Global models with D3 and D7 branes at singularities and moduli stabilisation

Roberto Valandro

The Abdus Salam Intenational Center for Theoretical Physics (ICTP) – Trieste –

Bad Honnef, 21 March 2013

Based on

- * arxiv:1206.5237
- * arxiv:1304.XXXX

in collaboration with M. Cicoli, S. Krippendorf, C. Mayrhofer and F. Quevedo

ъ

Introduction

Two longstanding problems of string compactifications:

- 1) Moduli stabilisation;
- 2) Derivation of GUT- or MSSM-like constructions.

Md stab studied in many corners of Landscape. We chose to work in type IIB:

- Fluxes stabilise complex structure moduli and axiodilaton.
- Fluxes have mild backreaction to geometry (GKP).
- Viable mechanisms to fix Kähler moduli: KKLT, LVS, D-terms.

[Balasubramanian, Berglund, Blumenhagen, Burgess, Conlon, Dasgupta, Denef, Douglas, Dudas, Giddings, Grimm, Haack, Hebecker, Kachru, Kallosh, Klemm, Linde, Louis, Lüst, Jockers, Maharana, Mayr, Plauschinn, Polchinski, Quevedo, Raby, Sethi, Stieberger, Taylor, Theisen, Trivedi, Weigand, Westphal, Zagermann....] In the last years increasing of model building in type IIB with D7-branes

- In type IIB model building, one can use complex geometry techniques.
- F-theory: 7-brane/geometric moduli and 3-form/gauge fluxes unified.
- Local models with magnetized branes and branes at singularities, and recently global models (both perturb type IIB and F-theory).

[Aldazabal, Beasley, Berglund, Blumenhagen, Braun, Collinucci, Conlon, Donagi, Dudas, Grimm, Heckman, Ibanez, Kreuzer, Krippendorf, Marchesano, Marsano, Mayrhofer, Palti, Quevedo, Saulina, Schafer-Nameki, Shiu, Uranga, Vafa, Verlinde, Watari, Weigand, Wijnholt....]

Usually, 1) and 2) studied indipendently. \rightarrow It's time to combine them! $a \rightarrow a = a$

Introduction

Three crucial issues in combining (global) model build with md stabilisation:

- * There is tension between Kähler md stab by NP effects and chirality. [Blumenhagen,Moster,Plauschinn]
 - ⇒ Constraint on vis-sect flux: no chirality at inters with NP cycle. Best place to put NP effect is del Pezzo surface. [Cicoli,Kreuzer,Mayrhofer] (Also solution for $h_{-1}^{1,1}(X) > 0$ [Grimm,Kerstan,Palti,Weigand])
- * Freed-Witten anomaly generically prevents more than one NP effect. [Blumenhagen,Braun,Grimm,Weigand; Collinucci,Kreuzer,Mayrhofer,Walliser]

 $\mathcal{F} = \mathbf{F} - \mathbf{B} = 0$ on NP-cycle $\rightarrow \mathbf{B}$ fixed. But generically $\mathcal{F} \neq 0$ elsewhere.

- ⇒ Kähler moduli stabilisation by only one NP effect. (In specific examples one can have more cycles contributing.)
- Flux-generated D-terms can induce shrinking of 4-cycles (supporting visible sector), leading to the boundary of Kähler cone.
 [Blumenhagen,Braun,Grimm,Weigand; Collinucci,Kreuzer,Mayrhofer,Walliser; Cicoli,Kreuzer,Mayrhofer]
 - \Rightarrow If we don't want D3 at sing, avoid visible sector on dP.

(Moreover, control over EFT and stabilise Kähler moduli inside Kähler cone.)

ヘロン ヘアン ヘビン ヘビン

Strategy

Type IIB CY orientifolds, with D3/D7-branes and O3/O7-planes.

