
Solutions for the LHC lectures

1) The bending radius for one magnet is equal to ρ(m)=3.3356 p (GeV)/B(T) = 2803 m. 
Then angular kick given by every magnet is θ(mrad)=L/ρ= 5.1 mrad. Then 
Nmagnets=2*π/5.1 mrad = 1232.

2) The gravitational force give a Δy=0.5*g*t2. Assuming g=10 m/s2 to cover the 28 mm one 
would take about 74.8 ms. The revolution frequency of 11.245 kHz gives one turn every 
88.9 μs, so it makes about 841 turns.

3) The magnetic energy stored equals En=1/2 * L * I2=6.93 MJ.

4) The relevant plots are shown below:
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The luminosity can be computed by:

which leads to L(7 TeV)= 1.1971 1034/cm2/s while L(450 GeV)=2.4988 1031/cm2/s, three 
orders of magnitude less.

5) The effect of the multiple scattering is to provide an angular kick, meaning adding 
divergence to the beam. In xxʼ and yyʼ planes, the beam emittance is defined roughly as 
the area of the ellipse occupied by the beam. When the optical beta is a the minimum, 
this 
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ellipse is upright, i.e. the beam is small and the angular divergence is large, like in 
figure  (a). When the beta is large, the ellipse is lying on the x axis (b). Adding divergence 
to the beam means to stretch the ellipse, like in figure (c) and (d). 
By taking the ratio of the ellipse surfaces before the bottle and after passing the bottle, one 
realises that in the case of (c) the area, meaning the emittance, is increased less than in 
the case of (d). The place to put the bottle is where the minimum of the beta occurs, i.e. in 
the LHC at the IPs, in the middle of one of the experiments.  

6) The length of the beam orbit in a synchrotron is fixed by the constant RF frequency. If 
the circumference of the machine is changed, for example distorted by the Moon and Sun 
tides, the beam will pass no more through the center of the quadrupoles. The results is a 
different bending strength which will leads to an energy change. 
The momentum compaction factor relates the relative variation of the machine 
circumference with the variation of machine beam energy, such that:

L =
N2 · f · nb

4π · σ∗
x · σ∗
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This means that a ΔC=1.23*10-5 m variation causes a 10 MeV energy change, and with 
this conventions, an expanding ring induces a reduction of the energy. 
For the experiment this effect should not be a problem. In an hadron collider, not like in a 
lepton collider, the energy of the colliding particles is not known precisely, due to the fact 
that are the partons (quarks and gluons) which interact, and not the protons.

1) The angular kick given by a dipole, as in the 1st exercise, is given by:

negative in this case to have a negative kick and let indicate it as y because is vertical. So 
yʼ=1.28*10-4 rad. By applying the matrix formalism for a drift, a particle which is centered at 
the entrance of the magnet, it exits with an angle yʼ, and to reach 4 mm needs s=4 mm/
y=31.2 m. After 31.2 m a second magnet has to be installed with the same bending 
strength   with opposite polarity to compensate for the angle yʼ and put the beam again 
parallel. Then a second set of those dipoles, mirrored with respect to the IP has to be 
installed.

2) The synchrotron power radiated by one particle is

where r0 is the classical radius of the given particle, E is the energy, m is the particle rest 
mass. By substituting the relevant values in the formulas, one gets about 8.6*106 W for 
1012 electrons. For 1014 protons one gets 1.81*103 W. The energy per turn is obtained by 
multiplying the power irradiated by one particle times the inverse of the revolution 
frequency. The energy emitted by a 100 GeV electron per turn is about 4.7*109 eV while 
for a proton at 7 TeV is 1.01*104 eV, so few GeV for electrons and about 10 keV for 
protons. An electron at 7 TeV would irradiate 1.14 1017 eV. 

3)The tune variation due to a quadrupolar error is given by:

where ΔK is the gradient variation given by the error, which can be a real quadrupole 
pulsing or the results of having the beam off axis with respect to a sextupole.
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Assuming the alignment errors of different quadrupole magnets are not corre-
lated one can set the contributions (42), (43) and (45) equal to zero. Taking
the average over all phases along the storage ring one can further set the contri-
butions (40), (41) and (44) equal to zero and the RMS orbit error is simplifies
to

RMSorbit =
l

2 sin (πQx)
[(βQF kQF ) + (βQF kQF )]×RMS(δx) (46)

Substituting βQF = 180 metre, βQD = 40 metre, l = 2 metre, Qx = 57.275 and
kQF = 0.008 and kQD = 0.007 into Equation (46) one obtains

RMSorbit = 0.68 mm (47)

0.1.5 Exercise 5 - machine chromaticity

#Q =
1
4π

·
∮

β(s) ·#K(s)ds (48)

with
#K(s) = 2 · Dx

R2
ref · ρ

· b3 · 10−4 · #p

p0
. (49)

Inserting Equation (49) into Equation (48) and inserting the average values for
the dispersion and the β-function we get per LHC dipole

#Q =
1
2π

· L · < β > · < Dx >

R2
ref · ρ

· b3 · 10−4 · #p

p0
(50)

= 485.32 · b3 · 10−4 · #p

p0

where L is the length of the LHC dipole magnets. Summing over all dipole
magnets (1232) we get

#Q ≈ 59.8 · b3 · #p

p0
(51)

and have for the chromaticity as a function of b3 error

ξ = 59.8 · b3. (52)

For 11 units of b3 error we get a total chromaticity of

ξ(b3) = 657.8. (53)
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So, in this case:

because the dispersion Dx(s) causes a displacement dx at a given s proportional to the 
momentum deviation.
Then the tune variation can be computed from the first expression using the average 

quantities mentioned in the text for one dipole. Then there are 1232 dipoles, so

which gives also the chromaticity in function of the b3, ξ= 59.8 * b3/Q. For 11 units of b3 
one gets ξ=657.8/Q. 
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