left(k_{3}, k_{1}, k_{2}, l_{7}, l_{6}, l_{5}-l_{6}\right)-N^{(\mathrm{e})}\left(k_{3}, k_{2}, k_{1}, l_{7}, l_{6},-l_{5}\right) . \\
&= s^{2}+(1+3 \alpha)\left(\left(\tau_{16}-\tau_{46}\right) s-2\left(\tau_{17}+\tau_{37}\right) s+\left(\tau_{16}-2 \tau_{17}-\tau_{26}+2 \tau_{27}\right) t+4 u t\right) \\
& \text { Only boxes (4-gons): } \alpha=-\frac{1}{3}
\end{aligned}
$$

Final solution for master:

$$
N^{(\mathrm{e})}=s\left(\tau_{45}+\tau_{15}\right)+\frac{1}{3}(t-s)\left(s+\tau_{15}-\tau_{25}\right)
$$

$\rightarrow \mathrm{N}=4$ SYM and $\mathrm{N}=8$ SUGRA amplitude integrands fully determined

Collecting the result

1004.0476 [hep-th] Bern, Carrasco, HJ

Integral $I^{(x)}$	$\mathcal{N}=4$ Super-Yang-Mills $(\sqrt{\mathcal{N}=8 \text { supergravity }) ~ n u m e r a t o r ~}$
$(\mathrm{a})-(\mathrm{d})$	s^{2}
$(\mathrm{e})-(\mathrm{g})$	$\left(s\left(-\tau_{35}+\tau_{45}+t\right)-t\left(\tau_{25}+\tau_{45}\right)+u\left(\tau_{25}+\tau_{35}\right)-s^{2}\right) / 3$
$(\mathrm{~h})$	$\left(s\left(2 \tau_{15}-\tau_{16}+2 \tau_{26}-\tau_{27}+2 \tau_{35}+\tau_{36}+\tau_{37}-u\right)\right.$
	$\left.+t\left(\tau_{16}+\tau_{26}-\tau_{37}+2 \tau_{36}-2 \tau_{15}-2 \tau_{27}-2 \tau_{35}-3 \tau_{17}\right)+s^{2}\right) / 3$
(i)	$\left(s\left(-\tau_{25}-\tau_{26}-\tau_{35}+\tau_{36}+\tau_{45}+2 t\right)\right.$
	$\left.+t\left(\tau_{26}+\tau_{35}+2 \tau_{36}+2 \tau_{45}+3 \tau_{46}\right)+u \tau_{25}+s^{2}\right) / 3$
$(\mathrm{j})-(\mathrm{l})$	$s(t-u) / 3$

$$
\tau_{i j}=2 k_{i} \cdot l_{j}
$$

Used to show absence of N=4 SG divergence Bern, Davies, Dennen, Huang

Summary

- Yang-Mills theories are controlled by a kinematic Lie 2-algebra
- Chern-Simons-matter theories controlled by a kinematic Lie 3-algebra
- With duality manifest: Gravity becomes double copy of Yang-Mills theory for any dim., or, in $D=3$, of Chern-Simons-matter theory
- A complete representation of the kinematic algebra is still missing for all but the simplest case of self-dual Yang-Mills.
- Constructing CK-amplitude representations is nonetheless possible, case by case. Double-copy formula gives gravity integrands for free.
- Duality is a key tool for nonplanar gauge and gravity calculations.
- $\mathcal{N}=8$ supergravity UV behavior at five (seven) loops?
- $\quad D=4$ UV divergence 3,4 loops $\mathcal{N}=4$ supergravity?