- Phenomenological requirements translate to geometric properties of the compact manifold.
 - * Set of geometric constraints consistent with phenom viable model.
 - * Search for glob defined compact manifold satisfying such constr's.
- \triangleright We take CY 3-folds from reduced lists of hypersurfaces in toric varieties \rightarrow allow to be very explicit on CY topology and systematic in the search.
- ▷ After choosing a proper O7-involution, take a phenomenologically interesting brane setup with intersecting and (fluxed) D7-branes or with D3-branes at *dP_n* singularities.
- Check consistency conditions (like D7/D5/D3-tadpole cancellation, FW anomaly cancellation,...).
- Assuming c.s. fixed by 3-form fluxes (W₀, g_s parameters), study Kähler md stab in a way that addresses previous issues [Cicoli, Mayrhofer, R.V.].
- ▷ Fixed values of moduli set M_s, M_{susy},... and the vacuum energy. In two explicit examples, we found a dS vacuum (D-terms [Cicoli, Krippendorf, Mayrhofer, Quevedo, R.V.] and F-terms [Louis, Rummel, R.V., Westphal] uplift).

・ロト ・ 理 ト ・ ヨ ト ・

- D-branes at singularities, local and global models
- Explicit example with global embedding of local models and moduli stabilisation
- Transitions among quivers
- Onclusions and outlook.

イロト イポト イヨト イヨト

D-branes at singularities

and

local/global models

Roberto Valandro Global models with branes at singularities and moduli stab

→ E → < E →</p>

A ►

D-branes at singularities and quiver theories

Consider models where the CY X develops point-like singularities. One can then obtain chiral matter by putting D3 branes on top of sing.

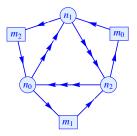
- D3-branes split into fractional branes. [Douglas,Moore; Douglas,Diaconescu,Gomis] Associated quiver theory: for each fractional brane we draw a node, for each massless open string from brane *i* to brane *j* we draw an arrow.
- So far great attention on phenomenologically interesting local models, with MSSM-like gauge group and spectrum. [Aldazabal,Ibanez,Quevedo,Uranga; Berenstein,Jejjala,Leigh; Verlinde,Wijnholt; Dolan,Krippendorf,Quevedo...]
- We want globally defined compact models. Need to embed local quiver model into an orientifold of a compact singular CY₃.
 (Non-trivial: compact manifold very specific, in order to realise the embedding and to have moduli stabilisation; on top of it, charge cancellation.)
- See [Diaconescu, Florea, Kachru, Svrcek; Buican, Malyshev, Morrison, H.Verlinde, Wijnholt] for first global embeddings of dP_n singularities, and [Balasubramanian, Berglund, Braun, García-Etxebarria] for sistematic construction of toric singularities in compact CYs and embedding of quivers (with flavour D7-branes).

ヘロト ヘワト ヘビト ヘビト

dP₀ singularity and associated quiver theory

We consider pt-like sing obtained by shrinking one $dP_0 = \mathbb{CP}^2$ in the CY_3 .

- ▷ It is the orbifold sing C³/Z₃: There are 3 fractional branes, in one-to-one corresp with irreducible rep of orbif group.
- ▷ Associated quiver theory $SU(n_0) \times SU(n_1) \times SU(n_2)$, with flav branes:



Anomaly cancellation constrains multiplicities of flav branes:

 $m_0 = m + 3(n_1 - n_0)$ $m_1 = m$ $m_2 = m + 3(n_1 - n_2)$ $(m \in \mathbb{Z})$

To globally embed the local model, need to express fractional and flavour branes in terms of the geometry of the global model.

D-brane charges

D-brane charges encoded into the Mukai charge vector:

$$\Gamma_{\mathcal{E}} = [D] \cdot ch(\mathcal{E}) \cdot \sqrt{\frac{Td(\mathit{TD})}{Td(\mathit{ND})}} \qquad \hookrightarrow \begin{cases} 2\text{-form} \leftrightarrow \mathsf{D7}\text{-charge} \\ 4\text{-form} \leftrightarrow \mathsf{D5}\text{-charge} \\ 6\text{-form} \leftrightarrow \mathsf{D3}\text{-charge} \end{cases}$$

* Fractional branes described by well-chosen collection of sheaves, supported on shrinking cycle (7-branes). For $\mathbb{C}^3/\mathbb{Z}_3$ fractional branes:

$$\operatorname{ch}(\mathcal{E}_0) = -1 + H - \frac{1}{2} H \wedge H$$
, $\operatorname{ch}(\mathcal{E}_1) = 2 - H - \frac{1}{2} H \wedge H$, $\operatorname{ch}(\mathcal{E}_2) = -1$

and $D = \mathcal{D}_{dP_0}$ (*H* is hyperplane class of $dP_0 = \mathbb{P}^2$).

* Flavour branes are D7-branes wrapping holomorphic 4-cycles $\mathcal{D}_{\text{flav}}$ that pass through the sing (i.e. $\mathcal{D}_{\text{flav}} \cdot \mathcal{D}_{dP_0} \neq 0$):

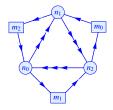
$$\Gamma_{\text{D7}_{\text{flav}}} = \mathcal{D}_{\text{flav}} + \mathcal{D}_{\text{flav}} \wedge \mathcal{F}_{\text{flav}} + \mathcal{D}_{\text{flav}} \wedge \left[\frac{1}{2}\mathcal{F}_{\text{flav}}^2 + \frac{1}{24}\textbf{C}_2(\mathcal{D}_{\text{flav}})\right]$$

Local models only say what are the local charges of $D7_{\text{flav}}$, i.e. restriction of $\Gamma_{D7_{\text{flav}}}$ on \mathcal{D}_{dP_0} .

イロト 不得 とくほ とくほ とう

Restrictions on *m_i*

From number of chiral intersections between flav and fract branes \Rightarrow local flav brane charges



 \Rightarrow

$$\begin{split} \Gamma_{D7_0}^{\text{loc}} &= (m + 3(n_1 - n_0))H\left[1 + \frac{1}{2}H\right] \\ \Gamma_{D7_1}^{\text{loc}} &= -2mH\left[1 + H\right] \\ \Gamma_{D7_2}^{\text{loc}} &= (m + 3(n_1 - n_2))H\left[1 + \frac{3}{2}H\right] \\ \text{with } \Gamma_{D7}^{\text{loc}} &\equiv \Gamma_{D7_{\text{flav}}}|_{dP_0} = aH + bH^2 \end{split}$$

- * In particular, $\mathcal{D}_{\text{flav}}|_{dP_0} = a H$ is 2-form P.D. to the intersection $\mathcal{D}_{\text{flav}} \cap \mathcal{D}_{dP_0}$.
- * $\mathcal{D}_{\text{flav}}$ is connected and $\mathcal{D}_{\text{flav}} \cap \mathcal{D}_{dP_0}$ is effective curve $\Rightarrow a > 0$.

The locally induced D7-charge of a flav brane must be postive multiple of *H*.

$$0 \leq -m \leq 3(n_1 - \max\{n_0, n_2\})$$

 \hookrightarrow Not all local models are realised globally. E.g., if $n_0 = n_1 = n_2$ then $m_i = 0$.

Explicit global embedding

of a local model

with moduli stabilisation

Roberto Valandro Global models with branes at singularities and moduli stab

A ►

-

- < ⊒ > <

Explicit global quiver model: geometry

We take $CY_3 X$, that is a hypersurface in a 4d toric ambient variety:

<i>Z</i> 1	<i>Z</i> 2	Z ₃	<i>Z</i> 4	<i>Z</i> 5	<i>Z</i> 6	Z 7	<i>Z</i> 8	D _{eqx}
1	1	1	0	3	3	0	0	9
0	0	0	1	0	1	0	0	2
0	0	0	0	1	1	0	1	3
0	0	0	0	1	0	1	0	2

 $SR = \{ \textit{z}_4 \textit{ z}_6, \textit{ z}_4 \textit{ z}_7, \textit{ z}_5 \textit{ z}_7, \textit{ z}_5 \textit{ z}_8, \textit{ z}_6 \textit{ z}_8, \textit{ z}_1 \textit{ z}_2 \textit{ z}_3 \}$

CY data obtained from PALP output [Kreuzer,Skarke].

- Hodge numbers: $h^{1,1}(X) = 4$, $h^{1,2}(X) = 112$.
- Basis of $H_4(X)$:

 $\mathcal{D}_b = D_4 + D_5 = D_6 + D_7, \qquad \mathcal{D}_{q_1} = D_4, \qquad \mathcal{D}_{q_2} = D_7, \qquad \mathcal{D}_s = D_8$

- Intersection form $I_3 = 27\mathcal{D}_b^3 + 9\mathcal{D}_{q_1}^3 + 9\mathcal{D}_{q_2}^3 + 9\mathcal{D}_s^3$.
- There are three dP_0 at $z_4 = 0$, $z_7 = 0$ and $z_8 = 0$.
- We have $D_1|_{\mathcal{D}_{dP_0}} = H$ (where $\mathcal{D}_{dP_0} = \mathcal{D}_{q_1}, \mathcal{D}_{q_2}, \mathcal{D}_a$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Orientifold projection and Kähler moduli

We take an orientifold involution that exchanges two (shrinking) dP_0 s:

- $\sigma : \qquad \textbf{Z}_4 \leftrightarrow \textbf{Z}_7 \qquad \text{and} \qquad \textbf{Z}_5 \leftrightarrow \textbf{Z}_6 \qquad (h_-^{1,1}(\textbf{X})=1 \text{ and } h_+^{1,1}(\textbf{X})=3)$
- The two $dP_0 s \mathcal{D}_{q_1} = D_4$ and $\mathcal{D}_{q_2} = D_7$ are exchanged.
- There are no O3-planes and two O7-planes: $O7_1$ at $z_4z_5 z_6z_7 = 0$ and $O7_2$ at $z_8 = 0 \rightarrow [O7_1] = \mathcal{D}_b$ and $[O7_2] = \mathcal{D}_s$.
- O7-planes do not intersect the (shrinking) dP₀s and do not intersect each others.
- Symmetric Kähler form: $J = t_b D_b + t_s D_s + t_{shr} (D_{q_1} + D_{q_2})$:

 $\mathsf{vol}(\mathcal{D}_{q_1}) = \mathsf{vol}(\mathcal{D}_{q_2}) = \frac{9}{2}t_{shr}^2, \qquad \mathsf{vol}(\mathcal{D}_s) = \frac{9}{2}t_s^2, \qquad \mathsf{vol}(X) = 3(\frac{3}{2}t_b^3 + t_{shr}^3 + \frac{1}{2}t_s^3)$

• Kähler cone:

 $t_b + t_s > 0 \qquad -t_s > 0 \qquad t_b + t_{\rm shr} > 0 \qquad -t_{\rm shr} > 0$

Singular CY at $t_{\rm shr} \to 0$.

Model without flavour branes

Visible sector from N = 3 D3-branes on top of each (of the two) sing. $n_0 = n_1 = n_2 = 3$

• dP_0 quiver theory (trinification model - $SU(3)_c \times SU(3)_L \times SU(3)_R$ with chiral spectrum 3 $\left[(3, \overline{3}, 1) + (1, 3, \overline{3}) + (\overline{3}, 1, 3) \right]$).

To cancel D7-charge of O7-plane: put 4 D7 (plus images) on top of each O7-plane.

- Hidden group $SO(8) \times SO(8)$.
- FW flux $F_s = -\frac{D_s}{2}$ cancelled by choosing $B = -\frac{D_s}{2}$.

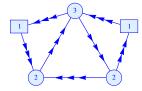
 $\hookrightarrow \mathcal{F}_s = \mathcal{F}_s - \mathcal{B} = 0 \to \text{pure } SO(8) \text{ SYM on rigid } \mathcal{D}_s \text{ (gaugino condens).}$

- FW flux $F_b = -\frac{D_b}{2}$ also cancelled if $B = -\frac{D_b}{2} \frac{D_s}{2}$.
 - \hookrightarrow There areadjoint scalars; if they are lift by appropriate flux [Biachi, Collinucci, Martucci], we can have non-pert effects also from \mathcal{D}_b (KKLT).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Model with flavour branes

We want to realise the following quiver theory at the sing:



Left-Right symmetric model

 $SU(3)_c imes SU(2)_L imes SU(2)_R$

with
$$n_0 = n_2 = 2$$
, $n_1 = 3$ and $m = 0$
($m_0 = m_2 = 3$ and $m_1 = 0$)

Local $D7_{\text{flav}}$ charges: $\Gamma_{D7_0}^{\text{loc}} = 3H(1 + \frac{1}{2}H)$ and $\Gamma_{D7_2}^{\text{loc}} = 3H(1 + \frac{3}{2}H)$ • D7-charge: for both flav branes $\mathcal{D}_{\text{flav}}|_{\mathcal{D}_{q_1}} = 3H$. Hence,

$$\mathcal{D}_{\text{flav}} = \mathbf{3} D_1 + \alpha^b \mathcal{D}_b + \alpha^s \mathcal{D}_s + \alpha^{q_2} \mathcal{D}_{q_2}$$

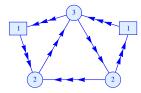
Require they do not intersect D_s and D_{q_2} :

$$\mathcal{D}_{\text{flav}}^{(0)} = 3D_1 + \mathcal{D}_s + \mathcal{D}_{q_2} + \alpha_0^b \mathcal{D}_b = (1 + \alpha_0^b) \mathcal{D}_b - \mathcal{D}_{q_1}$$

$$\mathcal{D}_{\text{flav}}^{(2)} = 3D_1 + \mathcal{D}_s + \mathcal{D}_{q_2} + \alpha_2^b \mathcal{D}_b = (1 + \alpha_2^b) \mathcal{D}_b - \mathcal{D}_{q_1}$$

Model with flavour branes

We want to realise the following quiver theory at the sing:



Left-Right symmetric model

 $SU(3)_c imes SU(2)_L imes SU(2)_R$

with $n_0 = n_2 = 2$, $n_1 = 3$ and m = 0($m_0 = m_2 = 3$ and $m_1 = 0$)

Local $D7_{\text{flav}}$ charges: $\Gamma_{D7_0}^{\text{loc}} = 3H(1 + \frac{1}{2}H)$ and $\Gamma_{D7_2}^{\text{loc}} = 3H(1 + \frac{3}{2}H)$

• D5-charge: fluxes are different on two flav branes: $\mathcal{F}_0|_{\mathcal{D}_{q_1}} = \frac{1}{2}H$ and $\mathcal{F}_2|_{\mathcal{D}_{q_1}} = \frac{3}{2}H$. Moreover, pull-back of \mathcal{D}_s and \mathcal{D}_{q_2} on divisor $3D_1 + \mathcal{D}_s + \mathcal{D}_{q_2} + \alpha^b \mathcal{D}_b$ are trivial. Hence,

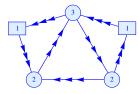
$$\mathcal{F}_{\text{flav}}^{(0)} = \frac{1}{2} D_1 + \beta_0^b \mathcal{D}_b \qquad \qquad \mathcal{F}_{\text{flav}}^{(2)} = \frac{3}{2} D_1 + \beta_2^b \mathcal{D}_b$$

• D3-charge:

$$\mathcal{D}_{\text{flav}} \cdot \left[\frac{1}{2} \mathcal{F}_{\text{flav}}^2 + \frac{c_2(\mathcal{D}_{\text{flav}})}{24} \right]$$

Model with flavour branes

We want to realise the following quiver theory at the sing:



Left-Right symmetric model

 $SU(3)_c imes SU(2)_L imes SU(2)_R$

with $n_0 = n_2 = 2$, $n_1 = 3$ and m = 0($m_0 = m_2 = 3$ and $m_1 = 0$)

The charges from the quiver system (including fractional branes) are

$$\begin{split} \Gamma_{\text{fractionalD3}} &= 2\Gamma_{\mathcal{E}_0} + 3\Gamma_{\mathcal{E}_1} + 2\Gamma_{\mathcal{E}_2} = 2\mathcal{D}_{q_1} + 2\mathcal{D}_{q_1} \wedge D_1 - \frac{3}{2}dVol_X^0 \\ \Gamma_{D7_0^{\text{flav}}} &= (\mathcal{D}_b - \mathcal{D}_{q_1}) + (\mathcal{D}_b - \mathcal{D}_{q_1}) \wedge \left(\frac{1}{2}D_1 + \beta_0^b\mathcal{D}_b\right) + \left\{5 + \frac{3}{2}\beta_0^b(1+9\beta_0^b)\right\}dVol_X^0 \\ \Gamma_{D7_2^{\text{flav}}} &= (\mathcal{D}_b - \mathcal{D}_{q_1}) + (\mathcal{D}_b - \mathcal{D}_{q_1}) \wedge \left(\frac{3}{2}D_1 + \beta_2^b\mathcal{D}_b\right) + \left\{7 + \frac{27}{2}\beta_2^b(1+\beta_2^b)\right\}dVol_X^0 \\ \text{where } \int_X dVol_X^0 = 1 \text{ and we chose } \alpha_0^b = \alpha_2^b = 0. \end{split}$$

Summing 3 vect's, with $\beta_0^b = \beta_0^b = 0$: $\Gamma_{quiver}^{z_4=0} = 2\mathcal{D}_b + 2\mathcal{D}_b \wedge D_1 + \left(\frac{27}{2} - 3\right) dVol_X^0$

Two O7-planes, one at \mathcal{D}_s and one at \mathcal{D}_b . We need to saturate their tadpole:

- Four D7-branes (plus images) wrapping D_s. B-field cancel FW-flux.
 SO(8) gauge group.
- To cancel tadpole of [O7₁] = D_b, we need two more D7-branes (plus images) wrapping D_b. SO(4) gauge group (unless there is flux F_b = (½ + f)D₁: U(2) gauge group).
- D7- and D5-charges cancel globally. Net D3-charge:

$$\begin{array}{rcl} Q_{D3}^{\rm tot} & = & Q_{D3}^{\rm quiver; \, z_4=0} + Q_{D3}^{\rm quiver; \, z_7=0} + Q_{D3}^{U(2)} + Q_{D3}^{SO(8)} \\ & = & -63 - 3 \left[\beta_0(1+9\beta_0) + 9\beta_2(1+\beta_2) + 2f(1+f)\right] \end{array}$$

Fluxes on the flavour branes and on the U(2)-stack can generate

- \triangleright Chiral modes at their intersections (and bulk of U(2)).
- Non-zero FI-terms.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Moduli Stabilisation

'Step by step' stabilisation:

- Complex structure md and D7-deformations stabilised by fluxes.
- D-terms on the visible sector stabilise $t_{shr} \rightarrow 0$:

$$V_{D} = \frac{1}{\text{Re}(f_{1})} \left(\sum_{i} q_{1i} K_{i} C_{i} - \xi_{1} \right)^{2} + \frac{1}{\text{Re}(f_{2})} \left(\sum_{i} q_{2i} K_{i} C_{i} - \xi_{2} \right)^{2}$$

For vanishing vev of matter fields C_i , min at $\xi_1 = \xi_2 = 0$, where

$$\xi_1=-4q_1rac{ au_+}{\mathcal{V}}\qquad (au_+\propto t_{
m shr}^2)\qquad \qquad \xi_2=-4q_2rac{b}{\mathcal{V}}$$

• Gaugino condensation on rigid D_s (a dP_0), $W_0 \sim O(1)$ and α' corr:

 \hookrightarrow F-term potential stabilises τ_s small and \mathcal{V} LARGE.

We can realize a dS vacuum in the LVS case:

Switch on gauge flux on non-rigid SO(4) stack: it generates bulk chiral matter and FI-term. ⇒ D-term uplift: V_{uplift} ~ ^{W⁰₀}/_{ν^{8/3}}. We obtain a 'tiny' dS.

Transitions

among

quivers

Roberto Valandro Global models with branes at singularities and moduli stab.

・ 同 ト ・ ヨ ト ・ ヨ ト

Transitions in the example ?

Total charge of quiver system $(SU(3) \times SU(2)^2)$ plus two flav branes)

$$\Gamma_{\text{quiver}}^{z_4=0} = 2\mathcal{D}_b + 2\mathcal{D}_b \wedge D_1 + \left(\frac{27}{2} - 3\right) dVol_X^0$$

This may be realised by another configuration:

- Three D3-branes at the singularity, realising an SU(3)³
- Two D7-branes wrapping the divisor D_b (i.e. *not* passing through the singularity) and with fluxes F = ¹/₂D₁, ³/₂D₁:

$$\begin{array}{rcl} \Gamma^{SU(3)^3}_{\text{quiver}} &=& -3 \, dVol_X^0 \\ \Gamma_{D7_0} &=& \mathcal{D}_b + \mathcal{D}_b \wedge \frac{1}{2} D_1 + \frac{21}{4} \, dVol_X^0 \\ \Gamma_{D7_2} &=& \mathcal{D}_b + \mathcal{D}_b \wedge \frac{3}{2} D_1 + \frac{33}{4} \, dVol_X^0 \end{array}$$

This suggests a possible transitions between the two susy configurations with the same charges.

ヘロト 人間 ト ヘヨト ヘヨト

From $SU(3)^3$ to $SU(3)^2 \times SU(2)$

Let us study first an analogous transition

Initial configuration:

- $SU(3)^3$ quiver (without flav br) with total charge $\Gamma_{quiver}^{SU(3)^3} = -3 \, dVol_X^0$.
- Bulk brane with charge $\Gamma_{D7_0} = D_b + D_b \wedge \frac{1}{2}D_1 + \frac{21}{4}dVol_X^0$.

Final configuration:

• $SU(3)^2 \times SU(2)$ quiver and one fractional brane with total charge

$$\Gamma_{\text{quiver}}^{SU(3)^2 \times SU(2)} = \mathcal{D}_b + \mathcal{D}_b \wedge \frac{1}{2}D_1 + \frac{9}{4}dVol_X^0$$

* Charges are conserved.

- * Before, a D7-brane that does not pass through the singularity and $SU(3)^3$ quiver at the singularity.
- Afterwards, a D7(flavour)-brane passes through the sing and quiver gauge group changes!

・ロット (雪) (山) (山)

э

Toy model

Transition seems to occur when bulk D7 touches sing.

Consider the following space

<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	y
1	1	1	3

- $\mathbb{C}^3/\mathbb{Z}_3$ singularity at $x_0 = x_1 = x_2 = 0$. Put 3 D3-branes there.
- Take D7-brane wrapping $P_3(x_i) + \alpha y = 0$.

• Let $\alpha \to 0$: D7 touches sing and transition on quiver should occur. Let us see what happens in the resolved picture:

<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	y	Ζ
1	1	1	3	0
0	0	0	1	1

- z = 0 is the blown-up dP_0 .
- Bulk D7 is $z \cdot P_3(x_i) + \alpha y = 0$.
- At α → 0 D7 splits into flavour brane and a brane wrapping dP₀.

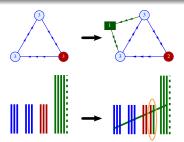
Transitions in the example

For an interpretation, go to large volume (blow-up). Effective description:

Take D7 on \mathcal{D}_b and split it into a brane on $\mathcal{D}_b - \mathcal{D}_{q_1}$ and a brane on \mathcal{D}_{q_1} with

$$\begin{split} \Gamma_{D7_{0}^{\text{flav}}} &= (\mathcal{D}_{b} - \mathcal{D}_{q_{1}}) + (\mathcal{D}_{b} - \mathcal{D}_{q_{1}}) \wedge \frac{1}{2} D_{1} + 5 \, dVol_{X}^{0} \\ \Gamma_{\mathcal{D}_{q_{1}}} &= \mathcal{D}_{dP_{0}} + \mathcal{D}_{dP_{0}} \wedge \frac{1}{2} D_{1} + \frac{1}{4} \, dVol_{X}^{0} = -\Gamma_{\mathcal{E}_{0}} \end{split}$$

Splitting generates the flavour brane $D7_0^{flav}$ and an 'anti-fractional' brane that annihilates with one fractional brane at the 0-node of the quiver.



Repeating this, we can go to the L-R symmetric model and further to SM.

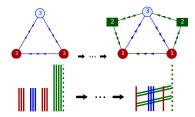
Roberto Valandro

Global models with branes at singularities and moduli stab

Web of D-brane models at singularities

Claim: connect all the quiver models that can be embedded into CY three-fold

Bound given by D-brane charge conserv. E.g.



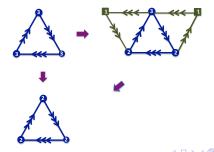
This phenomenon (described in one example) is valid for any global embed of dP_0 quiver models, and should work analogously also for other dP_n .

From $SU(3)^3$ to $SU(2)^3$

Transition from $SU(3)^3$ to $SU(2)^3$:

Either take one D3-brane away from the singularity, or

- \hookrightarrow Take two bulk D7s and undergo transitions to $SU(3) \times SU(2)^2$.
- \hookrightarrow Recombine two flav branes and fractional brane at node $n_1 = 3$. This give a bulk D7 with non-abelian flux.
- \hookrightarrow D7 expels one D3-brane and split into the initial bulk D7s.



Conclusions

- * We studied how to embedd *dP*₀ quiver models with and without flavour branes, into a compact manifold.
- * We found restrictions on local models that can be embedded in this way.
- * We have described explicit global embedding of a dP_0 quiver model.
- * Geometric data described by toric geometry. This allowed us to make specific choice of brane setup and fluxes.
- We were able to combine various mechanisms to stabilise K\u00e4hler moduli, without violating global consistency conditions and overcoming problems found so far. We found dS vacua.
- * We considered the possibility of transitions between quiver models.

イロト イポト イヨト イヨト

Outlook

- There is a long list of CY₃ in PALP output: try to automatise the search for consistent and phenomenological viable models.
- Study phenomenology of L-R symmetric (global) model.
- Study complex structure moduli stabilisation: see if one can stabilise all of them and what 3-form fluxes one can switch on.
- Uplift to F-theory (more control over complex structure and open string moduli; flux quantisation).
- Understand the dynamics of transitions among quivers.

ヘロト ヘ戸ト ヘヨト ヘヨト

Moduli stabilisation

Roberto Valandro Global models with branes at singularities and moduli stab.

Moduli Stabilisation in Type IIB

Take Type IIB compactified on $CY_3 X$ with orientifold invol $(-1)^{F_L}\Omega_p\sigma$.

- Moduli: $h_{-}^{1,2}$ c.s., $h_{+}^{1,1}$ C-fied Käh, $h_{-}^{1,1}$ (*B*, *C*₂) and *S* = $e^{-\phi} + iC_0$.
- The tree-level 4D Kähler potential takes the form [Grimm,Louis]:

$$\mathcal{K}_{ ext{tree}} = -2 \ln \mathcal{V} - \ln \left(\mathcal{S} + ar{\mathcal{S}}
ight) - \ln \left(-i \int\limits_{\mathcal{X}} \Omega \wedge ar{\Omega}
ight)$$

depends on c.s. md via Ω , while on Kähler md via the CY vol $\mathcal{V} = \frac{1}{6} \int_X J \wedge J \wedge J = \frac{1}{6} k_{ijk} t^i t^j t^k$, where $J = t^i \hat{D}_i$.

• A tree-level superpotential is generated by turning on bkgr fluxes $G_3 = F_3 + iSH_3$ ($F_3 = dC_2$ and $H_3 = dB_2$) [Gukov,Vafa,Witten]:

$$W_{\text{tree}} = \int\limits_{X} G_3 \wedge \Omega$$

F-term potential:

$$V_F^{\text{tree}} = e^K \left(|D_I W|^2 - 3|W|^2 \right) = e^K |D_i W|^2$$
 i over *S* and c.s. md

 \hookrightarrow Tree-level potential has no-scale structure; at min, Kähler md are flat directions, while c.s. md and S are fixed (at $D_iW = 0$).

Kähler moduli stabilisation

Sources for Kähler md stab \rightarrow other terms in the potential

 $V = V_F^{\text{tree}} + V_D + \delta V_F^{\text{pert}} + \delta V_F^{\text{np}}$

- V_D : D-term potential (generated by fluxes on D7's) [Jockers,Louis].
- δV_F^{pert} : perturbative α' [Becker,Becker,Haack,Louis] and g_s [Becker,Haack, Kors, Pajer] corrections to the Kähler potential K.
 - δ V_F^{np}: non-perturbative corrections to the superpotential W (E3-instantons or gaugino condensation on a D7-stack) [Witten; Kachru,Kallosh,Linde,Trivedi].
 - At leading order in 1/V, min at V_F^{tree} = 0 and V_D = 0.
 → dilaton and c.s. md fixed at their flux-stabilised values.
 - At subleading order → minimize δV_F (g_s and W₀ = ⟨W_{tree}⟩ flux-dependent constants. K = −2 ln V, with c.s. and dilaton parts of K entering as an overall factor.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○